• Measuring the running time of algorithms

 o The **complexity** of an algorithm is a measure of its running time, or perhaps the memory space it takes

• **Θ-complexity**

 • **Notation**

 ∃: there exists
 ∀: for all
 s.t.: such that
 iff: if and only if

 • **Big-Oh: O**

 f(n) = O(g(n)) iff ∃ constants C₁ > 0, x₁ ≥ 0 s.t. ∀ n ≥ x₁, f(n) ≤ C₁ * g(n)

 Example: f(n) = n² + n

 f(n) = O(n²) because 2n² ≥ (n² + n) ∀ n ≥ 1

 Big-Oh specifies an *upper bound* on f(n)

 • **Big-Omega: Ω**

 f(n) = Ω(g(n)) iff ∃ constants C₂ > 0, x₂ ≥ 0 s.t. ∀ n ≥ x₂, f(n) ≥ C * g(n)

 Example: f(n) = Ω(n²) because n² ≤ (n² + n) ∀ n ≥ 0

 Ω specifies a *lower bound* on f(n)

 • **Big-Theta: Θ**

 f(n) = Θ(g(n)) iff f(n) = O(g(n)) and f(n) = Ω(g(n))

 Example: f(n) = Θ(n²) because 2n² ≥ (n² + n) ≥ n² ∀ n ≥ 1

 Big-Theta specifies both a lower and an upper bound on f(n). Note that g(n) must be the same function in both Big-Oh and Ω
Example

```java
public int howManyPairsSumToZero(int[] x) {
    int n = x.length;
    int count = 0;
    for (int i = 0; i < n - 1; i++)
        for (int j = i+1; j < n; j++)
            if (x[i] + x[j] == 0)
                count++;
    return count;
}
```

- Characterization of running time: how many times is the if statement executed?

<table>
<thead>
<tr>
<th>i</th>
<th># times</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>n-1</td>
</tr>
<tr>
<td>1</td>
<td>n-2</td>
</tr>
<tr>
<td>2</td>
<td>n-3</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>n-4</td>
<td>3</td>
</tr>
<tr>
<td>n-3</td>
<td>2</td>
</tr>
<tr>
<td>n-2</td>
<td>1</td>
</tr>
</tbody>
</table>

- \(f(n) = (n-1) + (n-2) + (n-3) + \ldots + 3 + 2 + 1 = \frac{n(n-1)}{2} \)
- \(f(n) = .5n^2 - .5n \)
- Hypothesis: \(f(n) = \Theta(n^2) \)
- To prove, show that \(f(n) = O(n^2) \) and \(f(n) = \Omega(n^2) \)
 - Big-Oh
 \[.75n^2 \geq (.5n^2 - .5n) \forall n \geq 0 \]
 Therefore, \(.5n^2 - .5n\) is \(O(n^2)\)
 - \(\Omega \)
 \[.25n^2 \leq (.5n^2 - .5n) \forall n \geq 2 \]
 Therefore, \(.5n^2 - .5n\) is \(\Omega(n^2)\)
- Given that \(.5n^2-.5n\) is \(O(n^2)\) and \(\Omega(n^2)\), it is \(\Theta(n^2)\).
- Graphically:
Another example

```java
public int howManyTriplesSumToZero(int[] x) {
    int n = x.length;
    int count = 0;
    for (int i = 0; i < n - 2; i++)
        for (int j = i + 1; j < n - 1; j++)
            for (int k = j + 1; k < n; k++)
                if (x[i] + x[j] + x[k] == 0)
                    count++;
    return count;
}
```

- How many times is the `if` statement executed?

\[f(n) = \binom{n}{3} = \frac{n!}{(3! \cdot (n-3)!)} = \frac{n(n-1)(n-2)}{6} = \frac{n^3 - 3n^2 + 2n}{6} = \frac{n^3}{6} + \frac{n^2}{2} + \frac{n}{3}. \]

- Hypothesis: \(f(n) = \Theta(n^3) \).
- To prove, show that \(f(n) = O(n^3) \) and \(f(n) = \Omega(n^3) \)
 - \(O(n^3) \): Choose \(C_1 = 1/3 \)
 \[n^3/3 \geq n^3/6 + n^2/2 + n/3. \]
 - \(\Omega(n^3) \): Choose \(C_2 = 1/9 \)
\[n^3/9 \leq n^3/6 + n^2/2 + n/3. \]

- Therefore, \(n^3/6 + n^2/2 + n/3 = \Theta(n^3) \)

- Graphically

\[\text{Exercise} \]

What is the \(\Theta \)-complexity of \(f(n) = 3n^2 - 9n + 4 \)? Demonstrate by showing Big-Oh and \(\Omega \).

\[\text{Textbook Definitions for Algorithm Analysis} \]

Sedgewick and Wayne, p. 178-179

- \textbf{Tilde approximations}

We write \(\sim g(n) \) to represent any (more complicated) function \(f(n) \) that, when divided by \(g(n) \), approaches 1 as \(N \) approaches infinity, and we write \(f(n) \sim g(n) \) to indicate that \(f(n)/g(n) \) approaches 1 as \(n \) approaches infinity (\(f \) is a more complicated function than \(g \)).

In order words, we have determined that \(f(n) \) is a good characterization of the running time of an algorithm \(A \), but \(f \) is complicated (e.g., it contains many terms). We would like to characterize the running time of \(A \) in terms of a simpler function \(g \). Then we can do so if

\[f(n) \sim g(n). \]
• **Order of growth**

 • Most often, we work with tilde approximations of the form

 \[f(n) \sim a \cdot g(n) \]

 where \(g(n) = n^b \cdot (\log n)^c \)

 with \(a, b, \) and \(c \) as constants (and \(g(n) \) simpler than \(f(n) \)) Then, we refer to \(g(n) \) as the **order of growth** of \(f(n) \).

• **Example**

 • Assume that \(f(n) = .5n^2 - .5n \) characterizes the running time of an algorithm. Then \(f(n) \sim .5n^2 \)

 ![Graph](image)

 • The order of growth of \(f(n) \) is \(n^2 \).

• **Order of growth and \(\Theta \) notation are interchangable.**

 • Example: Assume that \(f(n) \) characterizes the running time of an algorithm.
 • Saying that \(f(n) \) has an order of growth of \(n^2 \) is the same as saying that \(f(n) = \Theta(n^3) \).

 We will not try to prove this.
• **Takeways**

 - For small datasets, complexity is often unimportant
 - For competing algorithms of similar complexity, the constant a in $\sim a \cdot g(n)$ may be important. Example: Sorting

 Mergesort vs. Heapsort

 ![Mergesort vs. Heapsort](image1.png)

 - However, in comparing algorithms of different complexity, order of growth (Θ) is all that matters

 Selection sort vs. mergesort and heapsort

 ![Selection sort vs. mergesort and heapsort](image2.png)
Some hints on complexity of algorithms

- a single loop

 for (int i=0; i

If there is one simple loop, the algorithm is \(\Theta(n) \). This is true even if there are some variations:

 for (int i=0; i<n/2; i++) { ... }
 for (int i=0; i<n; i+=5) { ... }

These are still \(\Theta(n) \)

- Here is a loop that is not \(\Theta(n) \)

 for (int i=1; i<n; i+=i)

Since \(i \) is doubled each time through the loop, this algorithm is \(\Theta(\log(n)) \)

- Nested loops

 for (int i=0; i<n; i++)
 for (int j=0; j<n; j++) { ... }
 for (int i=0; i<n; i++)
 for (int j=i; j<n; j++) { ... }

These are \(\Theta(n^2) \)

- Further nesting

 if \(f(n) \) is a polynomial, then \(f(n) = \Theta(n^k) \), where \(k \) is the degree of the polynomial

- Sequential looping

 If loop construct A has complexity \(f_1(n) \) and loop construct B has complexity \(f_2(n) \), then these constructs in sequence have complexity \(\max(f_1,f_2)(n) \)

Example: the code below is \(\Theta(n^2) \)

 int sum = 0;
 for (int i=0; i<n; i++)
 for (int j=0; j<n; j++)
 sum++;
 for (int k=0; k<n; k++)
 sum++;