
PHY 475
Homework 2 solutions

(Due by beginning of class on Wednesday, April 18, 2012)

1. Suppose you are a two-dimensional being, living on the surface of a sphere with radius R. An
object of width ds ≪ R is at a distance r from you (remember, all distances are measured
on the surface of the sphere).

(a) What angular width dθ will you measure for the object?

Solution:

As discussed in lecture for 2-D surfaces, set up your location at the origin, which for conve-
nience should be taken to be the north pole of the sphere.

This setup for the coordinate system is
shown in the figure on the right. Recall
that in setting up the metric for a 2-D sur-
face, r is measured from the pole, and θ is
the angle measured with respect to a great
circle, so dθ as shown in the figure on the
right matches this stipulation.

Now, since ds ≪ R, whatever r may be,
the distance from you to ds can be taken
to be the same along the two sides of the
triangle; another way of saying this is that
you can take dr = 0.

The metric ds2 = dr2 + R2 sin2(r/R)dθ2, with dr = 0, is

ds2 = R2 sin2

( r

R

)

dθ2

Taking the square root, the angular width you will measure is

dθ =
ds

R sin (r/R)

(b) Examine and explain the behavior of dθ as r → πR.

Solution: Notice that, at r = πR/2, we get dθ = ds/R, the smallest value for dθ.

So, for fixed ds, we find that dθ decreases with increasing r up to r = πR/2, whereas for
r > πR/2, dθ increases with increasing r. This makes perfect sense if you look at the figure:
if you keep ds fixed and bring it near the poles it will subtend a much larger angle dθ at the
poles, whereas the same ds will subtend a smaller angle at the poles when it is taken near
the equatorial region of the sphere.
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2. The Robertson-Walker (FLRW ) metric may be written in the form

ds2 = −c2dt2 + a(t)2

[

dr2 + Sκ(r)
2dΩ2

]

where Sκ(r) =

R0 sin

(

r

R0

)

, for κ = +1; r, for κ = 0; R0 sinh

(

r

R0

)

, for κ = −1

(a) By inspection of the above equation, write down all the 16 elements (in matrix form) of gµν

in the coordinate space (ct, r, θ, φ).

Solution: Recall that dΩ2 = dθ2 + sin2θ dφ2. By inspection, therefore

gµν =















−1 0 0 0

0 a(t)2 0 0

0 0 a(t)2 Sκ(r)
2 0

0 0 0 a(t)2 Sκ(r)
2 sin2θ















(b) By putting x ≡ Sκ(r), show explicitly (i.e., for all 3 cases) that the Robertson-Walker metric
takes the form

ds2 = −c2dt2 + a(t)2

[

dx2

1 − κ x2/R2

0

+ x2 dΩ2

]

Solution: Putting x ≡ Sκ(r), the form for the 2nd term in the spatial part is obvious, so
let us work with the first term in the spatial part below.

κ = +1 κ = 0 κ = −1

x = Sκ(r) = R0 sin

(

r

R0

)

⇒ dx = R0

[

cos

(

r

R0

)]

1

R0

dr

⇒ dx2 = cos2

(

r

R0

)

dr2

⇒ dx2 =

[

1 − sin2

(

r

R0

)]

dr2

⇒ dx2 =

[

1 −

(

x2

R2

0

)]

dr2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x = r

⇒ dx2 = dr2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x = Sκ(r) = R0 sinh

(

r

R0

)

⇒ dx = R0

[

cosh

(

r

R0

)]

1

R0

dr

⇒ dx2 = cosh2

(

r

R0

)

dr2

⇒ dx2 =

[

1 + sinh2

(

r

R0

)]

dr2

⇒ dx2 =

[

1 +

(

x2

R2

0

)]

dr2

Therefore, in all 3 cases, we can write dr2 =
dx2

1 − κ x2/R2

0

, which gives us the desired form.
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3. The principle of wave-particle duality tells us that a particle with momentum p has an
associated de Broglie wavelength of λ = h/p; this wavelength increases as λ ∝ a, as the
universe expands. The total energy density of a gas of particles can be written as ε = nEp,
where n is the number density of particles, and Ep is the energy per particle. For simplicity,
let us assume that all the gas particles have the same mass m and momentum p. The energy
per particle is then simply

Ep =
√

(m2c4 + p2c2)

(a) Compute the equation-of-state parameter w for this gas as a function of the scale factor a.

Solution:

Since λ ∝ a, we get p ∝ 1/a, so we can write
p

p0

=
a

a0

, and since a0 = 1, we get p =
po

a
.

Likewise, since n ∝ a−3, we can write
n

n0

=
a−3

a−3

0

, and again since a0 = 1, we get n =
no

a3
.

Using the equation of state P = wε, we get

w =
P

ε
=

P

nEp

Since Ep is easily cast in terms of a, we need to find P in terms of a, and the easiest way to
do it is by using the fluid equation ε̇ + 3(ȧ/a)(ε + P ) = 0, so that

3
ȧ

a
(ε + P ) = −ε̇ ⇒ ε + P = −

a

3ȧ
ε̇

So

P = −ε −
a

3ȧ
ε̇

= −nEp −
a

3ȧ

[

d

dt

(

nEp

)

]

= −nEp −
a

3ȧ

[

d

da

(

nEp

) da

dt

]

= −nEp −
a

3

[

d

da

(

nEp

)

]

= −nEp −
a

3

[(

dn

da

)

Ep + n

(

dEp

da

)]

= −nEp −
a

3

[(

−
3n0

a4

)

Ep + n
1

2

(

m2c4 + p2c2

)1/2−1
(

0 + 2p
dp

da
c2

)]
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3. (a) . . .Continued from previous page

For convenience, let us write the last line from the previous page before continuing

P = −nEp −
a

3

[(

−
3n0

a4

)

Ep + n
1

2

(

m2c4 + p2c2

)1/2−1
(

0 + 2p
dp

da
c2

)]

= −nEp −
a

3

[(

−
3

a

n0

a3

)

Ep + n
1

2

(

m2c4 + p2c2

)

−1/2 (

2p
{

−
p0

a2

}

c2

)

]

= −nEp +
a

3

[(

3

a
n

)

Ep +
n

2Ep

(

2p
{p

a

}

c2

)

]

= −nEp + nEp +
n

Ep

p2c2

3

So

w =
P

nEp
=

1

nEp

[

n

Ep

p2c2

3

]

Therefore, either one of the solutions below expresses w as a function of a.

w =
p2c2

3E2
p

or w =
p2

0
c2

3
(

p2

0
c2 + m2c4a2

)

(b) Use your result in part (a) to show that w = 1/3 in the highly relativistic limit (p → ∞).

Solution: When p → ∞, we can write

w =
p2c2

3E2
p

=
SSp

2 c2

3SSp
2

[

c2 + m2c4/p2

] =
c2

3c2
, for p → ∞

Therefore, for p → ∞, we get w = 1/3.

(c) Use your result in part (a) to show that w = 0 in the highly non-relativistic limit (p → 0).

Solution: When p → 0, we can write

w =
p2c2

3E2
p

=
0

3
(

0 + m2c4/p2

) = 0

Therefore, for p → 0, we get w = 0.
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