
PHY 475/375
Lecture 7

(April 16, 2012)

The Fluid and Acceleration Equations

While the Friedmann equation is an important part of the effort to study the Universe, it is not
enough. Even with accurate boundary conditions, e.g., precise values for H0 and ε0, the Friedmann
equation still contains two unknowns in a(t) and ε(t). Or, if we like, we can say it contains two
unknowns H(t) and Ω(t) — the key point is that there are still two unknowns. Therefore, we need
another equation connecting a(t) and ε(t).

To find another equation, let us look at the first law of thermodynamics

dQ = dE + PdV (4.32)

where dQ is the amount of heat flowing into or out of a region, dE is the change in internal energy,
P is the pressure, and dV is the change in volume of the region. Recall that we had applied this
in an earlier lecture to a photon gas to study aspects of the Cosmic Microwave Background. Now,
we will apply it to a comoving volume of the Universe.

If the universe is perfectly homogenous, then there should not be a bulk flow of heat into or out
of any volume. Applying this to a comoving volume (recall that this means a volume that is
expanding with the universe), we set dQ = 0 in equation (4.32), and write its time derivative as:

Ė + P V̇ = 0 (4.33)

where we are using the usual notation that dx/dt = ẋ.

Consider now a sphere of comoving radius rs expanding along with the Universe, so that its proper
radius is

Rs(t) = a(t) rs

The volume of this sphere is

V (t) =
4π

3
Rs(t)

3 =
4π

3
r3
s a(t)3 (4.34)

Its time derivative is

V̇ =
4π

3
r3
s

(

3a2ȧ
)

=
4π

3
r3
sa

3

(
3ȧ

a

)

(4.34.a)

where we have suppressed writing (t) after the quantities, and will continue to do so in most of
the equations below, for better visibility.
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Substituting equation (4.34) into the above equation (4.34.a), we get

V̇ = V

(
3ȧ

a

)

(4.35)

Meanwhile, since ε(t) is the energy density, the internal energy of the sphere of volume V (t) can
be written as

E(t) = V (t) ε(t) (4.36)

so that its time derivative is

Ė = V ε̇ + V̇ ε

= V ε̇ + V

(
3ȧ

a

)

︸ ︷︷ ︸

from eq. (4.35)

ε

⇒ Ė = V

(

ε̇ +
3ȧ

a
ε

)

(4.37)

Substituting from equation (4.33) for Ė, this becomes

−P V̇ = V

(

ε̇ +
3ȧ

a
ε

)

Inserting V̇ from equation (4.35), and rearranging all terms to one side, we obtain

V

(

ε̇ +
3ȧ

a
ε +

3ȧ

a
P

)

= 0 (4.38)

Since the volume V has to be finite, we can equate the quantity within parentheses to zero, to get

ε̇ +
3ȧ

a

(

ε + P
)

= 0 (4.39)

Equation (4.39) is called the fluid equation, and is the second of the key equations describing the
expansion of the universe.

Both the Friedmann equation and fluid equation are statements about energy conservation. By
combining the two, we can derive an acceleration equation which tells us how the expansion of
the universe speeds up or slows down over time. Recall that we wrote the Friedmann equation in
(4.13) as:

(
ȧ

a

)2

=
8πG

3c2
ε − κc2

R2
0

1

a2

Multiplying by a2, this becomes

ȧ2 =
8πG

3c2
εa2 − κc2

R2
0

(4.40)

Page 2 of 8



PHY 475/375 (Spring 2012 ) Lecture 7

Since the second term on the right hand side of equation (4.40) only contains constants, its time
derivative is zero. So, the time derivative of equation (4.40) is

2ȧä =
8πG

3c2

(

ε̇a2 + 2εaȧ
)

− 0 (4.41)

Dividing by 2ȧa, this becomes
ä

a
=

4πG

3c2

(

ε̇
a

ȧ
+ 2ε

)

(4.42)

Meanwhile, ε̇ = −3ȧ

a

(

ε + P
)

from equation (4.39), and multiplying by a/ȧ, we get

ε̇
a

ȧ
= −3

(

ε + P
)

= −3ε − 3P

Substituting the above equation in (4.42), we get

ä

a
=

4πG

3c2
(−3ε − 3P + 2ε)

which gives us the usual form of the acceleration equation:

ä

a
= −4πG

3c2
(ε + 3P ) (4.44)

Note that while we tend to think of pressure as force per unit area, its dimensions are consistent
with the energy density, so that the above equation has consistent units; that is, the unit of P is
N m−2 ≡ (N.m) m−3 ≡ J m−3, which is also the unit of the energy density ε.

Equation (4.44) leads us to some interesting conclusions:

• The pressure P is associated with the material filling the universe. A gas made of ordinary
baryonic matter has a positive pressure P resulting from the random thermal motions of its
constituent molecules, atoms, or ions. A gas of photons also has a positive pressure, as does
a gas of neutrinos. So if the energy density ε is also positive, we have a net negative sign
on the right hand side of equation (4.44). This means that we have a negative acceleration;
that is, a decrease in the value of ȧ with time, and hence a reduction in the relative velocity
of any two points in the universe. In other words, a positive energy density together with a
positive pressure due to baryonic matter and photons causes the expansion of the universe
to slow down.

• If, however, the universe had a component with a pressure

P < −ε

3
(4.45)

then we would have a net positive sign on the right hand side of equation (4.44). This would
mean a positive acceleration, an increase in the value of ȧ with time. In other words, a
component of pressure given by equation (4.45) would cause the expansion of the universe
to speed up rather than slow down!!! In the mid-1990’s, it was found that the expansion of the
Universe was accelerating, instead of slowing down. Therefore, there must be a component
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in the Universe with negative pressure; it has been given the name “dark energy” (indicating
that we know nothing about it). One possible explanation for the dark energy is Einstein’s
notorious “cosmological constant” which he had inserted into his general relativity solutions
to prevent the Universe from expanding (this was done prior to Hubble’s discovery that
the Universe is indeed expanding). In a later section, we will discuss how the cosmological
constant has P = −ε, which would cause a positive acceleration for the expansion of the
Universe.

The Equations of State

We now have three equations which describe the dynamics of the universe: the Friedmann equation
(4.13), the fluid equation (4.39), and the acceleration equation (4.44). Only two of these are
independent, however, since we’ve just demonstrated how equation (4.44) can be derived from
equations (4.13) and (4.39).

So, we now have a system of two independent equations and three unknowns: the scale factor a(t),
the energy density ε(t), and the pressure P (t). To solved for these three quantities as a function of
cosmic time t, we need another equation — an equation of state, that is, a mathematical relation
between the pressure and energy density.

In other words, we need a relation of the form P = P (ε).

In general, it is not an easy matter to write such an equation of state. Fortunately, cosmology
usually deals with dilute gases, so the equation of state can be written in a simple linear form:

P = wε (4.50)

where w is a dimensionless number.

Let us look at some concrete examples to see what values w might take.

Consider first a low density gas of non-relativistic massive particles, where the random thermal
motions of the gas particles have velocities that are tiny compared to the speed of light. Such a
gas obeys the ideal gas law

P =
ρ

µ
kT (4.51)

where µ is the mean mass per gas particle. The energy density of such a gas is almost entirely
contributed by the mass of the gas particles, so that ε ≈ ρ c2, and we can rewrite equation (4.51)
by multiplying and dividing by c2 as

P ≈ ρc2

µc2
kT

which gives

P ≈ kT

µc2
ε (4.52)

Page 4 of 8



PHY 475/375 (Spring 2012 ) Lecture 7

One way to characterize the speed of such non-relativistic molecules is through the rms (root mean
square) speed, which is given by

vrms =

√

3kT

µ
(4.53)

so equation (4.52) can be written with kT replaced by µv2
rms/3 as

P ≈ µv2
rms

3µc2
ε

so that the equation of state for a non-relativistic gas is

Pnon-rel gas = w εnon-rel gas (4.55)

with

w ≈ v2
rms

3c2
≪ 1 (4.56)

since, e.g., for nitrogen molecules in air at room temperature, vrms ∼ 500 m s−1, so that w ∼ 10−12;
and even in astronomical contexts, in a gas of ionized hydrogen for example, the electrons are non-
relativistic as long as T ≪ 6 × 109 K, and protons are non-relativistic as long as T ≪ 1013 K.

Note that w cannot take on arbitrary values. Small perturbations in a substance with pressure P
will travel at the speed of sound. For adiabatic perturbations in a gas with pressure P and energy
density ε, the sound speed (cs) is given by

c2
s = c2

(
dP

dε

)

(4.57)

But from the equation of state, dP/dε = w, so in a substance with w > 0, the sound speed is
cs = c

√
w. Therefore, sound waves cannot travel faster than the speed of light, so w ≤ 1.

It is worth tabulating some values of w that are of particular interest.

• For non-relativistic matter, as we have shown above, w ≈ 0.

• For photons and other relativistic particles, w = 1/3.

• The case w < −1/3 is of interest because such a component will provide a positive acceler-
ation (ä > 0 in equation 4.44); such a component with w < −1/3 is generically referred to
as dark energy.

• A component of the universe that has w = −1 (and hence has P = −ε) is called the
cosmological constant (Λ). It may be one form of the dark energy.
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The Cosmological Constant

When Einstein published his first paper on general relativity in 1915, the expansion of the Universe
had not yet been discovered. So, Einstein (and all of his contemporaries) believed the Universe
was static.

Upon writing his field equations, Einstein realized the following, which we will describe in a
Newtonian context. If the mass density of the universe is ρ, then the gravitational potential Φ is
given by the so-called Poisson’s equation:

∇2Φ = 4πGρ (4.58)

The force per unit mass, or gravitational acceleration is then given by

~a = −~∇Φ (4.59)

In a static universe, ~a must vanish everywhere in space. Then equation (4.58) leads to

ρ =
1

4πG
∇2Φ = 0 (4.60)

But ρ = 0 means there is zero mass density in the universe, that there is nothing in the universe.
So, the only possible static universe is one with nothing in it, an empty universe!!!

This was an embarrassing situation for Einstein. His field equations had turned out to be a
description of a universe that cannot exist (or even if it did, there would be no one to measure it,
since it would contain nothing).

The material below and on the following pages was done in class on W (4/18) but
is included here for continuity.

So, how did Einstein fix this problem? He probably looked at Maxwell’s equations in electro-
magnetism for an idea. We know that the magnetic field can be written as the curl of a vector
potential ~A, that is, B = ~∇× ~A. But if we add the gradient of an arbitrary scalar field F to ~A,
then

~B = ~∇×
(

~A + ~∇F
)

= ~∇× ~A + ~∇× ~∇F

= ~∇× ~A

because the curl of the gradient of any scalar function is zero.

In other words, the addition of the gradient of a scalar field to the vector potential has no effect
on the magnetic field ~B.

Likewise, Einstein found he could add a constant to his field equations that would keep a matter-
filled universe static. This new term, Λ, came to be known as the cosmological constant.
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With this new term added to Einstein’s field equations, the Friedmann equation becomes

(
ȧ

a

)2

=
8πG

3c2
ε − κc2

R2
0a

2
+

Λ

3
(4.62)

while the acceleration equation becomes

ä

a
= −4πG

3c2

(

ε + 3P
)

+
Λ

3
(4.64)

Meanwhile, the fluid equation is not affected by the presence of a Λ term, so

ε̇ + 3
ȧ

a

(

ε + P
)

= 0 (4.63)

Rewriting equation (4.62) as

(
ȧ

a

)2

=
8πG

3c2

[

ε +
c2

8πG
Λ

]

− κc2

R2
0a

2

we see that adding the Λ term is equivalent to adding a new component to the universe with
energy density

εΛ ≡ c2

8πG
Λ (4.65)

Now, if Λ remains constant with time, then so does εΛ. So, from the fluid equation (4.63), we get

PΛ = −εΛ = − c2

8πG
Λ (4.66)

This means that we can think of the cosmological constant as a component of the universe which
has a constant density εΛ and a constant pressure PΛ = −εΛ.

Next, in a static universe, both ȧ and ä must be equal to zero. Moreover, P = 0, since a static
universe is also a pressure-less universe, and ε ∝ ρc2 as we know already from our discussion of
equation (4.51), that the energy density of a non-relativistic gas is contributed entirely by the
mass of the particles. So the acceleration equation (4.64) reduces to

ä

a
= 0 = −4πG

3c2

(

ρc2 + 3P
︸︷︷︸

=0

)

+
Λ

3

or

0 = −4πG

3c2
ρ +

Λ

3
(4.67)

So, Einstein had to set Λ = 4πGρ in order to get a static universe.
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With Λ = 4πGρ, ε = ρc2, and ȧ = 0, the Friedmann equation (4.62) becomes

0 =
8πG

3c2
ρc2 − κc2

R2
0a

2
+

4πGρ

3

from which we get

0 =
(8 + 4)πGρ

3
− κc2

R2
0a

2

Rearranging terms, we get

4πGρ =
κc2

R2
0a

2

so that we can write

R0 =

√

κc2

4πGρ a2
=

√

κc2

4πGρ

where we have written a = 1; since ȧ = 0, a must be constant, and so we might as well take the
constant to be the value of a in the current epoch (recall that a(t0) = 1).

The only possible value of κ is then +1, since κ = −1 would make R0 imaginary, and κ = 0 would
make R0 = 0, which makes no sense. So we get finally that

R0 =
c

Λ1/2
(4.69)

as the radius of curvature of Einstein’s static model.

Einstein was never satisfied with having to insert a term by hand into his elegant theory, and
promptly dropped the cosmological constant when it was found that the Universe was expanding.
However, in recent years, the cosmological constant has made a comeback as one of the possible
explanations for the dark energy.
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