
PHY 475/375
Lecture 9

(April 23, 2012)

Single Component Universes

An Empty Universe: Curvature only

Consider first a very simple, albeit non-physical, universe — one which is empty and contains no
radiation, no matter, no cosmological constant, and therefore, no contribution to ε whatsoever.
For such a universe, the Friedmann equation takes a very simple form:

ȧ2 = −κc2

R2
0

(5.28)

What kind of a universe does equation (5.28) allow? In other words, what are the solutions to
this equation?

• Straight away, we can rule out positively curved (κ = +1) empty universes, since they would
lead to an imaginary value for ȧ in equation (5.28).

• A permissible solution to equation (5.28) is with κ = 0, which gives ȧ = 0. Since κ = 0
corresponds to a spatially flat universe, and ȧ = 0 means a static universe, this means that
we get an empty, static, spatially flat universe. This is the universe whose geometry is
described by the Minkowski metric that we wrote in an earlier lecture (equation 3.20).

• Yet another solution to equation (5.28) is with κ = −1, which corresponds to a negatively
curved universe. So, it is possible to have a negatively curved empty universe.

Let us look at an empty, negatively curved universe in more detail. Equation (5.28) tells us such
a universe should be expanding or contracting with

ȧ2 = −(−1)c2

R2
0

= +
c2

R2
0

corresponding to

ȧ = ± c

R0
(5.29)

Integrating, we get

a(t) =
c

R0
t

where we’ve chosen the positive sign for an expanding universe. Meanwhile, since c/R0 has the
dimensions of s−1, if we set t0 = R0/c, we can write the above equation as

a(t) =
t

t0
(5.30)

Since the universe is empty, there is no gravitational force at work (in Newtonian terms), therefore
the relative velocity of any two points is constant. This is why the scale factor a increases linearly
with time in an empty universe.
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Meanwhile, with nothing to speed or slow the expansion in an empty universe, we get t0 = H−1
0 ,

that is, the age of the universe is exactly equal to the Hubble time in an empty universe.

While an empty expanding universe might seem like nothing more than a mathematical curiosity,
a universe which has an energy density that is much smaller than the critical density (i.e., ε ≪ εc,
equivalent to Ω ≪ 1) would be one in which the linear scale factor of equation (5.30) could be
used as a good approximation of the true scale factor.

Now, suppose we observe a distant galaxy with redshift z. The light which we observe now at
t = t0 was emitted at an earlier time t = te. We know from an earlier lecture that

1 + z =
a(t0)

a(te)

Since we usually set a(t0) = 1, the above equation gives

1 + z =
1

a(te)

From equation (5.30), the scale factor a(te) = te/t0 in an empty expanding universe, so the above
equation becomes

1 + z =
1

a(te)
=

t0
te

(5.31)

Note that, as we have shown already, an empty expanding universe is negatively curved (since an
empty flat universe would be static).

Equation (5.31) makes it easy to compute the time when the observed light was emitted from the
source:

te =
t0

1 + z
=

H−1
0

1 + z
(5.32)

since t0 = H−1
0 in an empty universe.

In an earlier lecture, we discussed how in any universe described by a Robertson-Walker metric,
the proper distance dp(t0) from an observer at the origin to a galaxy located at space coordinates
(r, θ, φ) is given by:

dp(t0) = a(t0)

∫ r

0

dr

= a(t0) r

⇒ dp(t0) = r (5.33)

since a(t0) = 1.
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Equation (5.33) is identical to equation (3.28) in Lecture 5, except that we wrote it there for a
general t. Recall that proper distance is the distance between two points that you could measure
with a ruler if you could freeze time; here, we have chosen to freeze the time at the moment of
observation.

In that same lecture, we also discussed that when light was emitted by a galaxy at time te and
observed by us at time t0, we would end up with equation (3.39):

c

∫ t0

te

dt

a(t)
=

∫ r

0

dr = r (5.34)

From equation (5.33) and (5.34), we obtain

dp(t0) = c

∫ t0

te

dt

a(t)
(5.35)

Equation (5.35) holds true in any universe whose geometry is described by a Robertson-Walker
metric.

In the specific case of an empty expanding universe where equation (5.30) tells us that a(t) = t/t0,
we get from equation (5.35) that

dp(t0) = c

∫ t0

te

dt

a(t)

= c

∫ t0

te

dt

t/t0

= c t0

∫ t0

te

dt

t

= c t0

[

ln t
]t0

te

⇒ dp(t0) = c t0 ln

(

t0
te

)

(5.36)

Moreover, we can use t0 = 1/H0 and equation (5.31) to express this in terms of the redshift z of
the observed galaxy:

dp(t0) =
c

H0
ln
(

1 + z
)

(5.37)

• In the limit z ≪ 1, there is a linear relation between dp and z, as seen in Hubble’s law.

• In the limit z ≫ 1, we get dp ∝ ln z in an empty expanding universe.
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Equation (5.37) also tells us that in an empty expanding universe, we can see objects which are
currently at an arbitrarily large distance!

• This may seem counterintuitive, that we can see objects at a proper distance much greater
than c/H0, when age of the universe is only 1/H0.

• However, it is important to remember that dp(t0) is the proper distance to the object at the
time of observation.

• At the time of emission, the proper distance dp(te) was

dp(te) = a(te)

∫ r

0

dr

⇒ dp(te) = a(te) r (5.38.a)

Now, recall that
a(te)

a(t0)
=

1

1 + z

This means that equation (5.38.a) can be written as

dp(te) =

[

a(t0)

1 + z

]

r

⇒ dp(te) =
dp(t0)

1 + z

where we have used equation (5.33) to write a(t0) r as dp(t0).

Using the expression for dp(t0) from equation (5.37), the above equation can finally be written
as

dp(te) =
c

H0

ln (1 + z)

1 + z
(5.38)

In other words, the proper distance at the time of emission was smaller by a factor 1/(1+z),
so objects at extremely high redshifts today are seen as they were very early in the history
of the universe, when their proper distance from the observer was very small.
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Spatially Flat Universe

Consider again the Friedmann equation (5.1):

(

ȧ

a

)2

=
8πG

3c2
ε− κc2

R2
0

1

a2

We just finished discussing an empty universe, obtained by setting ε = 0.

Yet another way of simplifying the Friedmann equation is to set κ = 0 (therefore, stipulating a
flat universe), and demand that the universe contain only a single component, with a single value
of w.

In such a spatially flat (κ = 0), single-component universe, the Friedmann equation reduces to
the simple form:

(

ȧ

a

)2

=
8πG

3c2
ε (5.39.a)

and since, from equation (5.9), we have: ε = ε0 a
−3(1+w) = ε0 a

−3−3w, multiplication of equation
(5.39.a) by a2 on both sides further simplifies the Friedmann equation to

ȧ2 =
8πG

3c2
ε0 a

−3−3w a2

from which we finally obtain

ȧ2 =
8πGε0
3c2

a−(1+3w) (5.39)

We can solve equation (5.39) by guessing a power law solution of the form a ∝ tq. Substitution of
this form for a in equation (5.39) then gives

[

d

dt

(

tq
)

]2

=
8πGε0
3c2

t−(1+3w)q

so that
[

q tq−1
]2

=
8πGε0
3c2

t−(1+3w)q

Equating exponents, we get
(q − 1)2 = −(1 + 3w)q

or
2q + q + 3wq = 2

so that

q =
2

3 + 3w
(5.40)

with the restriction w 6= −1 (which means that we will have to go back to the Friedmann equation
to treat the case for a universe with only a cosmological constant, as done later in this lecture).
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Based on equation (5.40), we can write the solution to the Friedmann equation (5.39) for a spatially
flat universe as

a(t) =

(

t

t0

)2/(3+3w)

(5.41)

It remains to determine how the normalization factor t0 is connected to the quantities in equation
(5.39).

To find the connection to the terms in equation (5.39) for t0, let us differentiate equation (5.41)
with respect to t:

ȧ =
1

t
2/(3+3w)
0

[

2

3 + 3w
t

2

3+3w
−1

]

=
1

t
2/(3+3w)
0

[

2

3(1 + w)
t
2−3−3w

3+3w

]

=
1

t
2/(3+3w)
0

[

2

3(1 + w)
t−(1+3w)/(3+3w)

]

(5.42.a)

⇒ ȧ2 =
1

t
4/(3+3w)
0

[

4

9(1 + w)2
t−2(1+3w)/(3+3w)

]

(5.42.b)

Now, to get the exponent of t0 in the same form as the exponent of t, we see that

4

3 + 3w
− 2 =

4− 2(3 + 3w)

3 + 3w
=

4− 6− 6w

3 + 3w
=

−2 + 6w

3 + 3w
=

−2(1 + 3w)

3 + 3w

which means we must multiply and divide equation (5.42.b) by t−2
0 , that is

ȧ2 =
t−2
0

t
4/(3+3w)
0 t−2

0

[

4

9(1 + w)2
t−2(1+3w)/(3+3w)

]

=
4 t−2

0

9(1 + w)2

(

t

t0

)−2(1+3w)/(3+3w)

=
4 t−2

0

9(1 + w)2

[

(

t

t0

)2/(3+3w)
]−(1+3w)

⇒ ȧ2 =
4 t−2

0

9(1 + w)2
a−(1+3w) (5.42.c)
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Comparing equations (5.39) and (5.42.c), we can set

4 t−2
0

9(1 + w)2
=

8πGε0
3c2

so that
t−2
0

3(1 + w)2
=

2πGε0
c2

Therefore, we finally obtain the normalization factor in equation (5.41), which gives a relation
between the age t0 and the energy density in the present epoch ε0 to be

t0 =
1

1 + w

(

c2

6πGε0

)1/2

(5.42)

Meanwhile, when we multiply and divide equation (5.42.a) by t−1
0 , we get

ȧ =
t−1
0

t
2/(3+3w)
0 t−1

0

[

2

3(1 + w)
t−(1+3w)/(3+3w)

]

=
2 t−1

0

3(1 + w)

(

t

t0

)−(1+3w)/(3+3w)

⇒ ȧ

a
=

2 t−1
0

3(1 + w)

(

t

t0

)−(1+3w)/(3+3w)
1

a

=
2 t−1

0

3(1 + w)

(

t

t0

)−(1+3w)/(3+3w) (

t

t0

)−2/(3+3w)

⇒ ȧ

a
=

2 t−1
0

3(1 + w)

(

t

t0

)−1

Therefore, the Hubble constant in such a universe is given by

H0 ≡
(

ȧ

a

)

t=t0

=
2 t−1

0

3(1 + w)
(5.43)

so that the age of the universe, in terms of the Hubble time, is given by

t0 =
2H−1

0

3(1 + w)
(5.44)

Equation (5.44) tells us that in a spatially flat universe:

• If w > −1/3, the universe is younger than the Hubble time.

• If w < −1/3, the universe is older than the Hubble time.
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Next, recall that the energy density of a component with equation-of-state parameter w is given
by

ε(a) = ε0 a
−3(1+w) (5.45)

Substituting equation (5.41) for a, this can be written as

ε(t) = ε0

[

(

t

t0

)2/3(1+w)
]−3(1+w)

from which we obtain

ε(t) = ε0

(

t

t0

)−2

(5.46)

no matter what the value of w.

Now, recall that we defined the critical energy density in a spatially flat universe in equation (4.25)
in an earlier lecture as

ε0 = εc,0 =
3c2

8πG
H2

0 (5.47)

Substituting equations (5.47) and (5.44) in equation (5.46), we get

ε(t) =

(

3c2

8πG
H2

0

)

t−2

t−2
0

=

(

3c2

8πG
H2

0

)

t−2

[

3(1 + w)

2H−1
0

]−2

=

(

3c2

8πG
H2

0

)

t−2

[

4H−2
0

9(1 + w)2

]

⇒ ε(t) =
1

6π (1 + w)2
c2

G
t−2 (5.49)

Equation (5.49) gives the energy density as a function of time in a spatially flat universe containing
only a single component with equation-of-state parameter w.

If we observe a distant source with redshift z, then equation (5.41) gives

1 + z =
a(t0)

a(te)
=

(

t0
te

)2/(3+3w)

(5.51)
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Equation (5.51) implies that
(

1 + z
)(3+3w)/2

=
t0
te

so that te is given by

te =
t0

(1 + z)3(1+w)/2

Substituting t0 from equation (5.44), we finally obtain the time te at which the light from the
distant galaxy was emitted:

te =
2

3 (1 + w)H0

1

(1 + z)3(1+w)/2
(5.52)

The proper distance to the galaxy at the current time is then given by

dp(t0) = c

∫ t0

te

dt

a(t)

= c

∫ t0

te

dt

(t/t0)2/(3+3w)
from equation (5.41)

= c t
2/(3+3w)
0

∫ t0

te

t−2/(3+3w) dt

= c t
2/(3+3w)
0

[

t{−2/(3+3w)}+1

{−2/(3 + 3w)}+ 1

]t0

te

= c t
2/(3+3w)
0

[

t(−2+3+3w)/(3+3w)

(−2 + 3 + 3w)/(3 + 3w)

]t0

te

= c t
2/(3+3w)
0

[

t
(1+3w)/(3+3w)
0 − t

(1+3w)/(3+3w)
e

(1 + 3w)/(3 + 3w)

]t0

te

= c
(3 + 3w)

(1 + 3w)
t
2/(3+3w)
0 t

(1+3w)/(3+3w)
0

[

1−
(

te
t0

)(1+3w)/(3+3w)
]

= c
3(1 + w)

(1 + 3w)
t
(hh

hh2+1+3w)/(XXX3+3w)
0

[

1−
(

te
t0

)(1+3w)/(3+3w)
]

⇒ dp(t0) = c t0
3(1 + w)

1 + 3w

[

1−
(

te
t0

)(1+3w)/(3+3w)
]

(5.53)
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Equation (5.53) can be modified to be in terms of H0 and z by using equation (5.44) for t0 and
(5.52) for te/t0:

dp(t0) = c

[{

2

3(1 + w)

}

H−1
0

]

3(1 + w)

1 + 3w

[

1−
{

1

(1 + z)(3+3w)/2

}(1+3w)/(3+3w)
]

so that the proper distance in the current epoch in terms of H0 and z is given by

dp(t0) =
c

H0

2

1 + 3w

[

1− (1 + z)−(1+3w)/2
]

(5.54)

The most distant object we can see (in theory) is one for which the light emitted at t = 0 is just
now reaching us at t = t0. The proper distance (at the time of observation, usually also in the
current epoch) to such an object is called the horizon distance.

Ryden gives the analogy that when we stand at a location on Earth, the horizon is a circle
centered on us beyond which we cannot see due to the Earth’s curvature. Similarly, in
the universe the horizon is a spherical surface centered on us, beyond which we cannot see
because light from more distant objects has not had enough time to reach us.

In a universe described by a Robertson-Walker metric, we can use the definition of proper distance
with limits of integration from 0 to the current time t0 to define the current horizon distance:

dhor(t0) = c

∫ t0

0

dt

a(t)
(5.55)

Equation (5.55) tells us that we can compute dhor(t0) from equation (5.53) by setting te → 0, or
equivalently by setting z → ∞ in equation (5.54), to get

dhor(t0) = ct0
3(1 + w)

1 + 3w
=

c

H0

2

1 + 3w
(5.56)

• Equation (5.56) implies that in a spatially flat universe, the horizon distance has a finite
value if w > −1/3. Therefore, in a flat universe dominated by matter (w = 0) or by
radiation (w = 1/3), an observer can see only a finite portion of the infinite volume of the
universe. The portion of the universe lying within the horizon for a particular observer is
usually referred to as the visible universe for that observer. The visible universe consists of
all points in space which have had sufficient time to send information, in the form of photons
or other relativistic particles, to the observer. In other words, the visible universe consists
of all points which are causally connected to the observer.

• Meanwhile, in a flat universe with w < −1/3, the horizon distance is infinite, and all of
space is causally connected to the observer. In such a universe, we would see every point,
assuming the universe was transparent. For very distant points, we would see extremely
redshifted versions of the way they looked early in the history of the universe.
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Single Component Universes: Matter Only

We will now look at examples of spatially flat universes, starting with an universe containing only
non-relativistic matter (w = 0), sometimes called an Einstein-de Sitter universe. The expressions
for the age t0, horizon distance dhor(t0), scale factor am(t), proper distance to a galaxy with redshift
z at the time of observation, dp(t0), and at the time of emission, dp(te), for such a universe are
shown in the table below. The equation numbers and expressions for the general case of spatially
flat universes (from the discussion above) are listed first, followed by the expressions for spatially
flat universes with matter only (w = 0).

General Expressions for Spatially Flat Universes
Spatially Flat Universes with Matter only (w = 0)

(5.44) : t0 =
2H−1

0

3(1 + w)
⇒ t0 =

2

3H0
(5.57)

(5.56) : dhor(t0) = ct0
3(1 + w)

1 + 3w
=

c

H0

2

1 + 3w
⇒ dhor(t0) = 3ct0 =

2c

H0
(5.58)

(5.41) : a(t) =

(

t

t0

)2/(3+3w)

⇒ am(t) =

(

t

t0

)2/3

(5.59)

(5.54) : dp(t0) =
c

H0

2

1 + 3w

[

1− 1

(1 + z)(1+3w)/2

]

⇒ dp(t0) =
2c

H0

[

1− 1√
1 + z

]

(5.60)

dp(te) =
dp(t0)

1 + z
⇒ dp(te) =

2c

H0(1 + z)

[

1− 1√
1 + z

]

(5.61)

Equation (5.59) for the scale factor tells us that such a flat universe containing only matter expands
forever. Such a fate is sometimes called the “Big Chill,” since the temperature of the universe
decreases with time as the universe expands.

It is also interesting to plot dp(t0) and dp(te) vs. the redshift z. The plots are shown by the dotted
line in Figure 5.3 in your text. Notice that dp(te) reaches a maximum, and then decreases for
higher-z galaxies, implying that objects at very high redshift are seen as they were very early in
the history of the universe. One can easily determine this maximum by setting the time derivative
ḋp(te) = 0, following which we find that dp(te) has a maximum for galaxies with a redshift z = 5/4,
for which dp(te) = (8/27) c/H0.
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Single Component Universes: Radiation Only

The next example of a spatially flat universe that we will consider is that of a universe containing
only radiation. Such a case is of particular interest for us since, as discussed in an earlier lecture,
the radiation term was dominant early in the history of our own universe. The expressions for the
age t0, horizon distance dhor(t0), scale factor ar(t), proper distance to a galaxy with redshift z at
the time of observation, dp(t0), and at the time of emission, dp(te), for such a universe are shown
in the table below. Again, the equation numbers and expressions for the general case of spatially
flat universes are listed first, followed by the expressions for spatially flat universes with radiation
only (w = 1/3).

General Expressions for Spatially Flat Universes
Spatially Flat Universes with Radiation only (w = 1/3)

(5.44) : t0 =
2H−1

0

3(1 + w)
⇒ t0 =

1

2H0
(5.62)

(5.56) : dhor(t0) = ct0
3(1 + w)

1 + 3w
=

c

H0

2

1 + 3w
⇒ dhor(t0) = 2ct0 =

c

H0
(5.63)

(5.41) : a(t) =

(

t

t0

)2/(3+3w)

⇒ ar(t) =

(

t

t0

)1/2

(5.64)

(5.54) : dp(t0) =
c

H0

2

1 + 3w

[

1− 1

(1 + z)(1+3w)/2

]

⇒ dp(t0) =
c

H0

[

1− 1

1 + z

]

(5.65)

dp(te) =
dp(t0)

1 + z
⇒ dp(te) =

c

H0

[

z

(1 + z)2

]

(5.66)

Equation (5.63 ) shows that for a flat, radiation-only universe, the horizon distance is exactly
equal to the Hubble distance (which is not generally the case).

Once again, the plots of dp(t0) and dp(te) vs. the redshift z are shown in Figure 5.3 in your text,
by the solid lines for this case (radiation-only). As usual, dp(te) reaches a maximum, and then
decreases for higher-z galaxies, implying that objects at very high redshift are seen as they were
very early in the history of the universe. Again, one can determine this maximum by setting the
time derivative ḋp(te) = 0, following which we find that dp(te) has a maximum for galaxies with a
redshift z = 1, for which dp(te) = (1/4) c/H0 for spatially flat universes containing only radiation.
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Single Component Universes: Lambda Only

The solution a(t) = (t/t0)
2/(3+3w) that we have written for spatially flat universes containing only

matter, or containing only radiation, does not work for w = −1. Therefore, if the energy density
is contributed by a cosmological constant Λ only, we must go back to the Friedmann equation.
Recall that we wrote the Friedmann equation in (5.1):

(

ȧ

a

)2

=
8πG

3c2
ε− κc2

R2
0 a

2

For a flat universe (κ = 0) dominated by a cosmological constant Λ, the Friedmann equation takes
the form

(

ȧ

a

)2

=
8πG

3c2
εΛ (5.75.a)

where εΛ is constant with time.

Now,
ȧ

a
= H(t), so that

(

ȧ

a

)

t=t0

= H0.

So, if εΛ is constant with time, we can just choose to set H0 equal to (the square root of) the right
hand side of equation (5.75.a), to get

H0 =

(

8πG εΛ
3c2

)1/2

(5.77)

Moreover, for this case (of a spatial universe containing only the cosmological constant Λ), we
have

ȧ

a
= H0 (5.76)

Writing this as
da

a
= H0 dt

and integrating, we obtain
ln a = H0 t + CI (5.78.a)

where CI is a constant of integration.

Now, at t = t0, we have a = a0 = 1, so

ln a0 = 0 = H0 t0 + CI ⇒ CI = −H0 t0

Substituting for CI in (5.78.a), we get

ln a = H0

(

t− t0

)

so that the solution to equation (5.76) is

a(t) = eH0 (t−t0) (5.78)
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The scale factor in equation (5.78) as a function of time for a spatially flat universe containing
only the cosmological constant Λ is shown in Figure 5.2 of your text, which is reproduced below.

Note that the plot above has been normalized to have the same scale factor and expansion rate
in the current epoch for all the four cases shown. In other words, for t = t0, we get a(t0) = 1 for
t = t0 in the current epoch; the horizontal (x) axis is actually labeled in terms of the exponent in
equation (5.78), hence in terms of H0 (t− t0). That is why the current epoch (t = t0) corresponds
to the “0” value on the horizontal axis.

It is clear from equation (5.78) and the graph above that a spatially flat universe containing only a
cosmological constant expands exponentially. Also of interest in the above plot is that the curve for
Λ asymptotically approaches the horizontal axis, implying that a spatially flat universe containing
nothing but a cosmological constant is infinitely old, and has an infinite horizon distance dhor.

It is also worth looking at the other three cases represented on the graph that we have already
studied.

• From equation (5.30), the scale factor in an empty universe with curvature only is given by
a(t) = t/t0, and this linear dependence is shown in the above plot.

• In a spatially flat universe containing only matter, the scale factor is given by equation
(5.59): am(t) = (t/t0)

2/3, and is shown in the above plot to be less steep than the linear case.

• In a spatially flat universe containing only radiation, the scale factor is given by equation
(5.64): ar(t) = (t/t0)

1/2, and is shown in the above plot to be the least steep of all the cases.

Page 14 of 15



PHY 475/375 (Spring 2012 ) Lecture 9

If we observe an object with a redshift z in a spatially flat universe containing only a cosmological
constant Λ, then the proper distance to the object at the time of observation would be

dp(t0) = c

∫ t0

te

dt

a(t)
= c

∫ t0

te

dt

eH0 (t−t0)
= c

∫ t0

te

eH0 (t0−t) dt

We can then pull eH0 t0 outside the integral and integrate the remaining term:

dp(t0) = c eH0 t0

∫ t0

te

e−H0 t dt = c eH0 t0

[

e−H0 t

−H0

]t0

te

= c eH0 t0

[

e−H0 t0 − e−H0 te

−H0

]

= c eH0 t0

[

e−H0 te − e−H0 t0

H0

]

=
c

H0

[

eH0 (t0−te) − 1
]

=
c

H0

[

1

a(te)
− 1

]

from (5.78)

=
c

H0

[

(1 + z)− 1
]

⇒ dp(t0) =
c

H0
z (5.79)

Meanwhile, the proper distance at the time of emission is

dp(te) =
dp(t0)

1 + z
=

c

H0

z

1 + z
(5.80)

These are plotted in Figure 5.3 in your text by the dot-dashed lines.

• Note that an exponentially growing universe, such as the spatially flat Λ-dominated model,
is the only universe for which dp(t0) is linearly proportional to z, for all values of z. In other
universes, the relation dp(t0) ∝ z only holds true in the limit z ≪ 1.

• Also note that in the limit z → ∞, we have dp(t0) → ∞, but dp(te) → c/H0 from equations
(5.79) and (5.80) respectively. This means that in a spatially flat, Λ-dominated universe,
highly redshifted objects (z ≫ 1) are at very large distances (dp(t0) ≫ c/H0) at the time of
observation; the observer sees them as they were just before they reached a proper distance
c/H0.

In the next lecture, we will consider more complicated behavior by putting multiple terms in the
right hand side of the Friedmann equation.
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