
PHY 475
Homework 1 solutions

(Due by beginning of class on Monday, April 9, 2012)

1. The Hubble “constant” H0 can be used to obtain a rough estimate of the age of the Universe
under a certain assumption.

(a) We discussed the assumption in class. What is it?

Solution:

The assumption is that the Universe has been expanding at constant velocity.

(b) In class, we wrote that under the current consensus value of H0 = 70 km s−1 Mpc−1 and
the assumption above, the approximate age of the Universe is 14 × 109 yr, or 14 Gyr. Due
to severe underestimates of his measured distances to galaxies, Hubble originally measured
H0 = 500 km s−1 Mpc−1. What would this value of H0 give you for the approximate age of
the Universe? For full credit, you must show all your calculation steps clearly.

Solution:

All we need to do is find H−1
0 , along with a straightforward conversion from Mpc to km.

Recall that 1 Mpc ≡ 3.1× 1019 km

H0 = 500 km s−1 Mpc−1

= 500
km

s

1

Mpc

= 500
km

s

1

Mpc

Mpc

3.1× 1019 km

so that

H−1
0 =

3.1× 1019 km

500 km s−1
= 6.2× 1016 s

Converting to yr, we get

H−1
0 =

6.2× 1016 s

3600× 24× 365 s/yr
= 1.966× 109 yr ≡ 2 Gyr
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2. Suppose that you are in an infinitely large, infinitely old universe in which standard Euclidean
geometry holds true.

(a) The density of stars in this universe is n⋆ = 109 Mpc−3 and the average radius of a star is
equal to the Sun’s radius: R⋆ = R⊙ = 7× 108 m. How far, on average, could you see in any
direction before your line of sight struck a star?

Solution:

The easiest way to solve this is by analogy with the mean free path of atoms/molecules in
a gas. The treatment below is adapted from the chapter on Kinetic Theory of Gases by
Halliday & Resnick.

The strategy in this derivation is to invert the situation. That is, instead of considering
a ray of light (hence a point) moving along and striking a star surface of radius R⋆, think
instead of the light as a circular surface of radius R⋆ and the star as a point. In other words,
the light moves along as a circular disk, thereby defining a long cylinder of radius R⋆. So,
the average distance between collisions (and, in our case, we need only one collision) is given
by the length of this cylinder divided by the number of collisions in the cylinder. Since we
are talking about light, the length of the cylinder in time t will be ct, whereas the number
of collisions in the cylinder in time t will be the volume of the cylinder (Vcylinder) times the
number of stars per unit volume (n⋆) in the cylinder. So,

Distance before striking star =
length of cylinder

number of collisions
=

ct

Vcylindern⋆

=
ct

πR2
⋆

(

ct
)

n⋆

=
1

n⋆πR2
⋆

Let’s calculate the denominator first; recall 1 Mpc ≡ 3.1× 1022 m:

n⋆ πR
2
⋆
=

[

109 Mpc−3
]

π
(

7× 108 m
)2

=

[

109
1

Mpc3

{

1 Mpc3

(3.1× 1022 m)3

}]

π
(

7× 108 m
)2

= 5.16726× 10−41 m−1

where more digits than significant have been retained temporarily to avoid rounding errors.

Therefore

Distance before striking star =
1

n⋆ πR2
⋆

=
1

5.16726× 10−41 m−1
= 1.9× 1040 m

On average, therefore, you could see out to 1.9× 1040 m before your line of sight struck

a star.

Continued on the next page . . .

Page 2 of 4



PHY 475 (Spring 2012) Homework 1 solutions

2. (Continued from previous page)

(b) If the stars are clumped into galaxies with a density of ngal = 1 Mpc−3, and average radius
Rgal = 2000 pc, how far, on average, could you see in any direction before your line of sight
struck a galaxy?

Solution:

As in part (a), let us calculate the denominator first, but this time with ngal = 1 Mpc−3 and
Rgal = 2000 pc ; recall, 1 pc = 3.1× 1016 m, and 1 Mpc ≡ 3.1× 1022 m:

ngal πR
2
gal =

[

1 Mpc−3
]

π
(

2000 pc
)2

=

[

1
1

Mpc3

{

1 Mpc3

(3.1× 1022 m)3

}]

π

(

2000 pc

{

3.1× 1016
m

pc

})2

= 4.05367× 10−28 m−1

where more digits than significant have been retained temporarily to avoid rounding errors.

So, distance before striking star =
1

ngal πR2
gal

=
1

4.05367× 10−28 m−1
= 2.5×1027 m

On average, therefore, you could see out to 2.5× 1027 m before your line of sight struck

a galaxy.

(c) To make sense of your results, convert your answers in parts (a) and (b) to Mpc, and compare
them to the approximate size of the Universe c/H0, then comment on how this helps you
with resolving Olbers’ paradox.

Solution:

The distance that you could see, on average, before your line of sight struck a star was found
in part (a); it is

1.9× 1040 m = 1.9× 1040 m

[

1 Mpc

3.1× 1022 m

]

= 6.1× 1017 Mpc

The distance that you could see, on average, before your line of sight struck a galaxy was
found in part (b); it is

2.5× 1027 m = 2.5× 1027 m

[

1 Mpc

3.1× 1022 m

]

= 8.1× 104 Mpc

Since c/H0 = 3 × 105 km/s/70 km/s Mpc−1 = 4300 Mpc, these distances are orders of
magnitude larger than the approximate size of the Universe. Therefore, on average, it is rare
that your line of sight will end in a star or galaxy, which resolves Olber’s paradox — the
night sky is dark because only a few lines of sight end on a star or galaxy.
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3. Since you’re made mostly of water, you’re very efficient at absorbing microwave photons.

(a) The number density of CMB photons is nγ = 4.11 × 108 m−3. If you were in intergalactic
space, approximately how many CMB photons would you absorb per second? If you like,
you could assume you are spherical. Alternatively, you could be lazy like I was, and assume
your surface area is 1 m2.

Solution:

Assuming my surface area is A = 1 m2, and the photons are traveling at c = 3× 108 m s−1,
I would absorb

nγcA = 4.11× 108 m3
(

3× 108 m s−1
)

1m2 = 1.23× 1017 s−1

(b) What is the approximate rate, in watts, at which you would absorb radiative energy from
the CMB?

Solution:

The mean energy per CMB photon is given by the energy density of the CMB (εγ) divided
by the number density of CMB photons (nγ), and with the temperature of the CMB equal
to T = 2.725 K, is given by

Emean =
εγ
nγ

=
αT 4

βT 3
=

α

β
T =

7.56× 10−16

2.03× 107
2.725K = 1.015× 10−22 J

so I would absorb radiative energy from the CMB at the rate

1.015× 10−22 J
(

1.23× 1017 s−1
)

= 1.25× 10−5 watts ≡ 12.5 µW

(c) Ignoring any other energy inputs and outputs, how long would it take the CMB to raise
your temperature by 1 nano Kelvin (i.e., 10−9 K)? Since your body is mostly water, assume
your specific heat capacity is the same as water (= 4200 J kg−1 K−1).

Solution:

This answer will depend on the mass you assume for your body, so let us keep it as M kg for
now. Using heat = mc(∆T ) that you learned in introductory physics classes, we can solve
for the time t it would take the CMB to raise your temperature by 1 nK:

(

1.25× 10−5 W
)

t = M
(

4200 J kg−1 K−1
)

10−9 K = 0.336
(

M kg
)

s

For example, a 100 kg person would have their temperature raised by the CMB by 1 nK in

0.336
(

100 kg
)

= 33.6 s
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