
141

CHAPTER 6
Transmission Control Protocol

The Transmission Control Protocol (TCP) is a stream-based method of net-
work communication that is far different from any discussed previously. This
chapter discusses TCP streams and how they operate under Java.

6.1 Overview

TCP provides an interface to network communications that is radically differ-
ent from the User Datagram Protocol (UDP) discussed in Chapter 5. The prop-
erties of TCP make it highly attractive to network programmers, as it simplifies
network communication by removing many of the obstacles of UDP, such as
ordering of packets and packet loss. While UDP is concerned with the trans-
mission of packets of data, TCP focuses instead on establishing a network con-
nection, through which a stream of bytes may be sent and received.

In Chapter 5 we saw that packets may be sent through a network using
various paths and may arrive at different times. This benefits performance and
robustness, as the loss of a single packet doesn’t necessarily disrupt the trans-
mission of other packets. Nonetheless, such a system creates extra work for
programmers who need to guarantee delivery of data. TCP eliminates this extra
work by guaranteeing delivery and order, providing for a reliable byte commu-
nication stream between client and server that supports two-way communica-
tion. It establishes a “virtual connection” between two machines, through
which streams of data may be sent (see Figure 6-1).

TCP uses a lower-level communications protocol, the Internet Protocol
(IP), to establish the connection between machines. This connection provides
an interface that allows streams of bytes to be sent and received, and transpar-
ently converts the data into IP datagram packets. A common problem with

Reilly06.qxd 3/1/02 1:33 PM Page 141

datagrams, as we saw in Chapter 5, is that they do not guarantee that packets
arrive at their destination. TCP takes care of this problem. It provides guaran-
teed delivery of bytes of data. Of course, it’s always possible that network
errors will prevent delivery, but TCP handles the implementation issues such as
resending packets, and alerts the programmer only in serious cases such as if
there is no route to a network host or if a connection is lost.

The virtual connection between two machines is represented by a socket.
Sockets, introduced in Chapter 5, allow data to be sent and received; there are
substantial differences between a UDP socket and a TCP socket, however. First,
TCP sockets are connected to a single machine, whereas UDP sockets may
transmit or receive data from multiple machines. Second, UDP sockets only
send and receive packets of data, whereas TCP allows transmission of data
through byte streams (represented as an InputStream and OutputStream). They
are converted into datagram packets for transmission over the network, with-
out requiring the programmer to intervene (as shown in Figure 6-2).

6.1.1 Advantages of TCP over UDP

The many advantages to using TCP over UDP are briefly summarized below.

6.1.1.1 Automatic Error Control

Data transmission over TCP streams is more dependable than transmission of
packets of information via UDP. Under TCP, data packets sent through a vir-
tual connection include a checksum to ensure that they have not been cor-
rupted, just like UDP. However, delivery of data is guaranteed by the TCP—
data packets lost in transit are retransmitted.

You may be wondering just how this is achieved—after all, IP and UDP
do not guarantee delivery; neither do they give any warning when datagram
packets are dropped. Whenever a collection of data is sent by TCP using data-

142 CHAPTER 6 Transmission Control Protocol

Establish a virtual connection

Transmit data back and forth

Terminate the connection

Figure 6-1 TCP establishes a virtual connection to transmit data.

Reilly06.qxd 3/1/02 1:33 PM Page 142

grams, a timer is started. Recall our UDP examples from Chapter 5, in which
the DatagramSocket.setSoTimeout method was used to start a timer for a
receive() operation. In TCP, if the recipient sends an acknowledgment, the
timer is disabled. But if an acknowledgment isn’t received before the time runs
out, the packet is retransmitted. This means that any data written to a TCP
socket will reach the other side without the need for further intervention by
programmers (barring some catastrophe that causes an entire network to go
down). All of the code for error control is handled by TCP.

6.1.1.2 Reliability

Since the data sent between two machines participating in a TCP connection is
transmitted by IP datagrams, the datagram packets will frequently arrive out of
order. This would throw for a loop any program reading information from
a TCP socket, as the order of the byte stream would be disrupted and fre-
quently unreliable. Fortunately, issues such as ordering are handled by TCP—
each datagram packet contains a sequence number that is used to order data.
Later packets arriving before earlier packets will be held in a queue until an
ordered sequence of data is available. The data will then be passed to the
application through the interface of the socket.

6.1.1.3 Ease of Use

While storing information in datagram packets is certainly not beyond the reach
of programmers, it doesn’t lead to the most efficient way of communication
between computers. There’s added complexity, and it can be argued that the
task of designing and creating software within a deadline provides complexity

6.1 Overview 143

USER username
PASS password

Send datagrams to remote host

IP datagramIP datagram

Figure 6-2 TCP deals with streams of data such as protocol commands, but converts streams
into IP datagrams for transport over the network.

Reilly06.qxd 3/1/02 1:33 PM Page 143

enough for programmers. Developers typically welcome anything that can
reduce the complexity of software development, and the TCP does just this. TCP
allows the programmer to think in a completely different way, one that is much
more streamlined. Rather than being packaged into discrete units (datagram
packets), the data is instead treated as a continuous stream, like the I/O streams
the reader is by now familiar with. TCP sockets continue the tradition of Unix
programming, in which communication is treated in the same way as file input
and output. The mechanism is the same whether the developer is writing to a
network socket, a communications pipe, a data structure, the user console, or a
file. This also applies, of course, to reading information. This makes communi-
cating via TCP sockets far simpler than communicating via datagram packets.

6.1.2 Communication between Applications Using Ports

It is clear that there are significant differences between TCP and UDP, but
there is also an important similarity between these two protocols. Both share
the concept of a communications port, which distinguishes one application
from another. Many services and clients run on the same port, and it would
be impossible to sort out which one was which without distributing them by
port number. When a TCP socket establishes a connection to another machine,
it requires two very important pieces of information to connect to the remote
end—the IP address of the machine and the port number. In addition, a local
IP address and port number will be bound to it, so that the remote machine
can identify which application established the connection (as illustrated in
Figure 6–3). After all, you wouldn’t want your e-mail to be accessible by an-
other user running software on the same system.

Ports in TCP are just like ports in UDP—they are represented by a number
in the range 1–65535. Ports below 1024 are restricted to use by well-known
services such as HTTP, FTP, SMTP, POP3, and telnet. Table 6-1 lists a few of
the well-known services and their associated port numbers.

6.1.3 Socket Operations

TCP sockets can perform a variety of operations. They can:

• Establish a connection to a remote host
• Send data to a remote host
• Receive data from a remote host
• Close a connection

In addition, there is a special type of socket that provides a service that will
bind to a specific port number. This type of socket is normally used only in
servers, and can perform the following operations:

144 CHAPTER 6 Transmission Control Protocol

Reilly06.qxd 3/1/02 1:33 PM Page 144

• Bind to a local port
• Accept incoming connections from remote hosts
• Unbind from a local port

These two sockets are grouped into different categories, and are used by
either a client or a server (since some clients may also be acting as servers, and
some servers as clients). However, it is normal practice for the role of client and
server to be separate.

6.2 TCP and the Client/Server Paradigm

In network programming (and often in other forms of communication, such as
database programming), applications that use sockets are divided into two cat-
egories, the client and the server. You are probably familiar with the phrase

6.2 TCP and the Client/Server Paradigm 145

TCP:1128

TCP:110

TCP:80

TCP:1129

Connect to Web site

Connect to mail server

Figure 6-3 Local ports identify the application establishing a connection from other programs,
allowing multiple TCP applications to run on the same machine.

Table 6-1 Protocols and Their Associated Ports

Well-Known Services Service Port

Telnet 23

Simple Mail Transfer Protocol 25

HyperText Transfer Protocol 80

Post Office Protocol 3 110

Reilly06.qxd 3/1/02 1:33 PM Page 145

client/server programming, although the exact meaning of the phrase may be
unclear to you. This paradigm is the subject of the discussion below.

6.2.1 The Client/Server Paradigm

The client/server paradigm divides software into two categories, clients and
servers. A client is software that initiates a connection and sends requests,
whereas a server is software that listens for connections and processes requests.
In the context of UDP programming, no actual connection is established, and
UDP applications may both initiate and receive requests on the same socket. In
the context of TCP, where connections are established between machines, the
client/server paradigm is much more relevant.

When software acts as a client, or as a server, it has a rigidly defined role
that fits easily into a familiar mental model. Either the software is initiating
requests, or it is processing them. Switching between these roles makes for a
more complex system. Even if switching is permitted, at any given time one
software program must be the client and one software program must be the
server. If they both try to be clients at the same time, no server exists to process
the requests!

The client/server paradigm is an important theoretical concept that is
widely used in practical applications. There are other communications models
as well, such as peer to peer, in which either party may initiate communication.
However, the client/server concept is a popular choice due to its simplicity and
is used in most network programming.

6.2.2 Network Clients

Network clients initiate connections and usually take charge of network trans-
actions. The server is there to fulfill the requests of the client—a client does not
fulfill the requests of a server. Although the client is in control, some power still
resides in the server, of course. A client can tell a server to delete all files on
the local file system, but the server isn’t necessarily compelled to carry out that
action (thankfully!).

The network client speaks to the server using an agreed-upon standard for
communication, the network protocol. For example, an HTTP client uses a set
of commands different from a mail client, and has a completely different pur-
pose. Connecting an HTTP client to a mail server, or a mail client to an HTTP
server, will result not only in an error message but in an error message that the
client will not understand. For this reason, as part of the protocol specification,
a port number is used so that the client can locate the server. A Web server
typically runs on port 80, and while some servers can run on nonstandard

146 CHAPTER 6 Transmission Control Protocol

Reilly06.qxd 3/1/02 1:33 PM Page 146

ports, the convention for a URL is not to list a port, as it is assumed that port
80 is used. For more information on ports, see Section 6.1.2.

6.2.3 Network Servers

The role of the network server is to bind to a specific port (which is used by the
client to locate the server), and to listen for new connections. While the client
is temporary, and runs only when the user chooses, the server must run con-
tinually (even if no clients are actually connected) in the hope that someone, at
some time, will want its services. The server is often referred to as a daemon
process, to use Unix parlance. It runs indefinitely, and is normally automatically
started when the host computer of the server is started. So the server waits, and
waits, and waits, until a client establishes a connection to the server port. Some
servers can handle only a single connection at a time, while others can handle
many connections concurrently, through the use of threads. Multi-threaded
programming is discussed in depth in Chapter 7.

When a connection is being processed, the server is submissive. It waits for
the client to send requests, and dutifully processes them (though the server is
free to respond with an error message, particularly if the request violates some
important precept of the protocol or presents a security risk). Some protocols,
like HTTP/1.0, normally allow only one request per connection, whereas
others, such as POP3, support a sequence of requests. Servers will answer the
client request by sending either a response or an error message—the format of
which varies from protocol to protocol. Learning a network protocol (when
writing either a client or a server) is a little like learning a new language, as the
syntax changes. Typically, though, the number of commands is much smaller,
making things a little easier. The behavior of the server is determined in part by
the protocol and in part by the developer. (Some commands may be optional,
and are not always supported by server implementations.)

6.3 TCP Sockets and Java

Java offers good support for TCP sockets, in the form of two socket classes,
java.net.Socket and java.net.ServerSocket. When writing client software
that connects to an existing service, the Socket class should be used. When
writing server software that binds to a local port in order to provide a service,
the ServerSocket class should be employed. This is different from the way
a DatagramSocket works with UDP—the function of connecting to servers,
and the function of accepting data from clients, is split into a separate class
under TCP.

6.3 TCP Sockets and Java 147

Reilly06.qxd 3/1/02 1:33 PM Page 147

6.4 Socket Class

The Socket class represents client sockets, and is a communication channel be-
tween two TCP communications ports belonging to one or two machines. A
socket may connect to a port on the local system, avoiding the need for a sec-
ond machine, but most network software will usually involve two machines.
TCP sockets can’t communicate with more than two machines, however. If this
functionality is required, a client application should establish multiple socket
connections, one for each machine.

Constructors
There are several constructors for the java.net.Socket class. Two con-
structors, which allowed a boolean parameter to specify whether UDP or
TCP sockets were to be used, have been deprecated. These constructors
should not be used and are not listed here—if UDP functionality is required,
use a DatagramSocket (covered in Chapter 5).

The easiest way to create a socket is to specify the hostname of the machine
and the port of the service. For example, to connect to a Web server on port 80,
the following code might be used:

try
{

// Connect to the specified host and port
Socket mySocket = new Socket ("www.awl.com", 80);

//
}
catch (Exception e)
{

System.err.println ("Err – " + e);
}

However, a wide range of constructors is available, for different situations.
Unless otherwise specified, all constructors are public.

• protected Socket ()—creates an unconnected socket using the default
implementation provided by the current socket factory. Developers
should not normally use this method, as it does not allow a hostname
or port to be specified.

• Socket (InetAddress address, int port) throws java.io.IOException,
java.lang.SecurityException—creates a socket connected to the
specified IP address and port. If a connection cannot be established,
or if connecting to that host violates a security restriction (such as
when an applet tries to connect to a machine other than the machine
from which it was loaded), an exception is thrown.

148 CHAPTER 6 Transmission Control Protocol

Reilly06.qxd 3/1/02 1:33 PM Page 148

• Socket (InetAddress address, int port, InetAddress localAddress,
int localPort) throws java.io.IOException, java.lang.Security-

Exception—creates a socket connected to the specified address and
port, and is bound to the specified local address and local port. By
default, a free port is used, but this method allows you to specify a
specific port number, as well as a specific address, in the case of multi-
homed hosts (i.e., a machine where the localhost is known by two or
more IP addresses).

• protected Socket (SocketImpl implementation)—creates an uncon-
nected socket using the specified socket implementation. Developers
should not normally use this method, as it does not allow a hostname
or port to be specified.

• Socket (String host, int port) throws java.net.UnknownHost-
Exception, java.io.IOException, java.lang.SecurityException—
creates a socket connected to the specified host and port. This method
allows a string to be specified, rather than an InetAddress. If the host-
name could not be resolved, a connection could not be established, or
a security restriction is violated, an exception is thrown.

• Socket (String host, int port, InetAddress localAddress, int

localPort) throws java.net.UnknownHostException, java.io.

IOException, java.lang.SecurityException—creates a socket con-
nected to the specified host and port, and bound to the specified local
port and address. This allows a hostname to be specified as a string,
and not an InetAddress instance, as well as allowing a specific local
address and port to be bound to. These local parameters are useful for
multihomed hosts (i.e., a machine where the localhost is known by two
or more IP addresses). If the hostname can’t be resolved, a connection
cannot be established, or a security restriction is violated, an exception
is thrown.

6.4.1 Creating a Socket

Under normal circumstances, a socket is connected to a machine and port when
it is created. Although there is a blank constructor that does not require a host-
name or port, it is protected and can’t be called from normal applications.
Furthermore, there isn’t a connect() method that allows you to specify these
details at a later point in time, so under normal circumstances the socket will
be connected when created. If the network is fine, the call to a socket con-
structor will return as soon as a connection is established, but if the remote
machine is not responding, the constructor method may block for an indefinite
amount of time. This varies from system to system, depending on a variety of

6.4 Socket Class 149

Reilly06.qxd 3/1/02 1:33 PM Page 149

factors such as the operating system being used and the default network timeout
(some machines on a local intranet, for example, seem to respond faster than
some Internet machines, depending on network settings). You can’t ever guar-
antee how long a socket may block for, but this is abnormal behavior and won’t
happen frequently. Nonetheless, in mission-critical systems it may be appropri-
ate to place such calls in a second thread, to prevent an application from stalling.

NOTE: At a lower level, sockets are produced by a socket factory, which is a
special class responsible for creating the appropriate socket implementation.
Under normal circumstances, a standard java.net.Socket will be produced,
but in special situations, such as special networking environments in which
custom sockets are used (for example, to break through a firewall by using a
special proxy server), socket factories may actually return a socket subclass.
The details of socket factories are best left to experienced developers who are
familiar with the intricacies of Java networking and have a definite purpose
for creating custom sockets and socket factories. For more information on this
topic, consult the Java API documentation for the java.net.SocketFactory and
java.net.SocketImplFactory class.

6.4.2 Using a Socket

Sockets can perform a variety of tasks, such as reading information, sending
data, closing a connection, and setting socket options. In addition, the follow-
ing methods are provided to obtain information about a socket, such as address
and port locations:

Methods
• void close() throws java.io.IOException—closes the socket con-

nection. Closing a connect may or may not allow remaining data
to be sent, depending on the value of the SO_LINGER socket option.
Developers are advised to flush any output streams before closing a
socket connection.

• InetAddress getInetAddress()—returns the address of the remote
machine that is connected to the socket.

• InputStream getInputStream() throws java.io.IOException—
returns an input stream, which reads from the application this socket
is connected to.

• OutputStream getOutputStream() throws java.io.IOException—
returns an output stream, which writes to the application that this
socket is connected to.

150 CHAPTER 6 Transmission Control Protocol

Reilly06.qxd 3/1/02 1:33 PM Page 150

• boolean getKeepAlive() throws java.net.SocketException—returns
the state of the SO_KEEPALIVE socket option.

• InetAddress getLocalAddress()—returns the local address associated
with the socket (useful in the case of multihomed machines).

• int getLocalPort()—returns the port number that the socket is bound
to on the local machine.

• int getPort()—returns the port number of the remote service to
which the socket is connected.

• int getReceiveBufferSize() throws java.net.SocketException—
returns the receive buffer size used by the socket, determined by the
value of the SO_RCVBUF socket option.

• int getSendBufferSize() throws java.net.SocketException—returns
the send buffer size used by the socket, determined by the value of the
SO_SNDBUF socket option.

• int getSoLinger() throws java.net.SocketException—returns the
value of the SO_LINGER socket option, which controls how long unsent
data will be queued when a connection is terminated.

• int getSoTimeout() throws java.net.SocketException—returns the
value of the SO_TIMEOUT socket option, which controls how many milli-
seconds a read operation will block for. If a value of 0 is returned, the
timer is disabled and a thread will block indefinitely (until data is avail-
able or the stream is terminated).

• boolean getTcpNoDelay() throws java.net.SocketException—returns
“true” if the TCP_NODELAY socket option is set, which controls whether
Nagle’s algorithm (discussed in Section 6.4.4.5) is enabled.

• void setKeepAlive(boolean onFlag) throws java.net.Socket-
Exception—enables or disables the SO_KEEPALIVE socket option.

• void setReceiveBufferSize(int size) throws java.net.Socket-
Exception—modifies the value of the SO_RCVBUF socket option, which
recommends a buffer size for the operating system’s network code to
use for receiving incoming data. Not every system will support this
functionality or allows absolute control over this feature. If you want
to buffer incoming data, you’re advised to instead use a Buffered-
InputStream or a BufferedReader.

• void setSendBufferSize(int size) throws java.net.Socket-
Exception—modifies the value of the SO_SNDBUF socket option,
which recommends a buffer size for the operating system’s network
code to use for sending incoming data. Not every system will support
this functionality or allows absolute control over this feature. If you
want to buffer incoming data, you’re advised to instead use a
BufferedOutputStream or a BufferedWriter.

6.4 Socket Class 151

Reilly06.qxd 3/1/02 1:33 PM Page 151

• static void setSocketImplFactory (SocketImplFactory factory)

throws java.net.SocketException, java.io.IOException, java.
lang.SecurityException —assigns a socket implementation factory
for the JVM, which may already exist, or may violate security restric-
tions, either of which causes an exception to be thrown. Only one fac-
tory can be specified, and this factory will be used whenever a socket
is created.

• void setSoLinger(boolean onFlag, int duration) throws java.net.
SocketException, java.lang.IllegalArgumentException—enables or
disables the SO_LINGER socket option (according to the value of the
onFlag boolean parameter), and specifies a duration in seconds. If a
negative value is specified, an exception is thrown.

• void setSoTimeout(int duration) throws java.net.Socket-
Exception—modifies the value of the SO_TIMEOUT socket option,
which controls how long (in milliseconds) a read operation will block.
A value of zero disables timeouts, and blocks indefinitely. If a timeout
does occur, a java.io.IOInterruptedException is thrown whenever a
read operation occurs on the socket’s input stream. This is distinct
from the internal TCP timer, which triggers a resend of unacknowl-
edged datagram packets (see Section 6.1.1.1 on error control).

• void setTcpNoDelay(boolean onFlag) throws java.net.Socket-
Exception—enables or disables the TCP_NODELAY socket option, which
determines whether Nagle’s algorithm is used.

• void shutdownInput() throws java.io.IOException—closes the input
stream associated with this socket and discards any further information
that is sent. Further reads to the input stream will encounter the end of
the stream marker.

• void shutdownOutput() throws java.io.IOException—closes the
output stream associated with this socket. Any data previously writ-
ten, but not yet sent, will be flushed, followed by a TCP connection-
termination sequence, which notifies the application that no more data
will be available (and in the case of a Java application, that the end of
the stream has been reached). Further writes to the socket will cause an
IOException to be thrown.

6.4.3 Reading from and Writing to TCP Sockets

Creating client software that uses TCP for communication is extremely easy
in Java, no matter what operating system is being used. The Java Networking
API provides a consistent, platform-neutral interface that allows client applica-
tions to connect to remote services. Once a socket is created, it is connected

152 CHAPTER 6 Transmission Control Protocol

Reilly06.qxd 3/1/02 1:33 PM Page 152

and ready to read/write by using the socket’s input and output streams.
These streams don’t need to be created; they are provided by the Socket.
getInputStream() and Socket.getOutputStream() methods. As was shown in
Chapter 4 on I/O streams, filtered streams provide easy I/O access.

A filter can easily be connected to a socket stream, to make for simpler pro-
gramming. The following code snippet demonstrates a simple TCP client that
connects a BufferedReader to the socket input stream, and a PrintStream to
the socket output stream.

try
{

// Connect a socket to some host machine and port
Socket socket = new Socket (somehost, someport);

// Connect a buffered reader
BufferedReader reader = new BufferedReader (

new InputStreamReader (socket.getInputStream()));

// Connect a print stream
PrintStream pstream =

new PrintStream(socket.getOutputStream());
}
catch (Exception e)
{

System.err.println ("Error – " + e);
}

6.4.4 Socket Options

Socket options are settings that modify how sockets work, and they can affect
(both positively and negatively) the performance of applications. Support for
socket options was introduced in Java 1.1, and some refinements have been
made in later versions (such as support for the SO_KEEPALIVE option in Java 2
v 1.3). Generally, socket options should not be changed unless there is a good
reason for doing so, as changes may negatively affect application and network
performance (for example, enabling Nagle’s algorithm may increase perfor-
mance of telnet type applications but lower the available bandwidth). The one
exception to this caveat is the SO_TIMEOUT option—virtually every TCP appli-
cation should handle timeouts gracefully rather than stalling if the application
the socket is connected to fails to transmit data when required.

6.4.4.1 SO_KEEPALIVE Socket Option

The keepalive socket option is controversial; its use is a topic that some de-
velopers feel very strongly about. By default, no data is sent between two
connected sockets unless an application has data to send. This means that an

6.4 Socket Class 153

Reilly06.qxd 3/1/02 1:33 PM Page 153

idle socket may not have data submitted for minutes, hours, or even days in the
case of long-lived processes. Suppose, however, that a client crashes, and the
end-of-connection sequence is not sent to a TCP server. Valuable resources
(CPU time and memory) might be wasted on a client that will never respond.
When the keepalive socket option is enabled, the other end of the socket is
probed to verify it is still active. However, the application doesn’t have any con-
trol over how often keepalive probes are sent. To enable keepalive, the
Socket.setSoKeepAlive(boolean) method is called with a value of “true” (a
value of “false” will disable it). For example, to enable keepalive on a socket,
the following code would be used.

// Enable SO_KEEPALIVE
someSocket.setSoKeepAlive(true);

Although keepalive does have some advantages, many developers advo-
cate controlling timeouts and dead sockets at a higher level, in application
code. It should also be kept in mind that keepalive doesn’t allow you to spec-
ify a value for probing socket endpoints. A better solution than keepalive,
and one that developers are advised to use, is to instead modify the timeout
socket option.

6.4.4.2 SO_RCVBUF Socket Option

The receive buffer socket option controls the buffer used for receiving data.
Changes can be made to the size by calling the Socket.setReceiveBufferSize-
(int) method. For example, to increase the receive buffer size to 4,096 bytes,
the following code would be used.

// Modify receive buffer size
someSocket.setReceiveBufferSize(4096);

Note that a request to modify the size of the receive buffer does not
guarantee that it will change. For example, some operating systems may not
allow this socket option to be modified, and will ignore any changes to the
value. The current buffer size can be determined by invoking the Socket.
getReceiveBufferSize() method. A better choice for buffering is to use a
BufferedInputStream/BufferedReader.

6.4.4.3 SO_SNDBUF Socket Option

The send buffer socket option controls the size of the buffer used for sending
data. By calling the Socket.setSendBufferSize(int) method, you can attempt
to change the buffer size, but requests to change the size may be rejected by the
operating system.

154 CHAPTER 6 Transmission Control Protocol

Reilly06.qxd 3/1/02 1:33 PM Page 154

// Set the send buffer size to 4096 bytes
someSocket.setSendBufferSize(4096);

To determine the size of the current send buffer, you can call the Socket.
getSendBufferSize() method, which returns an int value.

// Get the default size
int size = someSocket.getSendBufferSize();

Changing buffer size will be more effective with the DatagramSocket class.
When buffering writes, the preferable choice is to use a BufferedOutputStream
or a BufferedWriter.

6.4.4.4 SO_LINGER Socket Option

When a TCP socket connection is closed, it is possible that data may be queued
for delivery and not yet sent (particularly if an IP datagram becomes lost in
transit and must be resent). The linger socket option controls the amount of
time during which unsent data may be sent, after which it is discarded com-
pletely. It is possible to enable/disable the linger option entirely, or to modify
the duration of a linger, by using the Socket.setSoLinger(boolean onFlag,

int duration) method:

// Enable linger, for fifty seconds
someSocket.setSoLinger(true, 50);

6.4.4.5 TCP_NODELAY Socket Option

This socket option is a flag, the state of which controls whether Nagle’s algo-
rithm (RFC 896) is enabled or not. Because TCP data is sent over the network
using IP datagrams, a fair bit of overhead exists for each packet, such as IP and
TCP header information. If only a few bytes at a time are sent in each packet,
the size of the header information will far exceed that of the data. On a local
area network, the extra amount of data sent probably won’t amount to much,
but on the Internet, where hundreds, thousands, or even millions of clients may
be sending such packets through individual routers, this adds up to a significant
amount of bandwidth consumption.

The solution is Nagle’s algorithm, which states that TCP may send only one
datagram at a time. When an acknowledgment comes back for each IP data-
gram, a new packet is sent containing any data that has been queued up. This
limits the amount of bandwidth being consumed by packet header information,
but at a not insignificant cost—network latency. Since data is being queued, it
isn’t dispatched immediately, so systems that require quick response times such
as X-Windows or telnet are slowed. Disabling Nagle’s algorithm may improve
performance, but if used by too many clients, network performance is reduced.

6.4 Socket Class 155

Reilly06.qxd 3/1/02 1:33 PM Page 155

Nagle’s algorithm is enabled or disabled by invoking the Socket.setTcp-
NoDelay(boolean state) method. For example, to deactivate the algorithm, the
following code would be used:

// Disable Nagle’s algorithm for faster response times
someSocket.setTcpNoDelay(false);

To determine the state of Nagle’s algorithm and the TCP_NODELAY flag, the
Socket.getTcpNoDelay() method is used:

// Get the state of the TCP_NODELAY flag
boolean state = someSocket.getTcpNoDelay();

6.4.4.6 SO_TIMEOUT Socket Option

This timeout option is the most useful socket option. By default, I/O opera-
tions (be they file- or network-based) are blocking. An attempt to read data
from an InputStream will wait indefinitely until input arrives. If the input never
arrives, the application stalls and in most cases becomes unusable (unless multi-
threading is used). Users are not fond of unresponsive applications, and find
such application behavior annoying, to say the least. A more robust application
will anticipate such problems and take corrective action.

NOTE: In a local intranet environment during testing, network problems are
rare, but on the Internet stalled applications are probable. Server applications
are not immune—a server connection to a client uses the Socket class as well,
and can just as easily stall. For this reason, all applications (be they client or
server) should handle network timeouts gracefully.

When the SO_TIMEOUT option is enabled, any read request to the Input-
Stream of a socket starts a timer. When no data arrives in time and the timer
expires, a java.io.InterruptedIOException is thrown, which can be caught to
check for a timeout. What happens then is up to the application developer—
a retry attempt might be made, the user might be notified, or the connec-
tion aborted. The duration of the timer is controlled by calling the Socket.
setSoTimeout(int) method, which accepts as a parameter the number of milli-
seconds to wait for data. For example, to set a five-second timeout, the fol-
lowing code would be used:

// Set a five second timeout
someSocket.setSoTimeout (5 * 1000);

Once enabled, any attempt to read could potentially throw an Inter-
ruptedIOException, which is extended from the java.io.IOException class.

156 CHAPTER 6 Transmission Control Protocol

Reilly06.qxd 3/1/02 1:33 PM Page 156

Since read attempts can already throw an IOException, no further code is
required to handle the exception—however, some applications may want to
specifically trap timeout-related exceptions, in which case an additional excep-
tion handler may be added.

try
{

Socket s = new Socket (...);
s.setSoTimeout (2000);

// do some read operation
}
catch (InterruptedIOException iioe)
{

timeoutFlag = true; // do something special like set a flag
}
catch (IOException ioe)
{

System.err.println ("IO error " + ioe);
System.exit(0);

}

To determine the length of the TCP timer, the Socket.getSoTimeout()
method, which returns an int, can be used. A value of zero indicates that time-
outs are disabled, and read operations will block indefinitely.

// Check to see if timeout is not zero
if (someSocket.getSoTimeout() == 0)
someSocket.setSoTimeout (500);

6.5 Creating a TCP Client

Having discussed the functionality of the Socket class, we will now examine a
complete TCP client. The client we’ll look at here is a daytime client, which, as
its name suggests, connects to a daytime server to read the current day and
time. Establishing a socket connection and reading from it is a fairly simple
process, requiring very little code. By default, the daytime service runs on port
13. Not every machine has a daytime server running, but a Unix server would
be a good system to run the client against. If you do not have access to a Unix
server, code for a TCP daytime server is given in Section 6.7—the client can be
run against it.

Code for DaytimeClient
import java.net.*
import java.io.*;

6.5 Creating a TCP Client 157

Reilly06.qxd 3/1/02 1:33 PM Page 157

// Chapter 6, Listing 1
public class DaytimeClient
{

public static final int SERVICE_PORT = 13;

public static void main(String args[])
{

// Check for hostname parameter
if (args.length != 1)
{

System.out.println ("Syntax - DaytimeClient host");
return;

}

// Get the hostname of server
String hostname = args[0];

try
{

// Get a socket to the daytime service
Socket daytime = new Socket (hostname,
SERVICE_PORT);

System.out.println ("Connection established");

// Set the socket option just in case server stalls
daytime.setSoTimeout (2000);

// Read from the server
BufferedReader reader = new BufferedReader (

new InputStreamReader
(daytime.getInputStream()

));

System.out.println ("Results : " +
reader.readLine());

// Close the connection
daytime.close();

}
catch (IOException ioe)
{

System.err.println ("Error " + ioe);
}

}
}

How DaytimeClient Works
The daytime application is straightforward, and uses concepts discussed earlier
in the chapter. A socket is created, an input stream is obtained, and timeouts

158 CHAPTER 6 Transmission Control Protocol

Reilly06.qxd 3/1/02 1:33 PM Page 158

are enabled in the rare event that a server as simple as daytime fails during a
connection. Rather than connecting a filtered stream, a buffered reader is con-
nected to the socket input stream, and the results are displayed to the user.
Finally, the client terminates after closing the socket connection. This is about
as simple a socket client as you can get—complexity comes from implementing
network protocols, not from network-specific coding.

Running DaytimeClient
Running the application is easy. Simply specify the hostname of a machine run-
ning the daytime service as a command-line parameter and run it. If you use a
nonstandard port for the daytime server (discussed later), remember to change
the port number in the client and recompile.

For example, to run the client against a server running on the local machine,
the following command would be used:

java DaytimeClient localhost

NOTE: The daytime server must be running, or the client will be unable to
establish a connection. If you’re using, for example, a Wintel system, instead of
Unix, then you’ll need to run the DaytimeServer from later in this chapter.

6.6 ServerSocket Class

A special type of socket, the server socket, is used to provide TCP services.
Client sockets bind to any free port on the local machine, and connect to a spe-
cific server port and host. The difference with server sockets is that they bind
to a specific port on the local machine, so that remote clients may locate a ser-
vice. Client socket connections will connect to only one machine, whereas
server sockets are capable of fulfilling the requests of multiple clients.

The way it works is simple—clients are aware of a service running on a par-
ticular port (usually the port number is well known, and used for particular
protocols, but servers may run on nonstandard port numbers as well). They
establish a connection, and within the server, the connection is accepted.
Multiple connections can be accepted at the same time, or a server may choose
to accept only one connection at any given moment. Once accepted, the con-
nection is represented as a normal socket, in the form of a Socket object—once
you have mastered the Socket class, it becomes almost as simple to write servers
as it does clients. The only difference between a server and a client is that the
server binds to a specific port, using a ServerSocket object. This ServerSocket
object acts as a factory for client connections—you don’t need to create

6.6 ServerSocket Class 159

Reilly06.qxd 3/1/02 1:33 PM Page 159

instances of the Socket class yourself. These connections are modeled as a nor-
mal socket, so you can connect input and output filter streams (or even a reader
and writer) to the connection.

6.6.1 Creating a ServerSocket

Once a server socket is created, it will be bound to a local port and ready to
accept incoming connections. When clients attempt to connect, they are placed
into a queue. Once all free space in the queue is exhausted, further clients will
be refused.

Constructors
The simplest way to create a server socket is to bind to a local address, which
is specified as the only parameter, using a constructor. For example, to provide
a service on port 80 (usually used for Web servers), the following snippet of
code would be used:

try
{

// Bind to port 80, to provide a TCP service (like HTTP)
ServerSocket myServer = new ServerSocket (80);

//
}
catch (IOException ioe)
{

System.err.println ("I/O error – " + ioe);
}

This is the simplest form of the ServerSocket constructor, but there are sev-
eral others that allow additional customization. All of these constructors are
marked as public.

• ServerSocket(int port) throws java.io.IOException, java.lang.

SecurityException—binds the server socket to the specified port num-
ber, so that remote clients may locate the TCP service. If a value of
zero is passed, any free port will be used—however, clients will be
unable to access the service unless notified somehow of the port
number. By default, the queue size is set to 50, but an alternate con-
structor is provided that allows modification of this setting. If the port
is already bound, or security restrictions (such as security polices or
operating system restrictions on well-known ports) prevent access, an
exception is thrown.

160 CHAPTER 6 Transmission Control Protocol

Reilly06.qxd 3/1/02 1:33 PM Page 160

• ServerSocket(int port, int numberOfClients) throws java.io.
IOException, java.lang.SecurityException—binds the server socket
to the specified port number and allocates sufficient space to the queue
to support the specified number of client sockets. This is an overloaded
version of the ServerSocket(int port) constructor, and if the port is
already bound or security restrictions prevent access, an exception is
thrown.

• ServerSocket(int port, int numberOfClients, InetAddress address)

throws java.io.IOException, java.lang.SecurityException—binds
the server socket to the specified port number, and allocates sufficient
space to the queue to support the specified number of client sockets.
This is an overloaded version of the ServerSocket(int port, int

numberOfClients) constructor that allows a server socket to bind to
a specific IP address, in the case of a multihomed machine. For exam-
ple, a machine may have two network cards, or may be configured to
represent itself as several machines by using virtual IP addresses.
Specifying a null value for the address will cause the server socket to
accept requests on all local addresses. If the port is already bound or
security restrictions prevent access, an exception is thrown.

6.6.2 Using a ServerSocket

While the Socket class is fairly versatile, and has many methods, the Server
Socket class doesn’t really do that much, other than accept connections and act
as a factory for Socket objects that model the connection between client and
server. The most important method is the accept() method, which accepts
client connection requests, but there are several others that developers may find
useful.

Methods
All methods are public unless otherwise noted.

• Socket accept() throws java.io.IOException, java.lang.Security

Exception—waits for a client to request a connection to the server
socket, and accepts it. This is a blocking I/O operation, and will not
return until a connection is made (unless the timeout socket option is
set). When a connection is established, it will be returned as a Socket
object. When accepting connections, each client request will be verified
by the default security manager, which makes it possible to accept cer-
tain IP addresses and block others, causing an exception to be thrown.
However, servers do not need to rely on the security manager to block

6.6 ServerSocket Class 161

Reilly06.qxd 3/1/02 1:33 PM Page 161

or terminate connections—the identity of a client can be determined by
calling the getInetAddress() method of the client socket.

• void close() throws java.io.IOException—closes the server socket,
which unbinds the TCP port and allows other services to use it.

• InetAddress getInetAddress()—returns the address of the server
socket, which may be different from the local address in the case of
a multihomed machine (i.e., a machine whose localhost is known by
two or more IP addresses).

• int getLocalPort()—returns the port number to which the server
socket is bound.

• int getSoTimeout() throws java.io.IOException—returns the value
of the timeout socket option, which determines how many milliseconds
an accept() operation can block for. If a value of zero is returned, the
accept operation blocks indefinitely.

• void implAccept(Socket socket) throws java.io.IOException—this
method allows ServerSocket subclasses to pass an unconnected socket
subclass, and to have that socket object accept an incoming request.
Using the implAccept method to accept the connection, an overridden
ServerSocket.accept() method can return a connected socket. Few
developers will want to subclass the ServerSocket, and using this
should be avoided unless required.

• static void setSocketFactory (SocketImplFactory factory) throws
java.io.IOException, java.net.SocketException, java.lang.

SecurityException —assigns a server socket factory for the JVM. This
is a static method, and should be called only once during the lifetime
of a JVM. If assigning a new socket factory is prohibited, or one has
already been assigned, an exception is thrown.

• void setSoTimeout(int timeout) throws java.net.SocketException—
assigns a timeout value (specified in milliseconds) for the blocking
accept() operation. If a value of zero is specified, timeouts are dis-
abled and the operation will block indefinitely. Providing timeouts
are enabled, however, whenever the accept() method is called
a timer starts. When the timer expires, a java.io.InterruptedIO-
Exception is thrown, which allows a server to then take further
actions.

6.6.3 Accepting and Processing Requests from TCP Clients

The most important function of a server socket is to accept client sockets. Once
a client socket is obtained, the server can perform all the “real work” of server
programming, which involves reading from and writing to the socket to imple-

162 CHAPTER 6 Transmission Control Protocol

Reilly06.qxd 3/1/02 1:33 PM Page 162

ment a network protocol. The exact data that is sent or received is dependent
on the details of the protocol. For example, a mail server that provides access
to stored messages would listen to commands and send back message contents.
A telnet server would listen for keystrokes and pass these to a log-in shell, and
send back output to the network client. Protocol-specific actions are less net-
work- and more programming-oriented.

The following snippet shows how client sockets are accepted, and how I/O
streams may be connected to the client:

// Perform a blocking read operation, to read the next socket
// connection
Socket nextSocket = someServerSocket.accept();

// Connect a filter reader and writer to the stream
BufferedReader reader = new BufferedReader (new

InputStreamReader
(nextSocket.getInputStream()));

PrintWriter writer = new PrintWriter(new
OutputStreamWriter
(nextSocket.getOutputStream()));

From then on, the server may conduct the tasks needed to process and
respond to client requests, or may choose to leave this task for code executing
in another thread. Remember that just like any other form of I/O operation in
Java, code will block indefinitely while reading a response from a client—so to
service multiple clients concurrently, threads must be used. In simple cases,
however, multiple threads of execution may not be necessary, particularly if
requests are responded to quickly and take little time to process.

Creating fully-fledged client/server applications that implement popular
Internet protocols involves a fair amount of effort, especially for those new to
network programming. It also draws on other skills, such as multi-threaded
programming, discussed in the next chapter. For now, we’ll focus on a simple,
bare-bones TCP server that executes as a single-threaded application.

6.7 Creating a TCP Server

One of the most enjoyable parts of networking is writing a network server.
Clients send requests and respond to data sent back, but the server performs
most of the real work. This next example is of a daytime server (which you can
test using the client described in Section 6.5).

Code for DaytimeServer
import java.net.*;
import java.io.*;

6.7 Creating a TCP Server 163

Reilly06.qxd 3/1/02 1:33 PM Page 163

// Chapter 6, Listing 2
public class DaytimeServer
{

public static final int SERVICE_PORT = 13;

public static void main(String args[])
{

try
{

// Bind to the service port, to grant clients
// access to the TCP daytime service
ServerSocket server = new ServerSocket
(SERVICE_PORT);

System.out.println ("Daytime service started");

// Loop indefinitely, accepting clients
for (;;)
{

// Get the next TCP client
Socket nextClient = server.accept();

// Display connection details
System.out.println ("Received request from " +

nextClient.getInetAddress() + ":" +
nextClient.getPort());

// Don't read, just write the message
OutputStream out =
nextClient.getOutputStream();
PrintStream pout = new PrintStream (out);

// Write the current date out to the user
pout.print(new java.util.Date());

// Flush unsent bytes
out.flush();

// Close stream
out.close();

// Close the connection
nextClient.close();

}
}
catch (BindException be)
{

System.err.println ("Service already running on port " + SERVICE_PORT);
}
catch (IOException ioe)
{

164 CHAPTER 6 Transmission Control Protocol

Reilly06.qxd 3/1/02 1:33 PM Page 164

System.err.println ("I/O error - " + ioe);
}

}
}

How DaytimeServer Works
For a server, this is about as simple as it gets. The first step in this server is to
create a ServerSocket. If this port is already bound, a BindException will be
thrown, as no two servers can share the same port. Otherwise, the server socket
is created; the next step is to wait for connections.

Since daytime is a very simple protocol and our first example of a TCP
server should be a simple one, we use here a single-threaded server. A for loop
that loops indefinitely is commonly used in simple TCP servers, or a while loop
whose expression always evaluates to true. Inside this loop, the first line you will
find is the server.accept() method, which blocks until a client attempts to con-
nect. This method returns a socket that represents the connection to the client.
For logging, the IP address and port of the connection is sent to System.out.
You’ll see this every time someone logs in and gets the time of day.

Daytime is a response-only protocol, so we don’t need to worry about read-
ing any input. We obtain an OutputStream and then wrap it in a PrintStream
to make it easier to work with. Determining the date and time using the java.
util.Date class, we send it over the TCP stream to the client. Finally, we flush
all data in the print stream and close the connection by calling close() on the
socket.

Running DaytimeServer
Running the server is very simple. The server has no command-line parameters.
For this server example to run on UNIX, you will need to modify the
SERVICE_PORT variable to a number above 1,024, unless you turn off the default
daytime process and run this example as root. On Windows or other operating
systems, this will not be a problem. To run the server on the local machine, the
following command would be used:

java DaytimeServer

6.8 Exception Handling: Socket-Specific Exceptions

As a medium for communication, networks are fraught with problems. With so
many machines connected to the global Internet, the prospect of encountering
a host whose hostname cannot be resolved, one that is disconnected from the
network, or one that locks up during a connection, is very likely in the lifetime
of a software application. It is important, therefore, to be aware of the condi-

6.8 Exception Handling: Socket-Specific Exceptions 165

Reilly06.qxd 3/1/02 1:33 PM Page 165

tions that might cause such problems to arise in an application and to deal with
them gracefully. Of course, not every application will require precise control,
and in simple applications you’ll probably want to handle everything with a
generic handler. For those more advanced applications, however, it is important
to be aware of the socket-specific exceptions that can be thrown at runtime.

NOTE: All socket-specific exceptions extend from SocketException, so by
simply catching that exception, you catch all of the socket-specific ones and
write a single generic handler. In addition, SocketException extends from
java.io.IOException if you want to provide a catchall for any I/O exception.

6.8.1 SocketException

The java.net.SocketException represents a generic socket error, which can
represent a range of specific error conditions. For finer-grained control, appli-
cations should catch the subclasses discussed below.

6.8.2 BindException

The java.net.BindException represents an inability to bind a socket to a local
port. The most common reason for this will be that the local port is already
in use.

6.8.3 ConnectException

The java.net.ConnectException occurs when a socket can’t connect to a
specific remote host and port. There can be several reasons for this, such as that
the remote server does not have a service bound to that port, or that it is so
swamped by queued connections, it cannot accept any further ones.

6.8.4 NoRouteToHostException

The java.net.NoRouteToHostException is thrown when, due to a network
error, it is impossible to find a route to the remote host. The cause of this may
be local (i.e., the network on which the software application is running), may
be a temporary gateway or router problem, or may be the fault of the remote
network to which the socket is trying to connect. Another common cause of
this is that firewalls and routers are blocking the client software, which is usu-
ally a permanent condition.

166 CHAPTER 6 Transmission Control Protocol

Reilly06.qxd 3/1/02 1:33 PM Page 166

6.8.5 InterruptedIOException

The java.net.InterruptedIOException occurs when a read operation is
blocked for sufficient time to cause a network timeout, as discussed earlier in
the chapter. Handling timeouts is a good way to make your code more robust
and reliable.

6.9 Summary

Communication over TCP with sockets is an important technique to master, as
many of the most interesting application protocols in use today occur over TCP.
The Java socket API provides a clear and easy mechanism by which developers
are able to accept communications as a server or initiate communications as a
client. By using the concepts discussed earlier involving input and output
streams under Java, the transition to socket-based communication is straight-
forward. With the level of exception handling built into the java.net package,
it’s also very easy to deal with network errors that occur at runtime.

6.9 Summary 167

Chapter Highlights

In this chapter, you have learned:

• About the Transmission Control Protocol

• About clients and servers

• About how to write and run a simple TCP socket client, using
java.net.Socket

• About how to write and run a simple TCP socket server, using
java.net.ServerSocket

• About exception handling with sockets

Reilly06.qxd 3/1/02 1:33 PM Page 167

Reilly06.qxd 3/1/02 1:33 PM Page 168

