• String matching
 – Task: Search for text within a file or collection of files
 – Pervasive: Text editors, Web crawlers, Unix grep command, ...
 – Simple Web example: search for e-mail addresses

• Brute force technique
 – $j = \text{sub.length}()$
 – if $\text{str.substring}(i, i + j).\text{equals}(\text{sub})$ for some i, return i
 – If no such i can be found, return -1
 – Complexity??

• More efficient technique
 – At each position $i < \text{str.length}()$, maintain a set of indices j such that $\text{str.substring}(i - j, i).\text{equals}(\text{sub.substring}(0, j))$
 – If $\text{sub.length}() \in j$ then return i
 – If $i == \text{str.length}()$ return -1
 – Complexity??

• String matching with patterns
 – Often, we wish to find a substring which matches a pattern
 – E-mail addresses:
 1. Any number of alphanumeric characters and/or dots (not a dot at beginning or end)
 2. @
 3. Any number of alphanumeric characters and/or dots (not a dot at beginning or end); must be at least one dot
 – E-mails: lytinen@cs.depaul.edu, steven.lytinen@gmail.com, steve23@yahoo.com
 – Not e-mails: .lytinen@cs.depaul.edu, lytinen@depaul steve.@depaul.edu.
• **Regular expressions: An algebra for defining patterns**

 – Atomic Operands:
 1. a single character
 2. \(\epsilon \) (empty string)
 3. a variable

 – Operators:

<table>
<thead>
<tr>
<th>Operator name</th>
<th>Description</th>
<th>Symbol</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concatenation</td>
<td>What it sounds like</td>
<td>(no symbol)</td>
<td>abc</td>
</tr>
<tr>
<td>Union</td>
<td>OR</td>
<td></td>
<td>a</td>
</tr>
<tr>
<td>Closure</td>
<td>0 or more</td>
<td>*</td>
<td>a*</td>
</tr>
</tbody>
</table>

 – Parentheses can be used as necessary; e.g., \((ab)^*\)

• **Regular expressions and languages**

 – A **language** is simply a set of strings over an alphabet

 Examples: Alphabet: \(a, b, c \)

 \[
 \{a, ab, abb, abc\} \\
 \{a, aa, aaa, aaaa, \ldots\} \\
 \{\epsilon, a\} \\
 \{\} \\
 \]

 – A regular expression denotes a language

 – For atomic operands:

 \[
 L(x) = \{x\} \\
 L(\epsilon) = \{\epsilon\} \\
 \]

 – For operators:

 \[
 L(R|S) = L(R) \cup L(S) \\
 L(RS) = \{rs|r \in L(R), s \in L(S)\} \\
 L(R^*) = \{\epsilon\} \cup L(RR^*) \\
 \]

 – Precedence: Closure, Concatenation, Union
Examples

\[L(a) = L(\epsilon) = L(abc) = L(a^*b^*) = L(ab)^* = L(((a|b|c)d)^*) = L(a|b|cd^*) = \]

- **Regular expression matching**

 - Task: Does a string \(S \) match a regular expression \(E \)?
 - Equivalent task? Is \(S \in L(E) \)
 - Example: Does \(aaaaaabbb \) match \(a^*b^* \)? (yes)

- **Java regular expression matching**

 - \texttt{java.regexp.Pattern} is a class which can be used to match strings against regular expressions
 - If a pattern is to be used frequently, \texttt{Pattern.compile} is a static method which compiles a regular expression (makes matching more efficient)

 * Example of typical usage

      ```java
      Pattern p = Pattern.compile("a*b");
      Matcher m = p.matcher("aaaaab");
      boolean b = m.matches(); // returns true
      ```
 * Or, if a pattern will not be used frequently:

      ```java
      Pattern.matches("a*b", "aaaaab"); // returns true
      ```

- **Java regular expressions**

 - \url{http://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html}
 - Examples (assume only lower case letters)

 * No a’s
 * At least one a
 * Odd number of a’s
 * All a’s before all b’s
 * Vowels consecutive and in order
- Vowels in order, but not necessarily consecutive
- Only a’s and b’s; even number of each
- Only a’s and b’s; even number of both or odd number of both

- **Example application**: Find e-mail addresses

- **Compiling regular expressions**
 - Regular expressions can be matched in $\Theta(n)$ time (n is the length of the text to be matched)
 - However, first they must be compiled into an equivalent *deterministic finite state automaton* (DFA)
 - 2-step compilation
 1. Regular expression \rightarrow **Non-deterministic** finite state automaton (NFA)
 2. NFA \rightarrow DFA

- **Finite State Automata**
 - $A = (I, \Sigma, r, A, \sigma)$
 - I: set of possible **input symbols**
 - Σ: set of **states**
 - r: a **next-state** relation from $\Sigma \times I$ into $P(\Sigma)$ (power set = set of all possible subsets)
 - $A \subseteq \Sigma$: set of **accepting states**
 - σ: the **initial state** ($\sigma \in \Sigma$)

- **FSA and Graphs**
 - **Directed graph**
 - Vertices are the members of Σ
 - Members of A are marked (drawn with double circle)
 - Initial state σ is designated by an arrow
 - Directed edge σ_a, σ_b exists for each $i \in I$ such that $(\sigma_a, i, \sigma_b) \in r$, labeled i (there may be parallel edges and loops)
• FSAs and accepting strings

- \(A = (I, \Sigma, r, A, \sigma) \)
- Input \(\alpha = x_1...x_n \)
- \(\alpha \) is accepted by \(A \) if there exist states \(\sigma_0...\sigma_n \) such that:
 \[
 \begin{align*}
 \sigma_0 &= \sigma \\
 \sigma_i &\in r(\sigma_{i-1}, x_i) \\
 \sigma_n &\in A
 \end{align*}
 \]

- Example: draw a graph which represents an FSA that accepts strings over \{a,b\} which contain an even number of a’s

• Nondeterministic finite state automata

- Consider an FSA which contains some \(\sigma_v \in \Sigma \) and the set of edges \((\sigma_v, \sigma_w) \) for any \(w \).
 If more than one such edge has the same label \(i \), then the automaton is a nondeterministic finite state automaton (NFA)
- Example:

 \[
 \begin{array}{ccc}
 a, b \\
 \rightarrow & \rightarrow & \\
 \downarrow & / & \\
 \downarrow & / & \\
 --- & a & --- \\
 \rightarrow & | 0 | & --- & | 1 | \\
 --- & --- & \\
 \end{array}
 \]

 State 1 is an accepting state

 This NFA accepts strings over \{a,b\} which end with ‘a’

• Deterministic Finite State Automata (DFA)

- If an FSA contains no pair of edges \((\sigma_v, \sigma_w) \) with the same label, then it is said to be deterministic.
- Restating, \(r \) in earlier definition is a function from \(\Sigma \times I \) into \(P(\Sigma) \)
- A DFA can accept (or not accept) a string of length \(n \) in \(\Theta(n) \) time
• Examples
 – Accept strings over a, b that contain an odd number of a’s
 – Accept strings over a, b, c of the form $a^*b^*c^*$
 – Accept strings over a, b in which every a is followed by $a \ b$

• Constructing an equivalent DFSA from an NFA
 – Technique: subset construction
 – States in DFSA correspond to sets of states in the NFA
 – N: NFA. D: DFSA.
 – Start state of $D = $ start state of N
 – To construct other states:
 Consider each possible input character for an already constructed state S of DFSA.
 Compute T:
 $T = \{ t \in \Sigma_N | \text{for some } s \in S, \{ t, \cdot, s \} \in R \}$

• Subset construction examples
 1. $a^+b^+c^+$ (or a^*ab^*bc)

 \[
 \begin{array}{c}
 \text{a} & \text{b} & \text{c} \\
 \text{-<-} & \text{-<-} & \text{-<-} \\
 \text{\textbackslash /} & \text{\textbackslash /} & \text{\textbackslash /} \\
 \text{--\textgreater} 0 \text{ ------\textgreater} 1 \text{ ------\textgreater} 2 \text{ ------\textgreater} 3 \\
 \text{a} & \text{b} & \text{c}
 \end{array}
 \]
 (3 is accepting)

 2. $((a\mid b)^*b(a\mid b)^*b(a\mid b)^*b(a\mid b)^*$

 \[
 \begin{array}{c}
 \text{a,b} & \text{a,b} & \text{a,b} & \text{a,b} \\
 \text{-<-} & \text{-<-} & \text{-<-} & \text{-<-} \\
 \text{\textbackslash /} & \text{\textbackslash /} & \text{\textbackslash /} & \text{\textbackslash /} \\
 \text{--\textgreater} 0 \text{ ------\textgreater} 1 \text{ ------\textgreater} 2 \text{ ------\textgreater} 3 \\
 \text{b} & \text{b} & \text{b}
 \end{array}
 \]
 (3 is accepting)
• Constructing an FSA from a regular expression

 – An \(\epsilon \) transition is an edge in an NFA which may be followed to new state without consuming any input symbols. Example: \(a^*b^* \)

 \[
 \begin{array}{ccc}
 a & b \\
 \text{-<-} & \text{-<-} \\
 \text{	extbackslash /} & \text{	extbackslash /} \\
 \text{---> 0 -----> 1} \\
 \text{eps}
 \end{array}
 \]

 – Automata for regular expression operations:

 1. Concatenation: \(ab \)

 \[
 \begin{array}{ccc}
 a & b \\
 \text{0 -----> 1 -----> 2}
 \end{array}
 \]

 2. Union: \(a\mid b \): requires \(\epsilon \) transitions

 \[
 \begin{array}{ccc}
 e & a & e \\
 \text{------> 1 -----> 2 -->>--} \\
 \text{/} \\
 \text{0} \\
 \text{\textbackslash /} \\
 \text{------> 3 -----> 4 -->>--} \\
 \text{e} & b & e
 \end{array}
 \]

 3. Closure: \(a^* \)

 \[
 \begin{array}{ccc}
 e \\
 \text{-<-----} \\
 \text{\textbackslash | \textbackslash} \\
 \text{e} & a & e \\
 \text{0 -----> 1 -----> 2 -----> 3} \\
 \text{\textbackslash /} \\
 \text{\textbackslash /} \\
 \text{---------->-----------}
 \end{array}
 \]

• Examples

\[
\begin{align*}
\text{a\mid ab} \\
\text{(ab)*c} \\
\text{ab\mid(ab*c)*}
\end{align*}
\]

• Eliminating \(\epsilon \) transitions

 – Add to \(\mathcal{A} \) all states \(\sigma_v \) for which a path from \(\sigma_v \) to \(\sigma_w \) consists of only \(\epsilon \) transitions, and \(\sigma_w \in \mathcal{A} \)
– Eliminate those states (except start state) which only ϵ transitions lead to
– Replace each path whose edges are all labeled $\epsilon, \ldots, \epsilon, i$ with an edge labelled i
– Example: $a^*|b^*$

\[
\begin{array}{cccc}
e & a & e \\
-----> 1 -----> 2 -->-- \\
/ & \quad/ & e & / \\
/ & \quad--<>-- & \quad/ \\
---> 0 \quad\quad\quad 5 \\
\quad/ & \quad\quad/ & e \quad\quad/ \\
\quad\quad/ & \quad\quad/ & e \quad\quad/ \\
-----> 3 -----> 4 -->-- \\
e \quad b \quad e
\end{array}
\]
also an epsilon edge from 0 to 5

5 is accepting
 * Add 0, 2 and 4 to A, since epsilons lead to 5
 * Eliminate 1, 3, and 5 since only epsilons lead to them
 * Edges: (0,a,2), (0,b,4), (2,a,2), (4,b,4)

\[
\begin{array}{c}
a \\
-<-
\end{array}
\begin{array}{c}
a \quad/ \\
-----> 2 \quad/ \\
/ \\
---> 0 \\
\quad/ \\
-----> 4 \quad/ \\
\quad/ \quad/<-
\end{array}
\begin{array}{c}
b
\end{array}
\]
– Example: $(a|c|abc)^*$