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1. Write brief answers or show mathematical calculations, as appropriate, for the following.

(a) What is the significance of the linearity of Hubble’s law, v = H0d?

(b) The deceleration parameter q0 is defined as

q0 = −
(

ä

aH2

)
∣

∣

∣

∣

t=t0

Show that in a matter-dominated universe, q0 = Ωm/2, and in a radiation-dominated
universe, q0 = Ωr.

(c) How can the observed temperature anisotropy of the Cosmic Microwave Background
(CMB) be used to deduce that the Universe has a flat geometry?

(d) What would be the effect on the CMB spectrum (plot of ∆2
T vs. multipole moment l,

shown in Lecture 15) of increasing the dark matter content of the Universe? Explain
why.

(e) The expected power spectrum for inflationary fluctuations has the form of a power law:
P (k) ∝ kn. If we pick out spheres of comoving radius L in such a universe, then the
root mean square mass fluctuation within such spheres is given by

δM

M
≡

〈

(

M − 〈M〉
〈M〉

)2
〉1/2

∝
[

k3 P (k)
]1/2

where k = 2π/L is the comoving wavenumber associated with the sphere.

Show that this can be expressed in the form

δM

M
∝ M−(3+n)/6

2. Consider a flat universe containing only matter and a negative dark energy given by a
cosmological constant ΩΛ < 0.

(a) Show that in such a universe, the expansion will come to a stop at a maximum scale
factor

amax =

(

−Ωm,0

ΩΛ

)1/3

(b) Show that the time from the beginning of such a universe to the Big Crunch (i.e., from
the initial a(0) = 0 to the final a(tBC) = 0) is given by

tBC =
2π

3H0

(

− ΩΛ

)

−1/2

Hint: You will need the integral
∫

dx√
b2 − x2

= sin−1
(x

b

)

Page 2 of 4



PHY 475 (Spring 2012 ) Final Examination

3. The Friedmann equation is
(

ȧ

a

)2

=
8πG

3c2
ε − κc2

R2
0

1

a2

The density parameters ΩΛ, Ωm, and Ωr have their standard definitions. Also define

Ωκ = − κc2

R2
0a

2H2

(a) Use the Friedmann equation to show that

ΩΛ + Ωκ + Ωm + Ωr = 1

(b) Show that the Friedmann equation can be written in the form

H(z) = H0

[

ΩΛ,0 + Ωκ,0 (1 + z)2 + Ωm,0 (1 + z)3 + Ωr,0 (1 + z)4
]1/2

where, as usual, the subscripts 0 refer to the values of parameters at the present time.

(c) Show that the lookback time to an object at redshift zt is

t =
1

H0

∫ zt

0

dz

(1 + z)
[

ΩΛ,0 + Ωκ,0 (1 + z)2 + Ωm,0 (1 + z)3 + Ωr,0 (1 + z)4
]1/2

(d) Show that

Ωm(z) =
Ωm,0 (1 + z)3

ΩΛ,0 + Ωκ,0 (1 + z)2 + Ωm,0 (1 + z)3 + Ωr,0 (1 + z)4

(e) Assuming that Ωr,0 and ΩΛ,0 are negligibly small, and can be set to zero in the equation
in part (d) above, what are the asymptotic values of Ωm and Ωκ for z ≫ Ω−1

m,0?

4. The binding energy of a deuterium nucleus is BD = 2.22 MeV.

(a) Naively, one might expect deuterium to start forming when the temperature of the
Universe drops to a value such that kT ∼ 2.22 MeV. Yet, we know this doesn’t happen.
Why not?

(b) A better, but still crude, approximation to the temperature at which deuterium is
synthesized can be obtained by setting e−BD/kTnuc ≈ η, where η = 5.5 × 10−10 is the
baryon-to-photon ratio. With BD = 2.22 MeV, find the temperature Tnuc at which
deuterium synthesis begins. Be careful you don’t copy the answers from your text —
they won’t match the correct answers here.

(c) Find the age of the universe tnuc when its temperature drops to the value Tnuc you
determined in part (b). State clearly the assumptions you made in setting up this
calculation.
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4. (. . . continued from previous page)

(d) The neutron-to-proton ratio of 1/5 at freeze-out will change because some of the free
neutrons decay to protons. After time tnuc, the number of free neutrons remaining will
be

nnf = nni exp

(

−tnuc

τn

)

where τn = 890 s is the decay time of the neutrons. Find the new neutron-to-proton
ratio after time tnuc when deuterium synthesis begins.

(e) To a first approximation, all the neutrons present at time tnuc are processed into primor-
dial helium (4He). Based on this, calculate the maximum primordial helium fraction
[Yp]max.

(f) For Ωbary = 0.02, numerical calculations predict a deuterium-to-hydrogen ratio of
D/H ≈ 10−5. If, instead, Ωbary = 0.20, would the predicted deuterium abundance
be higher or lower? For full credit, explain your answer.

(g) Would raising Ωbary to 0.20, as described in part (f) above, raise or lower the predicted
helium abundance. For full credit, explain your answer.

5. The energy density and pressure of a scalar inflaton field can be written as

εφ =
1

2
φ̇2 + V (φ) and Pφ =

1

2
φ̇2 − V (φ)

This is the same as what we wrote in class, except that we are using high energy units in
this problem like many cosmologists do, that is, we have set ~ = 1, c = 1. This makes the
dynamical equation for φ look like

φ̈ + 3Hφ̇ +
dV

dφ
= 0

(a) In the slow roll approximation, the terms φ̈ and φ̇2 can be ignored (but not φ̇). Use
this to derive the slow roll equations

3Hφ̇ ≈ −dV

dφ
and H2 ≈ 8πG

3
V

(b) Show that the number of e-foldings of inflation is given by

N = −8πG

∫ φf

φi

V (φ)

[

dV

dφ

]

−1

dφ

(c) Now consider the potential

V (φ) =
1

2
m2φ2

At what value of φ = φf will the inflation end? Leave your answer as an expression;
don’t substitute numerical values.

(d) For the potential given in part (c) above, what condition must be obeyed by φi so that
an expansion of at least 1030 takes place?

Page 4 of 4


