
PHY 475/375
Lecture 6

(April 11, 2012)

The Friedmann Equation

The idea of curved space, and therefore the mathematics of describing curved space-time, was
developed long before Einstein’s general theory of relativity. Einstein’s breakthrough with general
relativity was to link the curvature of space-time to its mass-energy content. The key equations
of general relativity are Einstein’s field equations, which can be used to find the linkage between
a(t), κ, and R0, which describe the curvature of the universe, and the energy density ε(t) and
pressure P (t) of the contents of the universe.

The equation which connects a(t), κ, R0, and the energy density ε(t) of the universe is known as
the Friedmann equation, after Alexander Alexandrovich Freidmann, who first derived the equation
in 1922. It is of interest to note that Friedmann derived his equation in 1922, seven years before
Hubble’s discovery of the expansion of the Universe in 1929.

While Friedmann derived his equation using the full suite of general relativistic equations, we will
first derive a non-relativistic equivalent using Newton’s 2nd law of motion and law of gravity, and
then state (without proof) the modifications that must be made to obtain the general relativistic
form of the Friedmann equation.

Consider a homogenous sphere with a total mass Ms that is constant in time. The sphere is
expanding or contracting isotropically, so that its radius Rs(t) is increasing or decreasing with
time. Place an infinitesimal test mass m at the surface of the sphere. Newton’s law of gravity
gives the gravitational force experienced by this test mass m as:

F = −
GMsm

Rs(t)2
(4.3)

Using Newton’s 2nd law of motion (F = ma), we can write this force as

F = m
d2Rs

dt2
= −

GMsm

Rs(t)2

so that we get the gravitational acceleration at the surface of the sphere as:

d2Rs

dt2
= −

GMs

Rs(t)2
(4.4)

Let us now multiply each side of this equation by dRs/dt
(

dRs

dt

)

d2Rs

dt2
= −

GMs

Rs(t)2

(

dRs

dt

)

(4.4.a)

Note that the left hand side can be written as

1

2

d

dt

[

(

dRs

dt

)2
]

(4.4.b)
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We can integrate equation (4.4.a) with the left hand side written as (4.4.b) by writing as

1

2

∫

d

dt

[

(

dRs

dt

)2
]

dt = −GMs

∫

R−2
S dRs

Integrating, we obtain
1

2

(

dRs

dt

)2

= −GMs

[

R−2+1
S

−2 + 1

]

− UI

where UI is just a constant of integration; notice that we have chosen a minus sign, opposite to
that in your textbook, in order to make it correspond to the general relativistic form that we will
eventually write. Cleaning up the right hand side, this becomes

1

2

(

dRs

dt

)2

=
GMs

Rs(t)
− UI (4.5)

If we rearrange terms as
1

2

(

dRs

dt

)2

−
GMs

Rs(t)
= −UI (4.5.a)

then the first term on the left can be identified as the kinetic energy per unit mass :

Ekin =
1

2

(

dRs

dt

)2

(4.6)

whereas the second term can be identified with the gravitational potential energy per unit mass :

Epot = −
GMs

Rs(t)
(4.7)

Therefore, equation (4.5.a) simply states that the sum of the kinetic energy per unit mass and the
gravitational energy per unit mass is constant for an element of matter at the surface of a sphere,
as the sphere expands or contracts under its own gravitational influence.

Now, since the mass of the sphere is constant as it expands or contracts, we may write it as

Ms = ρ(t) Vs(t)

where ρ(t) is the density and Vs(t) is the volume of the sphere. They are both time-dependent, so
that they can adjust their values to keep their product, the mass (Ms), constant. This gives

Ms = ρ(t)

[

4π

3
Rs(t)

3

]

(4.8)

Also, since the expansion is isotropic about the center of the sphere, we may write the radius Rs(t)
in the form

Rs(t) = a(t) rs (4.9)

where a(t) is the scale factor, and rs is the comoving radius of the sphere.
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Putting equations (4.8) and (4.9) into the energy conservation equation (4.5), we obtain

1

2

[

d

dt

{

a(t) rs

}

]2

=
G

a(t) rs

[

4π

3
ρ(t)

{

a(t) rs

}3
]

− UI

which simplifies to
1

2
r2s ȧ

2 =
4π

3
Gr2sρ(t) a(t)

2
− UI (4.10)

using the usual convention that da/dt = ȧ.

Dividing each side of equation (4.10) by r2sa
2/2, we obtain

(

ȧ

a

)2

=
8πG

3
ρ(t)−

2UI

r2s

1

a(t)2
(4.11)

This is a simplified version of the Friedmann equation, derived using Newtonian mechanics. While
our derivation based on Newtonian mechanics has given us a form that looks very close to the
actual Friedmann equation, the truth is that an isotropically expanding sphere still contains a
very special location — the center of the sphere, which violates the principle of homogeneity.
Therefore, the correct form of Friedmann’s equation must be derived based on general relativity.

Before writing the general relativistic form of the Friedmann equation, though, it is worth consid-
ering some insights we can gain from looking at equation (4.11). Notice that the time derivative
of the scale factor enters into this equation as ȧ2, so a contracting sphere (ȧ < 0) is simply the
time reversal of an expanding sphere (ȧ > 0). If we consider the case of an expanding sphere,
analogous to our situation in the Universe, then the future of the expanding universe falls into
one of 3 classes, depending on the sign of U :

• If UI < 0, the right hand side of equation (4.11) is always positive, which makes ȧ2 always
positive, so that the expansion never stops.

• If UI > 0, the right hand side of equation (4.11) starts out positive (since we are still con-
sidering an expanding universe with ȧ > 0). However, we will eventually reach a maximum
scale factor for which the right hand side will be zero. To find it, we can set the right hand
side equal to zero, so that

8πG

3
ρ = −

2UI

r2s

1

a2max

from which we get

a2max = −
2UI

r2s

(

3

8πG

)

1

ρ
= −

2UI

r2s

(

3

8πG

)

4πa3maxr
3
s

3Ms

and finally

amax = −
GMs

UIrs
(4.12)

So, at the maximum scale factor given by (4.12), the right hand side of equation (4.11)
will be equal to zero, and the expansion will stop! Since ä will still be negative, the sphere
(universe) will then contract.

• If UI = 0, we get the boundary case in which ȧ → 0 at t → ∞ and ρ → 0.
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Now, let us write down (without proof) the correct form of Friedmann’s equation including all
general relativistic effects. It is

(

ȧ

a

)2

=
8πG

3c2
ε(t)−

κc2

R2
0

1

a(t)2
(4.13)

Notice that in going from the Newtonian form of the Friedmann equation that we derived in
equation (4.11) to the correct general relativistic form in equation (4.13), we have made two
changes:

1. The mass density ρ has been replaced by an energy density ε divided by the speed of light
squared. This has its basis in Einstein’s mass-energy relationship

E =
√

p2c2 +m2c4 (4.14)

2. We have replaced the term
2UI

r2s
with

κc2

R2
0

, where κ is the curvature.

There are then 3 possibilities for κ, corresponding to the 3 cases for UI already discussed.

• The case with UI < 0 in which the expansion never stops corresponds to negative
curvature (κ = −1).

• The case with UI > 0 in which the expansion stops at a maximum scale factor, then
begins to contract, corresponds to positive curvature (κ = +1).

• The case with UI = 0 corresponds to the special case where the space is perfectly flat
(κ = 0).

In order to apply the Friedmann equation to the study of the real universe, we must connect it to
observable properties. For instance, the Friedmann equation can be tied to the Hubble constant
H0. Recall that we wrote H(t) ≡ ȧ/a. This allows us to rewrite the Friedmann equation in the
form:

H(t)2 =
8πG

3c2
ε(t)−

κc2

R2
0

1

a(t)2
(4.19)

At the present moment

H0 = H(t0) =

(

ȧ

a

)

t=t0

= 70± 7 km s−1 Mpc−1 (4.20)

Note that purists tend to call H(t) the Hubble parameter, and H0 the Hubble constant, where H0

is the value of H(t) in the present day.

Using the convention that a subscript of “0” indicates the value of a time-varying quantity evalu-
ated at the present, the Friedmann equation evaluated at the present moment is

H2
0 =

8πG

3c2
ε0 −

κc2

R2
0

(4.21)

since a(t0) = 1.
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Equation (4.21) for the Friedmann equation at the current time gives a relation among H0, which
tells us the current rate of expansion, ε0, which tells us the current energy density, and κ/R2

0,
which tells us the current curvature. Now, while it is simple to measure the curvature in principle,
it turns out to be difficult to do in practice.

In principle, we could determine the curvature of the Universe simply by drawing a very
large triangle and measuring the angles α, β, and γ at the vertices. Since the sum of these
angles can be found by generalizing equations (3.5), (3.8) and (3.10) to be

α + β + γ = π + κA/R2
0

then if α + β + γ > π, the Universe would be positively curved, and if α + β + γ < π, the
Universe would be negatively curved. Moreover, by measuring the area of this triangle, we
could figure out the radius of curvature R0.

In practice, however, the area of the largest triangle we could draw would be much too small
(compared to R0), so the deviation of (α + β + γ) from π would be too small to measure.

About all we can conclude from geometric arguments is that if the Universe is positively
curved, it can’t have a radius of curvature that is significantly smaller than the current
Hubble distance, c/H0 ≈ 4300 Mpc, otherwise we should be able to see more than one
image of the same galaxy. This is because if our Universe is positively curved, it has finite
size, with a circumference currently equal to C0 = 2π R0. If C0 ≪ ct0 ∼ c/H0, then photons
will have circumnavigated the Universe. As an extreme example, suppose the Universe is
positively curved with a circumference of 10 million LY. Looking toward the galaxy M31
(Andromeda), which is 2 million LY from us, we would see an image of Andromeda as it was
2 million years ago. But, we should also be able to see the light ray that had circumnavigated
the 10 million LY circumference, so we would also see Andromeda as it was 10 + 2 = 12
million years ago. Finally, looking in the direction opposite Andromeda, we should be able
to see an image of Andromeda from photons which had traveled (10 − 2) = 8 million LY,
hence an image of Andromeda as it was 8 million years ago, and so on. Since we don’t see
periodicities of this kind, we conclude that if the Universe is positively curved, its radius of
curvature must be very large, comparable to, or larger than, the current Hubble distance
c/H0.

So, since we cannot measure the curvature by geometric means, we must turn to indirect methods
of determining κ and R0. If we measured H0 and ε0, we could use equation (4.21) to determine
the curvature. In fact, even without knowing the current density ε0, we can use equation (4.21)
to place a lower limit on R0 in a negatively curved universe. If we assume ε0 is non-negative, then
for a given value of H0, the product κ/R2

0 is minimized in the limit ε0 → 0. So in the limit of a
totally empty universe with no energy content, the curvature is negative (taking κ = −1), with a
radius of curvature given by

[

R0

]

min
=

c

H0

(4.22)

This is the minimum radius of curvature that a negatively curved universe can have, assuming of
course that curvature is correctly described by general relativity. Since we know that the Universe
contains matter and radiation (so ε > 0), the radius of curvature must be larger than the current
Hubble distance c/H0 if the Universe is negatively curved.

In summary, we have shown that the radius of curvature of the Universe must be larger than the
current Hubble distance c/H0, regardless of whether it is positively curved or negatively curved.
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The following was done in class on Monday (Apr 16), but is included here for
continuity.

To define other useful terms, let us remind ourselves once again that the full general relativistic
form of the Friedmann equation with a Robertson-Walker metric is

H(t)2 =
8πG

3c2
ε(t)−

κc2

R2
0

1

a(t)2
(4.23)

In a spatially flat universe, the Friedmann equation then takes on a particularly simple form

H(t)2 =
8πG

3c2
ε(t) (4.24)

This means that for a given value of the Hubble parameter H(t), we can define a critical energy
density

εc(t) ≡
3c2

8πG
H(t)2 (4.25)

This allows us to define two cases:

• If the energy density ε(t) is greater than this critical value, i.e., ε(t) > εc(t), the universe is
positively curved (κ = +1).

• If the energy density ε(t) is smaller than this critical value, i.e., ε(t) < εc(t), the universe is
negatively curved (κ = −1).

Since we know the current value of the Hubble parameter to within 10%, we can compute the
current value of the critical energy density to within 20%:

εc,0 =
3c2

8πG
H2

0 =
3(3× 108m s−1)2

8π(6.67× 10−11 m3 kg−1s−2)

(

{

70± 7
}km

s

1

Mpc

Mpc

3.1× 1019 km

)2

from which we obtain

εc,0 = (8.3± 1.7)× 10−10 J m−3
≡ 5200± 1000 MeV m−3 (4.26)

The critical energy density is frequency written as the equivalent mass density

ρc,0 ≡
εc,0
c2

= (9.2± 1.8)× 10−27 kg m−3 = (1.4± 0.3)× 1011 M⊙Mpc−3 (4.27)

Even though this is not a large density by even interstellar standards (interstellar space has a
number density of about 1 atom cm−3 even in its most tenuous spaces, so 1.67 × 10−21 cm−3),
when averaged over 100 Mpc scale voids, the Universe has a mean density that is close to the
critical density.

In discussing the curvature of the Universe, it is more convenient to use not the absolute energy
density ε, but the ratio of the energy density to the critical energy density. So, in talking about
the energy density of the universe, cosmologists use the dimensionless density parameter:

Ω(t) ≡
ε(t)

εc(t)
(4.28)

The most conservative limits on Ω state that the current value of the density parameter lies in
the range 0.1 < Ω0 < 2.
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In terms of the density parameter, the Friedmann equation can be written in yet another useful
form, which we can obtain by first dividing both sides of equation (4.23) by H(t)2:

H(t)2

H(t)2
=

8πG

3c2H(t)2
ε(t)−

κc2

R2
0

1

a(t)2H(t)2

From equation (4.25), we have 8πG/3c2H(t)2 = 1/εc(t), so the above equation becomes

1 =
ε(t)

εc(t)
−

κc2

R2
0

1

a(t)2H(t)2

so that, upon rearranging terms and inserting Ω(t) from the definition in equation (4.28) we get

1− Ω(t) = −
κc2

R2
0

1

a(t)2H(t)2
(4.29)

Note that since the right hand side of equation (4.29) cannot change sign as the universe expands,
neither can the left hand side. So, if Ω < 1 at any time, it remains less than 1 for all time; similarly
if Ω > 1 at any time, it remains greater than 1 for all times, and if Ω = 1 at any time, it remains
equal to 1 for all times.

At the present epoch, the relation among curvature, density, and expansion rate can be written
in the form:

1− Ω0 = −
κc2

R2
0 H

2
0

(4.30)

since a(t0) = 1 at the present time.

Equation (4.30) can be rearranged as

κ

R2
0

=
H2

0

c2

(

Ω0 − 1
)

(4.31)

So, if we know Ω0, we know the sign of the curvature κ. If we also know the Hubble distance
c/H0, we can compute the radius of curvature R0.
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