
PHY 475/375
Lecture 4
(April 4, 2012)

The first 45 minutes of this lecture were spent on discussing aspects about the

Cosmic Microwave Background; the notes have been written into the posted notes

for April 2, to preserve continuity with the material for that day.

The Geometry of the Universe

Consider the four fundamental forces.

• The strong (nuclear) force is responsible for holding the nuclei of atoms together against the
enormous repulsion of the protons, so as its name implies, it is very strong! However, it is a
very short range force and acts only over distances ∼ 10−15 m (about the size of a nucleus).
So while it plays a role in holding together the constituents of the Universe on the smallest
scales, it plays no role on the large scales that are the domain of cosmology.

• The electromagnetic force is responsible for electric and magnetic effects, such as the force
between charged particles and the interactions of magnets. On small scales, the forces of
attraction and repulsion between electric charges are responsible for holding atoms and
molecules together, and dominate over all the other forces. The range of the electromag-
netic force is infinite, but the Universe is electrically neutral on large scales, so there are
no electrostatic forces on cosmological scales. Moreover, intergalactic magnetic fields are
sufficiently small that magnetic forces are also negligibly tiny on cosmological scales.

• The weak (nuclear) force is responsible for radioactive decays and neutrino interactions.
Without it, one of the critical steps in the proton-proton cycle by which the Sun produces
energy would not be able to take place. As its name implies, it is about 10−6 times weaker
than the strong (nuclear) force. It is also a short range force like the strong force, but has
an even smaller range than the strong force of about 10−18 m.

• The force of gravity is the weakest force, about 10−39 weaker than the strong (nuclear) force,
but it can act over very large distances. Moreover, it is always attractive and acts between
any two objects in the Universe that have mass. Therefore, on the cosmological scales of
100 Mpc, or above, it is gravity that plays the dominant role in determining the evolution
of the Universe.

We can think of gravity in either the Newtonian or Einsteinian pictures, and implicit to talking
about gravity as a force is that we are adopting the Newtonian picture. The Newtonian view
characterizes gravity as a force which causes objects possessing mass to be accelerated. On the
other hand, Einstein postulated gravity as a manifestation of the curvature of space-time. Before
delving into these details, the idea of space-time itself deserves some investigation.
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In the first of many seminal works that would transform the discipline of Physics, Einstein in 1905
postulated the Special Theory of Relativity. In it, he introduced a fundamental change for viewing
physical space and time, which was now unified as 4-dimensional space-time. He postulated that
the speed of light is the same for all observers, regardless of their motion relative to the source
of the light. A second postulate that all observers moving at constant speed should observe the
same physical laws established the equivalence of all unaccelerated frames of reference (inertial
observers). From these postulates, Einstein showed that the length of any object in a moving
frame will appear to be foreshortened (contracted) in the direction of motion, and a clock in a
moving frame will seem to be moving slow or “dilated” so that the time will always be shortest as
measured in its rest frame (“proper time”). Another equally revolutionary insight was that matter
and energy are related, even equivalent, as summed in the now famous equation: E = mc2.

Einstein’s General Theory of Relativity introduced an even more fundamental change in viewing
space-time and matter/energy. In it, he postulated the equivalence of all frames of reference
(including accelerated ones).

• Via the equivalence principle, there is no way for an observer to distinguish locally between
gravity and acceleration.

• The presence of mass/energy determines the geometry of space-time, whereas the geometry
of space-time determines the motion of mass/energy. Therefore, gravity is a purely geometric
consequence of the properties of space-time.

Your text provides an excellent discussion of the above ideas, so the discussion

won’t be repeated here; please read pages 26-30 of your text for details.

Describing Curvature

In order to develop a mathematical theory of general relativity, Einstein needed a way of math-
ematically describing curvature. In other words, on large scales, he needed to find a space-time
manifold — a shape in 3 spatial dimensions and 1 time dimension. In order to impose isotropy
and homogeneity, this manifold must look the same in all directions and in all places at any given
time.

In order to assist with the visualization of such a manifold (decidedly difficult in 4-D), let us
begin by considering ways to describe curvature in 2-dimensions, and then extrapolate to higher
dimensions.

Let us reminds ourselves of the 2-dimensional surfaces that satisfy isotropy and homogeneity.

• An infinite plane looks the same everywhere at any point, looks the same in every direction

• A sphere, since it doesn’t have any special points anywhere

• Another such 2-D surface that may not be so obvious is a saddle (or “hyperbolic paraboloid”
in technical terms)

Let us now look at each of these in more detail.
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Infinite Plane: An infinite plane is the simplest of 2-D surfaces, and Euclidean geometry holds
on it. The geodesic on a plane is a straight line.

We will be using the word “geodesic” a lot, so it is important to know what it means. A
geodesic is simply the shortest distance between two points. On a flat surface, it is easy to
pick out a geodesic — it will be a straight line. In other geometries, picking out a geodesic
might not be so easy.

If we construct a triangle on a plane by connecting 3 points with geodesics (i.e., straight lines, in
this case), the angles at the vertices of the triangle (α, β, and γ) obey the relation

α + β + γ = π (3.5)

where the angles are measured in radians.

We can set up a cartesian coordinate system on the plane, and assign to every point on the plane
a coordinate (x, y).

The distance ds between two points (x, y) and (x+ dx, y+ dy) on the plane can then be obtained
using the Pythagorean theorem as

(

ds
)2

=
(

dx
)2

+
(

dy
)2

Since it is inconvenient to keep writing the parenthesis, one usually tends to write this as

ds2 = dx2 + dy2 (3.6)

with the understanding that ds2 =
(

ds
)2

, and not d(s2). We will use this convention

throughout the quarter.

Alternatively, stating that equation (3.6) holds true everywhere in a 2-D space is equivalent to
saying that the space is a plane.

Instead of cartesian coordinates, if we use a polar coordinate system, a point on the plane will be
specified by the coordinates (r, θ), and the distance ds between the points (r, θ) and (r+dr, θ+dθ)
will be

ds2 = dr2 + r2dθ2 (3.7)

Even though equations (3.6) and (3.7) look different, they both represent the same flat geometry.
One can be transformed into the other by substituting x = r cos θ, y = r sin θ.

Sphere: Next, consider the surface of a sphere. On the surface of a sphere, the geodesic (i.e.,
minimum distance between two points) is a portion of a great circle, that is, a circle whose center
corresponds to the center of the sphere; if you’ve ever looked at flight paths of airlines, especially
for international travel, you should know this already.
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If we construct a triangle on the surface of the sphere by connecting three points with geodesics
(i.e., portions of great circles, in this case), the angles at the vertices of the triangle (α, β, and γ)
obey the relation

α + β + γ = π +
A

R2
(3.8)

where A is the area of the triangle, and R is the radius of the sphere.

All spaces in which α+ β + γ > π are called positively curved spaces. The surface of a sphere is a
positively curved 2-D space.

Moreover, the surface of a sphere is a space where the curvature is homogenous and isotropic; no
matter where we draw a triangle on the surface of a sphere, or how we orient it, it will always
satisfy equation (3.8).

Again, instead of cartesian coordinates, we can use a polar coordinate system. Setting one up
on a sphere involves a little more work, however. We need to pick a pair of antipodal points on
the sphere, which we will designate as the north pole and the south pole. Then, we must pick
a geodesic from the designated north pole to the south pole to be the prime meridian. If r is
the distance from the north pole, and θ is the azimuthal angle measured relative to the prime
meridian, then the distance ds between the points (r, θ) and (r + dr, θ + dθ) will be given by the
relation

ds2 = dr2 +R2 sin2

( r

R

)

dθ2 (3.9)

where, again, R is the radius of the sphere.

Note that, unlike an infinite plane whose surface has infinite area, the surface of a sphere has a
finite area equal to 4πR2. On a sphere, there is also a maximum possible distance between points;
the distance between antipodal points, at the maximum possible separation, is πR. In contrast,
there is no upper limit on the distance between two points on an infinite plane.

Saddle or hyperbolic paraboloid: So far, we have looked at flat spaces and positively curved
spaces. In addition, there exist negatively curved spaces. An example of a negatively curved two-
dimensional space is the saddle-shape or hyperbolic paraboloid. Such a saddle-shape has constant
curvature only in the central region, near the seat of the saddle.

Now, while it is difficult to visualize a 2-D surface of constant negative curvature throughout, its
properties can easily be written down mathematically. We might as well start getting used to
this situation, since in 4-dimensional space-time, we will only be able to operate mathematically,
and visualization won’t be possible in most circumstances. Consider, therefore, a 2-D surface of
constant negative curvature, with radius of curvature R. If a triangle is constructed on this surface
by connecting three points with geodesics, the angles at the vertices of the triangle (α, β, and γ)
will obey the relation

α + β + γ = π −

A

R2
(3.10)

where A is the area of the triangle.
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On a surface of constant negative curvature, we can set up a polar coordinate system by choosing
some point as the pole, and some geodesic leading away from the pole as the prime meridian.
If r is the distance from this pole, and θ is the azimuthal angle measured relative to the prime
meridian, then the distance ds between the points (r, θ) and (r + dr, θ + dθ) will be given by the
relation

ds2 = dr2 +R2 sinh2

( r

R

)

dθ2 (3.11)

where, again, R is the radius of the sphere.

Like an infinite plane, a surface of constant negative curvature has infinite area, and has no upper
limit on the possible distance between points.

Relations such as (3.7), (3.9), and (3.11), which give the distance ds between two nearby points
in space, are known as metrics.

In general, curvature is a local property. For example, a bagel (or other toroidal object) is
positively curved on part of its surface, and negatively curved in other parts. However, if we
want a 2-dimensional space to be homogenous and isotropic, there are only three possibilities:

• The space can be uniformly flat.

• The space can have uniform positive curvature.

• The space can have uniform negative curvature.

Thus, if a 2-dimensional space is homogenous and isotropic, its geometry can be specified by two
quantities, κ and R. The number κ is called the curvature constant, and we have κ = 0 for a flat
space, κ = +1 for a positively curved space, and κ = −1 for a negatively curved space. Meanwhile,
if the space is curved, then R, which has the dimensions of length, is the radius of curvature.
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