PHY 475/375

Lecture 13
(May 9, 2012)

The Matter Content of the Universe

The matter density of the universe is an important parameter to know, not only for determining
the spatial curvature and expansion rate of the universe, but also to figure out the constituents of
the universe.

We can divide matter into two categories:

e Luminous matter is detectable by its electromagnetic radiation. Such matter includes stars
which radiate primarily at visible, infrared, and ultraviolet wavelengths, and gas which can
radiate at a variety of wavelengths depending on their temperatures. Such matter is baryonic,
that is, it is made up of protons and neutrons (and their associated electrons). Henceforth,
therefore, we will refer to such matter as baryonic matter.

e Dark matter does not emit any electromagnetic radiation, but is detected via its gravitational
influence. While there are many conjectures about the composition of dark matter, the actual
composition of dark matter remains unknown.

Baryonic Matter

We can quantify the radiation emitted by a star by measuring the intensity emitted at a particular
(range of) wavelengths. For example, you might put a B-band filter on your telescope (note
that “filter” in astronomy refers to transmitted radiation, not blocked radiation as in everyday
conversation). If you measure the radiation that passes through this B-band filter in the wavelength
range 400-490 nm (blue and violet mainly), you will find that the luminosity density of stars within
a few Mpc of our Galaxy is

Jep = 1.2 x 10° Lo g Mpc™? (8.1)

where Lg p is the luminosity of the Sun in the B-band, and is equal to 4.7 x 10 watts.

To convert j, p into a mass density p,, we need to know the mass-to-light ratio for stars, i.e., how
many kg of star it takes to produce one watt of starlight in the B-band. This isn’t easy to get at,
since stars have a range of masses. By assuming that the mix of stars in the solar neighborhood
is fairly typical, we get a mass-to-light ratio

M M,
<_> ~ 4 —2 ~ 170,000 kg watt ™! (8.2)
L Lo

From this, the mass density of stars in the Universe is found to be

M
Pr0 = <L—B> Je &5 x 10° My, Mpc™ (8.3)
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Therefore, the current density parameter for stars is

O P _ 5X 10® Mg, Mpc™®
0 peo 1.4 x 10 Mg Mpc™®

~ 0.004 (8.4)

where we have taken the value of p.( from equation (4.27) in Lecture 6.

Equation (8.4) tells us that the current density parameter for stars is very small!
e Stars make up less than 0.5% of the density necessary to have a flat Universe.

e The number will increase somewhat if we include brown dwarfs (“wannabe stars” whose mass
is too low to ignite nuclear fusion in their cores), and stellar remnants like white dwarfs,
neutron stars, and black holes.

e However, it is hard to get a fix on the number density of brown dwarfs and stellar remnants,
since they are difficult to detect. Moreover, many would like to consider these objects as
(baryonic) dark matter instead.

Galaxies also contain baryonic matter in other forms than stars, stellar remnants, and brown
dwarfs.

e For example, the interstellar medium (ISM) between the stars in a galaxy contains significant
amounts of gas. In our Galaxy and M31, the mass of this interstellar gas is about 10% of

the mass of stars. In irregular galaxies, this may be even greater — about 21% of the mass
in the Small Magellanic Cloud (SMC) is in the ISM.

e Moreover, there is a significant amount of gas between galaxies. For example, X-ray images
of the Coma cluster of galaxies reveal hot, low density gas with 7" ~ 108 K that fills the space
between galaxies in this cluster, emitting X-rays with £ ~ kT, ~ 9 keV. The total amount
of X-ray emitting gas in the Coma cluster has been estimated to be Mooma, gas = 2% 10 M,
about 6-7 times the mass in its stars.

Ultimately, some of the best limits on the density of baryonic matter of the universe come from
the predictions of primordial nucleosynthesis, and more recently, from the Cosmic Microwave
Background (CMB) work by the Wilkinson Microwave Anisotropy Probe (WMAP) satellite ob-
servations. As we will learn in a later lecture, the efficiency with which fusion takes place in
the early universe, converting hydrogen into deuterium, helium, lithium, and other elements, de-
pends on the density of protons and neutrons present. Detailed studies indicate that the density
parameter of baryonic matter must be

Qbary, 0 = 0.04 £ 0.01 (8.5)

Notice that this is larger than the density parameter for stars by a factor of about 10. While stars
present an impressive sight in the sky, they constitute a minority of the baryonic matter present in
the Universe. Most of the baryonic matter is either too cold (e.g., in stellar remnants and brown
dwarfs) or too diffuse (e.g., in low-density gas in clusters) to be at visible (optical) wavelengths.
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Dark Matter

We know now that the majority of the matter in the Universe is nonbaryonic dark matter, which
doesn’t absorb, emit, or scatter light of any wavelength.

So, how do we go about detecting such matter? It is usually done by searching for its gravitational
influence on visible matter.

The classic method of detecting dark matter is by looking at the orbital speeds of stars in spiral
galaxies. Within the flattened disk of such a galaxy, stars are on nearly circular orbits around the
center of the galaxy; for example, our Sun is on an approximately circular orbit at R, = 8.5 kpc
from the Galactic Center, with an orbital speed of vy = 220 km s™! (which means it takes the Sun
about 230 million years to complete one orbit around the center of our Galaxy).

Suppose, therefore, that a star is in orbit of radius R around the center of a galaxy with an
orbital speed v. We can then set the centripetal acceleration experienced by this star equal to the
acceleration due to the gravitational attraction of the galaxy:
v?  GM(R)
R R
where M (R) is the mass contained in a sphere of radius R with its center at the center of the
galaxy. This gives

(8.8)

_ [Gi®)
v=\ TR (8.9)

Therefore, if stars contributed all or most of the mass in a galaxy, their velocity would fall as
v < 1/+/R at large radii. This relation between orbital speed and orbital radius is called “Keplerian
rotation” in the astronomical literature.

Now, we can check whether this is indeed the case by determining the orbital speed of a galaxy
from observations. We won’t discuss the details of how orbital speed of a galaxy is measured, but
see equations (8.11) to (8.13) in your text if you're interested.

In 1970, Vera Rubin measured the rotation curve of M31. Rubin & Ford (1970) discovered that
rather than falling off at large radii, the velocity remained constant instead, as shown in the graph
below (taken from Figure 8.4 in your text). Of course, optical observations only go out to about
10-20 kpc from the center of a galaxy, but later observations e e e
with radio showed the same trend of a flattened rotation soar 1
curve at large radii (out to 30 kpc or larger). The open
circles in the figure show the optical data from Rubin &
Ford (1970), and the closed circles show the radio data
from Roberts & Whitehurst (1975); full references are in
your text in the caption to Figure 8.4.

20 30
Rkpe)

The current interpretation is that the additional mass required to flatten out the rotation curve
is provided by a dark matter halo in the galaxy.
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Dark Matter in Clusters of Galaxies

Long before Rubin’s discovery of dark matter in Andromeda, though, the first astronomer whose
observations suggested the presence of dark matter was Fritz Zwicky, in the 1930’s. Zwicky found
that the dispersion in the radial velocity of galaxies in the Coma cluster was very large. The stars
and gas could not provide enough gravitational attraction to keep the galaxies together in the
cluster. Zwicky concluded that in order to keep the galaxies in the Coma cluster from flying off
into space, the cluster must contain a large amount of “dark matter.”

Another independent line of evidence for dark matter comes from the gravitationally confined, hot,
low density, X-ray emitting gas in clusters of galaxies; recall the image we viewed in class for the
Coma cluster. In fact, the baryonic matter content of galaxy clusters is dominated by this X-ray
emitting intra-cluster gas; its mass exceeds the mass of optically luminous material by a factor of
~ 6; other mass components in clusters are expected to make only very small contributions to the
total baryon budget (e.g., Allen et al. 2004, Monthly Notices of the Royal Astronomical Society,
353, 457, and references therein). This hot gas would have expanded beyond the cluster if there
were no dark matter to keep it confined. In fact, we can use the ratio of the mass of the X-ray
emitting gas in the galaxy cluster to the total mass (including the dark matter) of the cluster to
constrain various cosmologies.

e We can calculate the total mass (M) in the cluster using the equation of hydrostatic
equilibrium, i.e., by balancing the inward gravitational pull against the outward thermal
pressure of the gas. This includes the mass of the dark matter, since it is based on the
gravitational influence of the mass in the cluster. Hydrostatic equilibrium dictates that
Mot < r¢o, where re is the radius of the cluster.

e Meanwhile, if n, is the electron density in the cluster, the mass (M) of the X-ray emitting

gas in the cluster is given by

Mgas X e rz’
To connect this to observable quantities, consider that the X-ray luminosity Lx is given by
Lx o< n?r?, so that we get

Mgps o< Tg/z L¥2

e Next, from the definition of angular diameter distance d4, if the cluster subtends an angle
Oc when observed from the Earth, we have r, = 6.d4. Also, if the observed X-ray flux of

the cluster is fx, then
LX = 47fod% = 47TfX (1 + Z)4d§1

where dy, is the luminosity distance, and we have used dy = (1 + 2)? d4 from equation (7.37)

in the previous lecture.
My o LY? 1/2

tot rc

1/2
e Putting all this together, we get x [TCL)(} o [dA (1+2)4 di]
or, finally,

Mgas 2 13/2
—— x (1+2)°d
M., (1+2)"dy

Through d 4, therefore, the calculated value of Mg,s/M;.. depends on the assumed cosmology.
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If we assume that the ratio Mgas/Mio is independent of redshift, we can fit cosmological models
to the values of this ratio obtained from observations.

2#} | =
% iWM R _'%;HHNH { |
" 5 |

Allen et al. (2004) observed 26 galaxy clusters in the redshift range 0.07 < z < 0.9 with the
Chandra X-ray observatory. Plots of the ratio My,s/M; (which they call fq,s) versus the redshift
are shown in the figure above for two assumed cosmologies. On the left is the plot for €2,, = 1 and
Qp = 0 with Hy = 50 km s~ Mpc—!, and on the right is the plot for €2, = 0.3 and Q, = 0.7 with
Hy =70 km s~' Mpc~!. Under the assumption that Mas /Mo, should be constant with redshift,
the data clearly favor the latter cosmology over the former.

Allen et al. (2004) also plotted a grid of cosmo- [
logical models and their results are shown in the t
figure on the right. The innermost contour is the
one with the highest confidence. The best-fitting
parameters are

Clusters
(*BBNS+HST)

Q,, = 0.245 £ 0.054, Q) =0.96 £ 0.29

(I've combined their systematic and random er-
rors in quadrature). While this is consistent
with the Benchmark model within the errors, the
method is clearly most sensitive to €2,,.

By combining their X-ray data on galaxy clusters with Cosmic Microwave Background (CMB)
data, Allen et al. (2004) set even tighter constraints close to the Benchmark model. Their best-
fitting parameters for the combined fit are

Q,, = 0.28 £0.06, Q) =0.73+0.05

(Once again, I've combined their systematic and random errors in quadrature).
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Gravitational Lensing

So far, we have discussed the gravitational effects of dark matter on baryonic matter. In addition,
dark matter also affects the trajectory of photons. That is, dark matter can bend and focus light,
acting as a gravitational lens.

Such an idea dates back to Einstein himself. Following his
publication of the general theory, Einstein predicted that
if a photon passes an object of mass M at an impact pa-
rameter b (as shown in Figure 8.5 in your text, reproduced
on the right), the local curvature of space-time will cause
the photon to be deflected at an angle « given by

Y

_4GM

a =
c2b

(8.48)

Therefore, light from a distant star that just grazes the Sun’s surface should be deflected by an
angle
4G M,

o =
C2R®

Note that one could work out this deflection using Newtonian gravity and E = mc? from special
relativity, but one would get only half the value compared to that determined from the full general
relativity equation. A very short time after Einstein’s prediction of the deflection by the Sun,
an eclipse expedition photographed stars in the vicinity of the Sun. Comparison of the eclipse
photographs with photographs of the same star field taken six months earlier revealed that the
apparent positions of the stars were indeed deflected by exactly the amount which Einstein had
predicted.

= 1.7 arcsec (8.49)

In a similar way, a galaxy or cluster of galaxies can act as a gravitational lens by bending the light
from a galaxy or other object directly behind it. If the lensing galaxy or cluster is exactly along
the line of sight between the observer and the lensed object, the image produced is a perfect ring
(usually called an Einstein ring), with angular radius

N2
6, — <4GM 1 :B) (8.50)

c2d x

where M is the mass of the lensing galaxy or gal, d is the distance from the observer to the lensed
object, and zd is the distance from the observer to the lensing galaxy or cluster (so 0 < z < 1).
The angular radius 0 is called the Finstein radius.

In practice, we rarely see the full Einstein ring. Instead, we see arc-shaped images into which the
background galaxy or object has been distorted. We looked at some of these in lecture, and one
of them (Abell 2218) is given in Figure 8.7 in your text.

By looking at these lensed images, we can reconstruct a model of the mass distribution forming
the lens, and construct a map of the dark matter distribution in the cluster (as we saw in one of
the images shown in lecture).
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What we’ve described so far is usually called strong lensing, and are most commonly seen when
the lenses are clusters of galaxies or very large galaxies. In a larger number of cases, though,
individual galaxies acting as lenses are not strong enough to form giant arcs or multiple images.
Instead, the background objects are stretched and magnified, but by such small amounts that it
is hard to measure. This is appropriately called weak lensing.

With weak lensing, the dark matter distribution cannot be reproduced by looking at any one
lensed galaxy. Instead, astronomers look at the average properties of lensed galaxies. By noting
the degree to which a group of lensed galaxies appear unusually flat and unusually similar to
their neighbors, astronomers can estimate the dark matter distribution producing these weak
gravitational lensing distortions.

Finally, another technique that became popular in the 1990’s is called microlensing, in which the
lensing object is usually a smaller object like a star.

e Astronomers used this technique to try and detect the population of massive compact objects
in the halo of our Galaxy (called MACHOs, short for Massive Compact Halo Objects),
because it was believed that this population might form all or part of the dark matter
component in the Galactic halo; note that, in this case, we are expanding the definition of
dark matter to include non-luminous or low luminosity baryonic matter.

e To detect lensing by MACHOs in the halo of our Galaxy, various research groups monitored
millions of stars in the Large Magellanic Cloud (LMC), one of the nearest galaxies in our
neighborhood. Their objective was to detect instances where the light coming from such
stars in the LMC would be bent by a MACHO in the halo of our Galaxy. Of course, the
Einstein ring in such cases is too small to be resolved. Instead, astronomers were looking
for changes in the flux of LMC stars. This was because MACHOs in our dark halo and
stars in the LMC are in constant relative motion. Therefore, the typical signature of a
microlensing event is a star which becomes brighter as the angular distance between the star
and a MACHO decreases, then becomes dimmer as the angular distance increases again.
The typical time scale for a lensing event is the time it takes a MACHO to travel through
an angular distance equal to the Einstein radius 6z as seen from Earth. Generally speaking,
therefore, more massive MACHOs produce larger Einstein rings and thus will amplify the
lensed star for a longer time.

e [n essence, microlensing events produce a very typical light curve with a symmetric rise and
fall time. Nevertheless, searching for MACHOs is a difficult task, since there are many other
reasons for variability, and one has to pick out this typical light curve from amongst many
others. The MACHO collaboration analyzed about 9.5 million light curves from its 2 yr
LMC monitoring and found only 6 to 8 microlensing events.

e Even with the small number of positive detections, the results are significant. The research
groups found no short duration microlensing events toward the LMC, suggesting that the
dark halo of our Galaxy does not have a significant population of brown dwarfs with M <
0.08 M.
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e Instead, the long time scales of the observed lensing events (At > 35 days) suggest typical
MACHO masses of M > 0.1M. One possibility is that the MACHOs are white dwarfs or
neutron stars — the dark remnants of an earlier generation of stars, but this is problematic
because if there were enough of these around to be a significant component of the dark
matter population, we should have detected the other byproducts of such an early stellar
population. Or, perhaps MACHOs are primordial black holes, or other exotic objects not
currently known. This is possible, but would be surprising.

e Most importantly, perhaps the microlensing events are not due to lenses in the halo of our
Galaxy, and therefore are not telling us about the dark matter in the Galactic halo — in a
typical microlensing event, the distance of the MACHQO cannot be determined, and so the
location of the lens population cannot be found. Efforts continue to find ways to measure
distances to these MACHOs (e.g., a microlensing parallax satellite).

Finally, as to the question of what dark matter may be, the short answer is that we don’t know yet.
While MACHOs like brown dwarfs, neutron stars, and black holes have been considered as possible
candidates for baryonic dark matter, events that occurred early in its history set a ceiling on the
baryonic content of the Universe, and therefore, the majority of dark matter is likely nonbaryonic.

e Nonbaryonic dark matter candidates are usually divided into two categories: Hot Dark
Matter (HDM), and Cold Dark Matter (CDM). The “hot” and “cold” here refer to speeds:
HDM candidates move with high speeds close to the speed of light (ultrarelativistic), whereas
CDM candidates travel at slow speeds.

e One candidate that has been considered for HDM is the neutrino, since it is after all a
nonbaryonic particle that travels with ultrarelativistic velocities, provided it possesses a
small mass. Normally, neutrinos are assumed to be practically massless, but a finite mass
is not implausible. Calculations show that a mean neutrino mass of m,c* ~ 4 eV would
be required to provide all the nonbaryonic dark matter in the universe. Yet, calculations
based on oscillations from one form of neutrino into another show a mass closer to 0.05 eV
(maximum). This means that neutrinos could make up no more than 0.5% of the nonbaryonic
dark matter. HDM candidates have fallen out of favor because such ultrarelativistic particles
make it hard to account for the generation of structure on the scale of galaxies in the universe
(although they would be good at forming larger scale structures like superclusters).

e Instead, the currently favored model is a CDM model, which requires particles sufficiently
massive that they move at slow velocities. The potential candidates are called WIMPS, short
for Weakly Interacting Massive Particles. Particle physicists have provided many candidates,
and significant efforts are ongoing, but no WIMPS have been detected to date. Some WIMPs
may mutually annihilate when pairs of them interact, and produce gamma rays. Recently
(Physical Review Letters, Dec 2011), scientists published results from an examination of two
years of data from the Fermi-Large Area Telescope (LAT). They looked at LAT-detected
gamma rays with energies in the range from 200 MeV to 100 GeV from ten of the roughly
two dozen dwarf galaxies known to orbit the Milky Way. No gamma-ray signal consistent
with the annihilations expected from four different types of commonly considered WIMP
particles was found. These results show for the first time that WIMP candidates within a
specific range of masses and interaction rates cannot be dark matter.
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