Graphs

- Definition: A graph consists of a set \(N \) of nodes (or vertices) and a set \(E \) of edges (or arcs). Each edge connects two vertices.
 - A directed graph is a graph in which each edge has a direction
 - A weighted graph: an edge label represents the cost of traversing the edge
 - edge is written \((v,w)\) where \(v \) and \(w \) are vertices
 - \((v,w)\) is incident on \(v \) and \(w \)
 - parallel edges: incident on the same vertices
 - an edge \((v,v)\) is called a loop
 - a path of length \(n \) between two vertices is a sequence of edges which connect them, written
 \((v_0,v_1,v_1,...,v_{n-1},v_n)\)
 - each edge in the path is incident on \(v(i-1) \) and \(v(i) \).
 - connected graph: there is a path between every pair of vertices
 - a cycle is a path of nonzero length from \(v \) to \(v \) with no repeated edges.

Representing Graphs

- Adjacency matrix
 - n by n matrix, where \(n \) is number of vertices
 - \(A(m,n) = 1 \) iff \((m,n)\) is an edge
 - for weighted graph: \(A(m,n) = w \) (weight of edge)
 - only works if there are no parallel edges
 - Example: adjacency matrix for a graph

\[
\begin{bmatrix}
0 & 2 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 3 & 10 & 0 & 0 \\
4 & 0 & 0 & 0 & 0 & 5 & 0 \\
0 & 0 & 2 & 0 & 2 & 8 & 4 \\
0 & 0 & 0 & 0 & 0 & 6 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
\end{bmatrix}
\]

- Adjacency list
 - each vertex has linked list of edges
 - edge stores destination and label
 - better if adjacency matrix would be sparse
 - can work even if there are parallel edges
- **Example:**

- **Graph Traversal**
 - Depth-first: follow a path until it ends, or until a cycle
 - Breadth-first: follow all paths in parallel
 - Example: start from v0
 - assume edges with low-numbered destinations are chosen first
 - Depth-first:
 - Breadth-first:

- **Task: Find shortest path between 2 nodes**

- **Dijkstra's algorithm**
 - Best-first: sort paths visited so far by cost
 - Priority queue is an efficient way to do this
 - If reach same node, only continue if it's a cheaper path than found before
 - Can stop when all queued paths are more expensive than known paths

- **Dijkstra Implementation**

 Find cheapest path \((v, \ldots, w)\)

 - Maintain a table of length \(V\) (number of vertices in the graph)

 - The \(i^{th}\) entry in the table contains:
 - Cost of best (cheapest) known path \((v, \ldots, v_i)\)
 - Immediate predecessor to \(v_i\) on the best known path
 - Whether or not the known path is definitely the cheapest to \(v_i\)

 - Initialize the table so that entry \(v\) has a cost of 0, and no predecessor
 - Also maintain a priority queue of vertices (prioritized by cheapest known path).

 Initialize the queue with \(v\).

 - At each iteration:
 1. Remove the minimum item \(v_{\text{min}}\) on the priority queue
 2. Mark the table to indicate that the known path to \(v_{\text{min}}\) is definitely the cheapest
 3. "Expand" the vertex, by exploring edges originating at \(v_{\text{min}}\). For each edge \((v_{\text{min}}, w_i)\), add \(w_i\) to the queue. Update table information for \(w_i\) (cost, predecessor)
4. Continue until any known path to \(w \) is definitely the cheapest

- Example graph

Another example: Find the shortest path from Chicago to Peoria
- \textbf{A}^*
 - Extension of Dijkstra
 - Utilizes an "estimator" function, which estimates the cost of \((v, \ldots, w)\)
 - Modification of Dijkstra: compute \(c'\) (real cost so far + estimated remaining cost),
 and use that to order the priority queue

- \textbf{A}^* \textbf{behavior}
 - Still guaranteed to find cheapest path as long as \(c' \leq c\) in all cases

- \textbf{Dynamic creation of graphs}
 - In many applications, it is not feasible to represent an entire graph
Example: the Web

Instead, generate graph dynamically; assume a `successors` method, which takes the place of the explicit representation of edges

Example application: game playing

- Single person game
- Deterministic
- Example: 8-puzzle

<table>
<thead>
<tr>
<th>Start</th>
<th>Win</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 3 4</td>
<td></td>
</tr>
<tr>
<td>8 2</td>
<td></td>
</tr>
<tr>
<td>7 6 5</td>
<td></td>
</tr>
<tr>
<td>1 2 3</td>
<td></td>
</tr>
<tr>
<td>8 4</td>
<td></td>
</tr>
<tr>
<td>7 6 5</td>
<td></td>
</tr>
</tbody>
</table>

- Graph representation
 - vertices are puzzle positions
 - edges represent possible moves
 - Problem: 9! vertices, more than $2^{9!}$ edges
 - Requires dynamic generation of the graph

- Implementation
 - Define class to represent puzzle states, and a `successor` function
 - Define class to represent c', p, and v for a board state
 - Instead of an array, use a HashMap
 - First, try with no estimator, then using A^*
 - Estimator: Manhattan distance between current and winning position of each tile

Minimum spanning trees

- Definition: A minimum spanning tree T of a graph $G = (N,E)$ has the following properties
 - Every node in G is also in T
 - The edges in T are a subset of E such that
 - T is connected
 - The sum of the weights of the edges of T are minimized

MST application example

- Airline: Where to schedule flights?
 - The cities to be connected are vertices
• Edges represent pairs of cities (perhaps not all pairs), and miles between
• MST = least-cost set of flights to connect all cities (not all non-stop)
• Might want to supplement MST to save time
 o Roads: Where to build interstates?

• Example

Graph

\[\begin{array}{c}
v_1 \quad 2 \quad v_3 \\
\quad \downarrow 1 \quad \downarrow 3 \quad \downarrow 10 \\
v_2 \quad 2 \quad v_4 \quad 7 \quad v_5 \\
\quad \downarrow 5 \quad \downarrow 8 \quad \downarrow 4 \quad \downarrow 6 \\
v_6 \quad v_7 \\
1
\end{array}\]

Minimum spanning tree

\[\begin{array}{c}
v_1 \quad 2 \quad v_3 \\
\quad \downarrow 1 \\
v_2 \quad 2 \quad v_4 \quad v_5 \\
\quad \downarrow 4 \quad \downarrow 6 \\
v_6 \quad v_7 \\
1
\end{array}\]

• Prim's algorithm
 o Begin by arbitrarily picking a root
 o Pick the edge incident at the root with the lowest weight
 • This adds another vertex to the tree as well
 • Repeatedly pick the edge with the smallest cost incident on one vertex in the tree, and incident on one vertex not in the tree
 • Terminate when graph is connected
 o Prim's algorithm = Dijkstra's algorithm, but find cheapest path from \(v\) to all other vertices in the graph

• Kruskal's algorithm
 o Start with empty minimum spanning tree
 o Place the edges into a binary heap
 o Select the edge with the lowest weight;
- add it to the tree if it does not result in a cycle
 - Union-find algorithm can be used to detect cycles
- Stop when the graph is connected

Union-find

- Data structure for keeping track of graph connectivity
- Operations:
 - addEdge(v,w): add an edge between v and w; update data about graph
 - isConnected(v,w): determine if there is a path from v to w
- Does not explicitly keep track of edges; only the connectivity of vertices/subgraphs
- Simple version:
 - Connectivity representation is an array; begins with all unique numbers
 - Each number represents a subset of the vertices which are connected
 - Example: Graph contains 10 vertices, no edges initially

Consider the following sequence of operations:

```plaintext
addEdge(7,8)  
addEdge(8,9)  
addEdge(1,2)  
isConnected(7,9)  
addEdge(2,4)  
addEdge(0,3)  
addEdge(3,4)  
isConnected(1,4)  
isConnected(0,9)  
addEdge(3,5)  
addEdge(1,3)  
addEdge(5,6)  
addEdge(5,7)
```