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Measuring Cosmological Parameters

So far, we have looked at a number of model universes containing one or more components. In
order to confirm any particular model, we need to know a(t). For the model universes we studied,
the contents were known with precision, so a(t) could just be computed from the Friedmann
equation. For the real universe, however, finding a(t) turns out to be much more difficult. Since
it is not directly observable, it must be inferred from imperfect or incomplete observations.

In general, determining a(t) from observations involves measuring distances, which is why so much
of observational cosmology is dedicated to making accurate and precise measurements of distances.

The Hubble Constant and Deceleration Parameter

Determining the exact functional form of a(t) is difficult, so instead we do a Taylor series expansion
of a(t) around the present moment t = t0:
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Now, while equation (7.1) is an infinite series, the variation in a(t) around a point can be captured
well by just the first few terms in this series, as long as it doesn’t fluctuate wildly — this seems
like a reasonable assumption, since none of our model universes had wildly fluctuating a’s.

So, if we keep the first 3 terms, and divide by the current scale factor a(t0), we get
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With the usual normalization a(t0) = 1, we get
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where H0 is the Hubble constant:
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and q0 is a dimensionless number called the deceleration parameter, and defined as
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Note that a positive value for q0 corresponds to ä < 0, meaning that the expansion of the universe
is decelerating. On the other hand, a negative value for q0 corresponds to ä > 0, meaning that
the expansion of the universe is accelerating. The name and choice of sign are historical, from a
period in the 1950’s when the universe was believed to be matter-dominated and decelerating.
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Note that the Taylor expansion in equation (7.4) is model-independent, that is, it does not depend
on any particular cosmology, or in fact, any underlying physics. In other words, this is a kinematic
determination of the scale factor a(t), simply a mathematical description of how the universe
expands at time t ∼ t0, and is even more fundamental than the Friedmann equation; recall that
the Friedmann equation assumes that the universe is controlled by gravity, and that gravity is
accurately described by Einstein’s general relativity, which then requires a metric to be defined
for space-time.

The importance of equation (7.4) was highlighted by the cosmologist Allan Sandage in 1970, when
he described cosmology as the quest for two numbers, H0 and q0. While the scope of cosmology
has widened considerably since then, efforts aimed at the precise and accurate measurement of H0

and q0 continue today.

Next, although H0 and q0 are kinematic and free of theoretical assumptions, one could use the
Friedmann equation to predict what q0 will be in a given model universe. Let us use the acceleration
equation (derived by combining the Friedmann equation and the fluid equation) to do this.

Recall that in a model universe containing several components, each with a different value of the
equation-of-state parameter w, the acceleration equation can be written as
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Dividing each side of equation (7.7) by H(t)2 and changing sign, we get
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Recall that the quantity in square brackets is 1/εc, where εc is the critical energy density. Since
it does not depend on w, it can be taken inside the summation, so that
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and since εw/εc = Ωw, we get finally
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ä

aH2
=

1

2

∑

w

Ωw

(

1 + 3w
)

(7.9)

If we choose to evaluate equation (7.9) at the present moment, then the left hand side is just the
deceleration parameter q0 from equation (7.6). Therefore, we get the relationship between the
deceleration parameter q0 and the density parameters of the different components of the universe:
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So, for a universe containing radiation (w = 1/3), matter (w = 0), and a cosmological constant
(w = −1), we get
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If ΩΛ,0 > (Ωr,0 + Ωm,0/2), then equation (7.11) gives q0 < 0, and the universe will currently be
accelerating outward. For example, the Benchmark model has q0 = −0.55.

Next, let us look at H0. For small redshifts, we know that

cz = H0d (7.12)

so if we can measure the redshift z and distance d for a large sample of galaxies, and fit a straight
line to a plot of cz vs. d, the slope of the plot gives the value of H0.

Measuring the redshift of a galaxy is pretty simple, but the distance to a galaxy is not only difficult
to measure, it is somewhat difficult to define in an expanding universe.

Perhaps the most straightforward definition of distance in an expanding universe is the proper
distance, e.g., the proper distance at the time of observation:
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If we Taylor expand a(t) (see equations (7.14)-(7.18) in your text), we find that dp(t0) depends on
H0 and q0:
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In practice, though, we need some way of computing a distance to an object based on the observed
properties of that object.

Luminosity Distance

Since proper distance is not a measurable quantity, one must look to other alternatives. One
property that we can measure for objects at cosmological distances is the flux of light from the
object (f , in units of watts m−2). While we would like to measure the flux integrated over all
wavelengths (called the bolometric flux ), in practice, we can only measure it over a limited range
of wavelengths. If the object is an extended source rather than a point source of light, we can
measure its angular diameter δθ. And, of course, we can measure the redshift z.
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One way of using measured properties to assign a distance is by using a so-called standard candle,
which is an object whose luminosity is known. If, by some means, you could find the luminosity
L of some class of astronomical object, then you can use the measured flux f of that object to
define a function called the luminosity distance:

dL ≡
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L

4πf

)1/2

(7.21)

The function dL is called a “distance” not only because it has the dimensionality of a distance,
but also because it is what the proper distance to the standard candle would be if the Universe
were static and Euclidean, where the light would follow the inverse square law f = L/(4πd2).

However, in a universe described by a Robertson-Walker (FLRW ) metric (written in equation
3.25):
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Suppose you are located at the origin and are observing, at the present moment t = t0, light that
was emitted by a standard candle at the comoving coordinate location (r, θ, φ) at a time te. The
photons which were emitted at time te are spread at the present moment, over a sphere of proper
radius dp(t0) = r (e.g., see equation (5.33) in Lecture 9) and proper surface area Ap(t0), given by

Ap(t0) = 4πSκ(r)
2 (7.24)

• If space is flat, then Ap(t0) = 4πr2, the familiar Euclidean relation.

• If space is positively curved, then Ap(t0) < 4πr2, and photons are spread over a smaller area
than they would be in flat space.

• If space is negatively curved, then Ap(t0) > 4πr2, and photons are spread over a larger area
than they would be in flat space.

Moreover, the expansion of the universe causes the observed flux of light from a standard candle
at redshift z to be decreased by an additional factor (1 + z)−2.

• First, the wavelength of a photon emitted with λe is changed to

λ0 =
a(t0)

a(te)
λe =

1

a(te)
λe = (1 + z) λe (7.25)

• Second, if two photons are emitted in the same direction separated by a time interval δte,
the proper distance between them will be stretched to c (δte) (1+z), and we will detect them
separated by a time interval δt0 = δte (1 + z).
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Combining all of the observations on the previous page, we get that in an expanding, spatially
curved universe, the relation between the observed flux f and the luminosity L of a distant light
source is

f =
L

4πSκ(r)2 (1 + z)2
(7.27)

so that the luminosity distance is
dL = Sκ(r) (1 + z) (7.28)

Angular Diameter Distance

Yet another distance measure based on observable properties of cosmological objects is the angular
diameter distance.

To define such a measure, consider measuring a standard yardstick, instead of a standard candle.
A standard yardstick is one whose proper length l is known.

Suppose such a yardstick of constant proper length l is aligned perpendicular to the line of sight.
We measure an angular distance δθ between the ends of the yardstick, and a redshift z for the
light emitted by the yardstick. If δθ ≪ 1, and we know the length l of the yardstick, we can
compute a distance to the yardstick using the small-angle formula

dA ≡
l

δθ
(7.33)

Then dA is called the angular-diameter distance.

In a universe described by the Robertson-Walker (FLRW ) metric in equation (7.22), the angular-
diameter distance dA to a standard yardstick is given by

dA =
Sκ(r)

1 + z
(7.36)

Comparison with equation (7.28) shows that the relation between angular-diameter distance and
luminosity distance is

dA =
dL

(1 + z)2
(7.37)

It is of interest to note that at low redshifts z → 0, we have

dA ≈ dL ≈ dp(t0) ≈
cz

H0

Since standard yardsticks can be hard to identify in practice, however, more attention has been
focussed in recent years on standard candles to determine H0.
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Standard Candles and the Hubble Constant

The usual recipe for finding the Hubble constant H0 using standard candles is:

• Identify a population of standard candles with luminosity L.

• Measure the redshift z and flux f for each standard candle.

• Compute dL =
√

L/(4πf) for each standard candle.

• Plot cz vs. dL.

• Measure the slope of the cz vs. dL relation when z ≪ 1; this gives H0.

Of course, a good standard candle is not easy to find!

We’ve already learned how one of the most frequently used standard candles are the Cepheid
variable stars.

In the early 1910’s, Henrietta Leavitt, working at Harvard College Observatory, discovered that
there was a clear relation between the period P and mean flux f of Cepheids in the Small Magel-
lanic Cloud (SMC), with stars having the longest period of variability also having the largest flux.
Since the depth of the SMC along the line of sight is small compared to its distance from us, she
was justified in assuming that the difference in mean flux of the Cepheids was due to their mean
luminosity, and not due to differences in their distance from us. Therefore, Leavitt had discovered
a period-luminosity relation for Cepheids, allowing them to be used as standard candles.

Note that, by measuring the ratio of fluxes to Cepheids in two galaxies, we can only know the
relative distances to these galaxies. To find an absolute distance to either galaxy, we need to know
the luminosity L for a Cepheid of a given period P . This normalization of the period-luminosity
relation for Cepheids has constituted a significant effort by many astronomers ever since the
discovery by Leavitt. Trigonometric parallax is the only method to get a good distance to a
star, but nearby Cepheids are rare. Until future space-based missions can measure trigonometric
parallaxes to a sizable number of Cepheids, we must rely on alternate methods of normalizing the
period-luminosity relation for Cepheids. One of these involves finding the distance to the Large
Magellanic Clouds (LMC) by secondary methods, then using this distance to compute the mean
luminosity of the LMC Cepheids.

Successful measurements of the periods and fluxes of Cepheids have been accurately measured to
luminosity distances of dL ∼ 20 Mpc with the Hubble Space Telescope (HST). In fact, measurement
of H0 was designated as a Key Project for the HST, with a final report in 2001 showing that
Cepheid data are best fit with a Hubble constant of H0 = 72 ± 8 km s−1 Mpc−1 (Freedman, et
al. 2001, Astrophysical Journal, 553, 47).
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Unfortunately, Cepheid variables can only take us out to about 20 Mpc. On this scale, we know
that the Universe is not homogenous and isotropic. In fact, we know that our Local Group is
gravitationally attracted toward the Virgo cluster of galaxies, causing it to have a peculiar motion
in that direction. Dynamical models must therefore be used to estimate what effect this has on
the recession velocities we measure at these distances; for example, the recession velocity cz we
measure for the Virgo cluster is found to be 250 km s−1 less than if the Universe were perfectly
homogenous. Plots of cz vs. dL must then correct for this “Virgocentric flow” in their recession
velocities.

The Accelerated Expansion of the Universe

Since peculiar velocities affect nearby measurements of recession velocities, we need to determine
the luminosity distance to standard candles with dL > 100 Mpc (z > 0.02). It is difficult to find
standard candles that are luminous enough at such large distances. Initial attempts in finding
standard candles focussed on using entire galaxies, but didn’t meet with much success due to lack
of standardization among galaxies.

In the last two decades, the standard candle of choice among cosmologists has been Type Ia
supernovae.

• We’ve already discussed how Type Ia supernovae occur in binary systems where one of the
two stars is a white dwarf. The transfer of mass from the companion star to the white
dwarf eventually takes it over the Chandrasekhar limit of 1.4 M⊙, at which point the white
dwarf undergoes a runaway nuclear fusion reaction; the resulting spectacle is called a Type
Ia supernovae.

• We’ve also discussed how such supernovae can outshine all the stars in the entire galaxy
combined. Since moderately bright galaxies can be seen at z ∼ 1, this means Type Ia
supernovae can also be seen at z ∼ 1.

Therefore, even though Type Ia supernovae are not all that common in our Galaxy (they occur
about once per century in our Galaxy, on average), their tremendous brightness means they can
be detected out to great distances. Moreover, in rich clusters like Virgo, we see several Type Ia
supernovae in a year. Therefore, they are reasonably good standard candles out to large distances.

The search for distant Type Ia supernovae has been led by two teams: the Supernova Cosmology
Project, and the High-z Supernova Search Team. In addition to H0, observations of Type Ia
supernovae at high redshift have allowed them to measure q0. Their data resulted in the remarkable
discovery that the expansion of our Universe is accelerating, instead of slowing down. We have
already incorporated their result in our model for the Universe. Rather than lecture about this
phenomenal discovery in class, however, I’m going to have you read their papers, together with
explanatory notes in your textbook, and write a report.

About half the class was spent on working problems from the Midterm exam.
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