
PHY 475/375
Lecture 10

(April 25, 2012)

Multiple-Component Universes

So far, we have studied model universes that contain only one component — matter only, radiation
only, etc. In this chapter, we will look at more sophisticated models containing two or more
components.

We begin, as always, with the Friedmann equation; recall that it can be written in the form

H(t)2 =
8πG

3c2
ε(t) − κc2

R2
0 a(t)2

(6.1)

where H ≡ ȧ/a and ε(t) is the energy density contributed by all the components of the universe.

Also, recall from an earlier lecture that equation (4.31) gave us a relation between κ, R0, H0, and
Ω0:

κ

R2
0

=
H2

0

c2

(

Ω0 − 1
)

(6.2)

Let us rewrite the Friedmann equation (6.1) without explicitly including the curvature by using
equation (6.2):

H(t)2 =
8πG

3c2
ε(t) − H2

0

a(t)2

(

Ω0 − 1
)

(6.3)

Dividing by H2
0 , this becomes

H(t)2

H2
0

=
ε(t)

εc,0

+
1 − Ω0

a(t)2
(6.4)

where εc,0 is the critical density in the current epoch, given by

εc,0 ≡
3c2H2

0

8πG
(6.5)

Now, we know that our Universe contains matter, for which the energy density εm has the depen-
dence εm = εm,0/a

3, and radiation, for which the energy density εr has the dependence εr = εr,0/a
4.

It may also have a cosmological constant, with energy density εΛ = εΛ,0 = constant. While it is
certainly possible that the universe contains other components as well, we will consider only the
contributions of matter (w = 0), radiation (w = 1/3), and the cosmological constant Λ (w = −1).

Recall from an earlier lecture that the energy density ε is additive, as written in equation (5.4):

ε =
∑

w

εw
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Using the additive property of the energy densities of different components, together with the
various dependencies on the scale factor written above, equation (6.4) may be written as

H2

H2
0

=
εr + εm + εΛ

εc,0
+

1 − Ω0

a2

=
εr,0/a

4 + εm,0/a
3 + εΛ,0

εc,0
+

1 − Ω0

a2

=
εr,0/εc,0

a4
+

εm,0/εc,0

a3
+

εΛ,0

εc,0
+

1 − Ω0

a2

⇒ H2

H2
0

=
Ωr,0

a4
+

Ωm,0

a3
+ ΩΛ,0 +

1 − Ω0

a2
(6.6)

where we have put Ωr,0 = εr,0/εc,0, Ωm,0 = εm,0/εc,0, ΩΛ,0 = εΛ,0/εc,0, and Ω0 = Ωr,0 + Ωm,0 + ΩΛ,0.

Note also that the Benchmark model introduced in an earlier lecture has Ω0 = 1 (i.e., spatially
flat), but while this is consistent with the observational data, it is not demanded by the data.
Therefore, we will retain the curvature term (1 − Ω0)/a

2 in equation (6.6).

To proceed, we write H = ȧ/a in equation (6.6), multiply both sides by a2, and take the square
root; this gives

H−1
0 ȧ =

[

Ωr,0

a2
+

Ωm,0

a
+ a2 ΩΛ,0 + (1 − Ω0)

]1/2

(6.7)

Integrating, we get the cosmic time t as a function of a:

∫ a

0

da

[Ωr,0/a2 + Ωm,0/a + a2 ΩΛ,0 + (1 − Ω0)]1/2
= H0 t (6.8)

In general, this integral does not have a simple analytic solution. There are instances, however,
when simple analytic approximations may be found. For example, we discussed in an earlier lecture
how in a multi-component universe containing radiation, matter, and Λ, the radiation dominates
in the early stages. With radiation dominating, and Ω0 = 1 for a flat universe, equation (6.8)
simplifies to

H0 t ≈
∫ a

0

da
√

Ωr,0/a2
=

1
√

Ωr,0

∫ a

0

a da =
1

√

Ωr,0

[

a2

2

]a

0

so that we get eventually

H0 t ≈ a2

2
√

Ωr,0

(6.9)
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From equation (6.9), we get

a(t) ≈
(

2
√

Ωr,0H0 t
)1/2

(6.10)

In the limit Ωr,0 = 1 (i.e., a spatially flat universe containing only radiation), this becomes

a(t) ≈
(

2 H0 t
)1/2

Using t0 = 1/2H0 from equation (5.62) that we wrote in the last lecture for a flat universe
containing only radiation, this becomes

a(t) ≈
(

t

t0

)1/2

which matches equation (5.64) that we obtained for the scale factor in a spatially flat universe
containing only radiation.

Likewise, there will be epochs where matter dominates, or Λ dominates, as we discussed in an
earlier lecture.

During some epochs, however, two of the components are of comparable density, and provide
terms of roughly equal size in the Friedmann equation. During these epochs, a single-component
model is a poor description of the universe, and we need to use a two-component model. We will
now look at some of these instances in more detail.

First, we will examine a universe which is of historical interest to cosmology: a universe containing
both matter and curvature (either negative or positive). In the years following Einstein’s revoking
of Λ, cosmologists studied in detail the possibility of a spatially curved universe dominated by
non-relativistic matter.

Matter + Curvature

In a curved universe containing only matter, we can put Ωr,0 = 0, ΩΛ,0 = 0.

Also, since Ω0 = Ωr,0 + Ωm,0 + ΩΛ,0, having made the above choices (Ωr,0 = 0, ΩΛ,0 = 0), we now
have Ωm,0 = Ω0.

With the above choices, the Friedmann equation (6.6) in a curved, matter-dominated universe can
be written in the form

H(t)2

H2
0

=
Ω0

a3
+

1 − Ω0

a2
(6.12)

Note that although Ωm,0 = Ω0 is the only component, we retain the term (1−Ω0) for the curvature
which means that Ω0 6= 1; in other words, εm,0 6= εc,0.
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Let us now look at the characteristics of such a curved, matter-dominated universe. Suppose it is
currently expanding (H0 > 0).

• For it to stop expanding, we must have H0 = 0. Since Ω0/a
3 is always positive, H(t) = 0

requires the second term on the right hand side of equation (6.12) to be negative. This
means that a matter-dominated universe will cease to expand only if Ω0 > 1, and hence
from equation (6.2), κ = +1 (positively curved).

• We can find the scale factor amax at maximum expansion by setting H(t) = 0 in equation
(6.12):

0 =
Ω0

a3
max

+
1 − Ω0

a2
max

(6.13)

so that
a3

max

Ω0
=

a2
max

Ω0 − 1

from which we get

amax =
Ω0

Ω0 − 1
(6.14)

Recall that Ω0 is the density parameter measured at a scale factor a(t0) = 1.

• Also, note that in equation (6.12), the Hubble parameter enters only as H2, so there is a
time symmetry, and the contraction phase is just the time reversal of the expansion phase
(although not at small scales, that is, small-scale processes will not be reversed during the
contraction phase; e.g., stars will not absorb the photons they previously emitted).

• The eventual collapse of a Ω0 > 1 universe is sometimes called the “Big Crunch” — the
universe returns to the hot, dense state in which it had originally started. In its contracting
stage, an observer will see galaxies with a blueshift proportional to their distance, and
wavelengths in the cosmic microwave background will compress progressively to shorter
ones to eventually end in a cosmic γ-ray background.

What happens, however, in a matter-dominated universe with Ω0 < 1, corresponding to κ = −1
(negatively curved)?

• Both terms on the right hand side of equation (6.12) are then positive, so if such a universe
is expanding at t = t0, it will continue to expand forever (“Big Chill”).

• At early times, when the scale factor is small (a ≪ Ω0/{1 − Ω0}), the matter term in the
Friedmann equation (6.12) will dominate, so we can write from equation (6.8) that

H0 t =

∫ a

0

da

[Ω0/a + (1 − Ω0)]1/2
=

∫ a

0

da

[1/a + (1 − Ω0)/Ω0]1/2
≈
∫ a

0

da

[1/a]1/2
=

[

a3/2

3/2

]a

0

where we have used the fact that if a ≪ Ω0/{1 − Ω0}, then 1/a ≫ Ω0/{1 − Ω0}. From this
expression, we see that the scale factor will grow at the rate a ∝ t2/3 at early times.

• Ultimately, the density of matter will be diluted far below the critical density, and the
universe will expand like the negatively curved empty universe we discussed in the last
lecture, with a ∝ t.
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A plot of the scale factor a(t) vs. time, in units of H(t − t0) is shown in Figure 6.1 of your text,
and reproduced below. The panel on the right is an enlarged view of the region enclosed by the
small rectangle near “0” in the panel on the left.

• The solid line shows the fate of a matter-dominated universe with Ω0 > 1 (corresponding to
κ = +1, positively curved). Such a universe expands until a maximum value of scale factor
amax given by equation (6.14) and then collapses back down to a = 0 in a “Big Crunch.”

• The dashed line shows the perpetually expanding fate of a matter-dominated universe with
Ω0 < 1 (corresponding to κ = −1, negatively curved). At early times, the scale factor grows
at the rate a ∝ t2/3, but ultimately when the density of matter falls far below the critical
density, the scale factor grows as a ∝ t.

• For perspective, the fate of a spatially flat, matter-dominated universe (Ω0 = 1, κ = 0) that
we discussed in the last lecture is shown by the dotted line. Such a universe grows as a ∝ t2/3

for all time.

Although the fate of the universe differs depending on whether Ω0 is greater than, less than, or
equal to one, it is clear from the panel on the right above that it is very difficult at t ∼ t0 to tell
apart a universe with Ω0 slight less than one from one with Ω0 slightly greater than one; the right
panel shows that the scale factors start to diverge significantly only after a Hubble time or more.

Matter + Lambda

Next, let us consider a universe which is spatially flat, but which contains both matter and a
cosmological constant Λ. Such a universe may be a close approximation to our Universe in the
present epoch.

Spatial flatness implies that
Ωm,0 + ΩΛ,0 = Ω0 = 1

so that
ΩΛ,0 = 1 − Ωm,0 (6.22)
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The Friedmann equation (6.6) for a flat universe containing matter and Λ then becomes

H2

H2
0

=
Ωm,0

a3
+ ΩΛ,0

and using equation (6.22) can be written as

H2

H2
0

=
Ωm,0

a3
+
(

1 − Ωm,0

)

(6.23)

• The first term on the right hand side of equation (6.23) represents the contribution of matter
and is always positive.

• The second term on the right hand side of equation (6.23) represents the contribution of
a cosmological constant. It is positive if Ωm,0 < 1, implying ΩΛ,0 > 0, in which case the
universe will continue to expand forever if it is expanding at t = t0, another example of a
“Big Chill” universe.

• On the other hand, the second term on the right hand side of equation (6.23) is negative if
Ωm,0 > 1, implying ΩΛ,0 < 0; such a negative cosmological constant provides an attractive
force. A flat universe with ΩΛ,0 < 0 will cease to expand at a maximum scale factor amax

which can be found by setting H2 = 0 in equation (6.23):

0 =
Ωm,0

a3
+
(

1 − Ωm,0

)

from which we obtain

amax =

(

Ωm,0

Ωm,0 − 1

)1/3

(6.24)

Meanwhile, integration of the Friedmann equation (6.23) gives the solution

H0 t =
2

3
√

Ωm,0 − 1
sin−1

[

(

a

amax

)3/2
]

(6.26)

A plot of scale factor vs. time for the above
cases is shown in Figure 6.2 in your text, re-
produced on the right. Just as for a positively
curved, matter-only universe that we discussed
previously, a flat universe with negative cosmo-
logical constant (ΩΛ,0 < 0) also ends in a “Big
Crunch” (solid line), except that with the neg-
ative cosmological constant providing an attrac-
tive force, the lifetime of such a universe is ex-
tremely short. Also shown in the figure is the
“Big Chill” expansion of a Ωm,0 < 1, ΩΛ,0 > 0
universe (dashed line), and for perspective, the

a ∝ t2/3 behavior (dotted line) of a spatially flat, matter-dominated universe (Ωm,0 = 1, ΩΛ,0 = 0).
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It is worth doing a comparison of “Big Crunch” lifetimes between a positively curved matter-only
universe and a flat universe with a negative cosmological constant. While the graph in Figure
6.1 of your text (reproduced in this lecture on page 5) shows a “Big Crunch” after ≈ 110H−1

0

in a positively curved universe containing only matter (Ωm,0 = Ω0 = 1.1), a flat universe with a
negative cosmological constant (Ωm,0 = 1.1, ΩΛ,0 = −0.1) has a lifetime of only ≈ 7H−1

0 , as seen
in Figure 6.2 of your text (reproduced on the previous page).

Of greater interest is a universe containing matter with a non-negative cosmological constant,
which seems to resemble our Universe. In a flat universe with Ωm,0 < 1 and ΩΛ,0 > 0, we discussed
in an earlier lecture how the density contributions of matter and the cosmological constant are
equal at the scale factor

amΛ =

(

Ωm,0

ΩΛ,0

)1/3

=

(

0.3

0.7

)1/3

= 0.75 (6.27)

With a flat, ΩΛ,0 > 0 universe, the Friedmann equation (6.23) can be integrated to obtain

H0 t =
2

3
√

1 − Ωm,0

ln





(

a

amΛ

)3/2

+

√

1 +

(

a

amΛ

)3


 (6.28)

The plot of a vs. t for such a “Big Chill” universe has already been discussed on the previous page.

At early times, when a ≪ amΛ, equation (6.28) reduces to

H0 t =
2

3
√

1 − Ωm,0

ln

[

(

a

amΛ

)3/2

+ 1

]

which allows us to use the Taylor series expansion: ln (1+ x) = x−x2/2+ . . ., and retaining only
the first term, we get

H0 t ≈ 2

3
√

1 − Ωm,0

(

a

amΛ

)3/2

so that

a(t)3/2 ≈ 3

2
H0 t

√

1 − Ωm,0

[

amΛ

]3/2

=
3

2
H0 t

√

1 − Ωm,0

[

(

Ωm,0

ΩΛ,0

)1/3
]3/2

and putting ΩΛ,0 = 1 − Ωm,0, we get finally that at early times (a ≪ amΛ),

a(t) ≈
(

3

2

√

Ωm,0 H0 t

)2/3

(6.29)

with the a ∝ t2/3 dependence characteristic of a flat, matter-dominated universe.

On the other hand, at late times when a ≫ amΛ, equation (6.28) reduces to

a(t) ≈ amΛ exp
(

√

1 − Ωm,0 H0 t
)

(6.30)

which gives the a ∝ e(...)t dependence characteristic of a flat, Λ-dominated universe.
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If we measure H0 and Ωm,0 in a flat universe containing only matter and Λ, then the age of the
universe can be found from equation (6.28) by putting a = a0 = 1:

t0 =
2H−1

0

3
√

1 − Ωm,0

ln





(

1

amΛ

)3/2

+

√

1 +

(

1

amΛ

)3




=
2H−1

0

3
√

1 − Ωm,0

ln







(

{

1 − Ωm,0

Ωm,0

}1/3
)3/2

+

√

√

√

√1 +

(

{

1 − Ωm,0

Ωm,0

}1/3
)3






=
2H−1

0

3
√

1 − Ωm,0

ln

[
√

1 − Ωm,0

Ωm,0
+

√

1

Ωm,0

]

⇒ t0 =
2H−1

0

3
√

1 − Ωm,0

ln

[

√

1 − Ωm,0 + 1
√

Ωm,0

]

(6.31)

If we approximate our own Universe as having Ωm,0 = 0.3 and ΩΛ,0 = 0.7 (ignoring the contribution
of radiation which, as we will see later has no significant effect on our estimate of t0), we get its
current age to be

t0 = 0.964 H−1
0 = (13.5 ± 1.3) Gyr (6.32)

assuming H0 = 70 ± 7 km s−1 Mpc−1.

The epoch at which Ωm = ΩΛ is obtained by putting a = amΛ in equation (6.28):

t0 =
2H−1

0

3
√

1 − Ωm,0

ln
[

1 +
√

2
]

= 0.702 H−1
0 = 9.8 ± 1.0 Gyr (6.33)

Equation (6.33) implies that, if our Universe is well fit by the Benchmark Model with Ωm,0 = 0.3
and ΩΛ,0 ≈ 0.7, then the cosmological constant has been the dominant component of our Universe
for the last 4 billion years or so.

Matter + Curvature + Lambda

In the above discussion, we showed that a flat universe with Ωm,0 > 1 and ΩΛ,0 < 0 is infinite in
spatial extent, but has a finite duration in time.

On the other hand, we showed that a flat universe with Ωm,0 ≤ 1 and ΩΛ,0 ≥ 0 extends to infinity
both in space and in time.

So then, if a universe containing both matter and Λ is curved, a wide range of behaviors is possible
for the function a(t). We can examine such behaviors by choosing different values of Ωm,0 and
ΩΛ,0 without constraining the universe to be flat.
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Let us begin by writing the Friedmann equation for a curved universe containing both matter and
a cosmological constant Λ:

H2

H2
0

=
Ωm,0

a3
+ ΩΛ,0 +

1 − Ωm,0 − ΩΛ,0

a2
(6.34)

Now, consider the following:
• If Ωm,0 > 0 and ΩΛ,0 > 0, then both the first and second terms on the right hand side of

equation (6.34) are positive.

• If, however, Ωm,0 + ΩΛ,0 > 1, so that the universe is positively curved (based on equation
6.2), then the third term on the right hand side is negative.

As a result, for some choices of Ωm,0 and ΩΛ,0, the value of H2 will be positive for small values of
a (where matter dominates) and for large values of a (where Λ dominates), but will be negative
for intermediate values of a (where the curvature term dominates). Since negative values of H2

are unphysical, this means that those universes have a forbidden range of scale factors.

The possibilities stemming from the above discussion are best studied via the plot in Figure 6.3
in your text, which shows the general behavior of the scale factor a(t) as a function of Ωm,0 and
ΩΛ,0. The plot is reproduced below.

The dashed line in the plot is for Ωm,0 +ΩΛ,0 = 1,
and hence indicates flat universes with κ = 0.
Models lying above this line have positive curva-
ture (κ = +1), whereas models lying below this
line have negative curvature (κ = −1).

• In the region labeled “Big Crunch,” the uni-
verse starts with a = 0 at t = 0, reaches
a maximum scale factor amax, then recol-
lapses to a = 0 at a finite time t = tcrunch.
Note that “Big Crunch” universes can be
positively curved, negatively curved, or flat.

• In the region labeled “Big Chill,” the uni-
verse starts with a = 0 at t = 0, then
expands outward forever, with a → ∞ as
t → ∞. Like “Big Crunch” universes, “Big
Chill” universes can have any sign for their
curvature.

• In the region labeled “Big Bounce,” the universe starts out with a ≫ 1 and H0 < 0; that
is, it is contracting from a low-density, Λ-dominated state. As it contracts, the negative
curvature term in equation (6.34) becomes dominant, causing the contraction to stop at a
minimum scale factor a = amin > 0 at some time tbounce. The universe then expands outward
forever, with a → ∞ as t → ∞. That is, it is possible to have a universe which expands
outward at late times, but which never had an initial Big Bang (with a = 0 at t = 0).
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• Universes which fall just below the dividing line between “Big Bounce” and “Big Chill”
universes are “loitering” universes, sometimes also called “Lemaitre” universes. Such a
universe starts in a matter-dominated state, expanding outward with a ∝ t2/3. Then, it
enters the “loitering” stage, in which a is very nearly constant for a long period of time
(almost like a static universe). The closer such a universe lies to the “Big Bounce” − “Big
Chill” dividing line, the longer its loitering stage lasts. Eventually, however, the cosmological
constant takes over, and the universe starts to expand exponentially.

Yet another way to study the different types of expansion and contraction possible is by looking
at a plot like Figure 6.4 in your text, which is reproduced below.

The figure shows a(t) vs. time
for four model universes. Each
of these universes has the same
current matter density parameter:
Ωm,0 = 0.3, measured at t = t0 and
a = 1.

The four model universes depicted
in this plot cannot be distinguished
from each other by measuring their
current matter density and Hubble
constant. Yet, due to having differ-
ent values for the cosmological con-
stant, they have very different pasts
and very different futures.

• The dashed line in the figure above shows the scale factor for a universe with ΩΛ,0 = −0.3.
Since Ωm,0 + ΩΛ,0 = 0.3 + (−0.3) = 0 < 1, this universe has negative curvature. As shown
in the plot, it is destined to end in a “Big Crunch.”

• The dotted line shows a(t) for a universe with ΩΛ,0 = 0.7. Since Ωm,0 +ΩΛ,0 = 0.3+0.7 = 1,
this universe is spatially flat. As shown in the plot, it is destined to end in an exponentially
expanding “Big Chill.”

• The solid line shows a(t) for a universe with ΩΛ,0 = 1.8. Since Ωm,0+ΩΛ,0 = 0.3+1.8 = 2.1 >
1, this universe is positively curved. It is a “Big Bounce” universe which contracted until
a = abounce ≈ 0.56, then started expanding outward, which it will continue to do forever.

• The dot-dash line shows a(t) for a universe with ΩΛ,0 = 1.7134. Since Ωm,0+ΩΛ,0 = 0.3+1.7 =
2.0 > 1, this universe is positively curved. It is a “loitering” universe, which starts out by
expanding outward, but then spend a long period of time near a = aloiter ≈ 0.44. Eventually,
it expands exponentially (the exponential part is barely visible in the scanned figure, since
it skims along the outer edge of the solid line; you should look at the figure in your text for
better visibility).
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Since we are very close to accounting for all the components in our Universe, it is worth pausing to
reflect whether any of the possibilities discussed above can be ruled out for our Universe. Strong
observational evidence exists, in fact, to suggest that we do not live in a “loitering” or “Big
Bounce” universe.

• If we lived in a “loitering” universe, then we would see nearly the same redshift for galaxies
with a very large range of distances. For instance, with aloiter ≈ 0.44 (the appropriate
“loitering” scale factor for a universe with Ωm,0 = 0.3, such as in ours), there should be a
large excess of galaxies at redshift

zloiter = 1/aloiter − 1 ≈ 1/0.44 − 1

that is, at zloiter ≈ 1.3. No such excess of galaxies is seen at this redshift, or indeed at any
redshift, in our Universe.

• If we lived in a “Big Bounce” universe, then as we looked out into space, we would see
redshifts increasing until a maximum zmax = 1/abounce − 1, after which redshifts would
decrease until they became actually became blueshifts. In our Universe, we do not see very
distant blueshifted galaxies.

The highest likelihood, at the moment, seems to be that our Universe is a “Big Chill” universe,
fated to eternal expansion.

Radiation + Matter

In a previous lecture, we calculated that radiation-matter equality took place at a scale factor

arm ≡ Ωr,0

Ωm,0

≈ 2.8 × 10−4

Near this scale factor, the universe is best described by a flat model containing both radiation and
matter.

The Friedmann equation around the time of radiation-matter equality is then

H2

H2
0

=
Ωr,0

a4
+

Ωm,0

a3
(6.35)

After taking the square root, this may be rearranged as

1

H0

(

ȧ

a

)

=

√

Ωr,0

a4

[

1 +
a Ωm,0

Ωr,0

]1/2

=
Ω

1/2
r,0

a2

[

1 +
a

arm

]1/2

and put in the form

H0 dt =
a da
√

Ωr,0

[

1 +
a

arm

]

−1/2

(6.36)
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Integrating equation (6.36), we get

H0 t =
4a2

rm

3
√

Ωr,0

[

1 −
(

1 − a

2arm

)(

1 +
a

arm

)1/2
]

(6.37)

In the limit a ≪ arm (radiation-dominated phase), we get

a ≈
(

2
√

Ωr,0 H0 t
)1/2

(6.38)

which matches the result for the radiation-dominated phase obtained in equation (6.10).

The time of radiation-matter equation (trm) can be found by setting a = arm in equation (6.37):

H0 trm =
4a2

rm

3
√

Ωr,0

[

1 −
(

1 − 1

2

)

(

1 + 1
)1/2

]

=
4a2

rm

3
√

Ωr,0

[

1 −
(

1

2

)√
2

]

=
4a2

rm

3
√

Ωr,0

[

1 − 1√
2

]

so that, putting back arm = Ωr,0/Ωm,0, we get

trm ≈ 0.391
Ω

3/2
r,0

Ω2
m,0

H−1
0 (6.40)

For the Benchmark model, with Ωr,0 = 8.4 × 10−5, Ωm,0 = 0.3, we get

trm = 0.391
(8.4 × 10−5)3/2

(0.3)2
H−1

0 = 3.34 × 10−6 H−1
0

and with H−1
0 = 14 Gyr, the time of radiation-matter equality was

trm = 3.34 × 10−6
(

14 × 109 yr
)

= 47, 000 yr (6.41)

So the epoch when the Universe was radiation-dominated was very brief. This explains why our
estimate of the age of the Universe as 13.5 Gyr in one of the previous sections, ignoring the
contribution of radiation, is reasonable. The minor correction to the estimate of age by including
the effects of radiation is drowned out by the 10% uncertainty in the value of H0.

Having looked at all these contributions, we are now ready to look at the contents, history, and
future of our actual Universe.
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