Mean value theorems for differences

J. Marshall Ash

Abstract. Let \(M = \frac{f(b) - f(a)}{b - a} \) be the average slope of the real-valued continuous function \(f \) on the closed interval \([a, b]\). Let \(0 < p < b - a \). A secant line segment connecting \((c, f(c))\) and \((c + p, f(c + p))\) of slope \(M \) for some \(c \in [a, b - p] \) always exists when \((b - a)/p\) is an integer. But if \(p \in (0, b - a) \) does not have the form \((b - a)/n\) for some integer \(n \geq 2 \), then an example is constructed for which every secant line segment lying above a subinterval of length \(p \) does not have slope \(M \). Applications include two counterintuitive facts involving running certain distances at certain rates. For periodic functions the situation is different. A generalization for multivariate functions is given.

1. One dimension

The mean value theorem says that if \(f(x) \) has a derivative at every point \(x \in (a, b) \) and is continuous at \(x = a \) and \(x = b \), then there is a \(c \in (a, b) \) such that

\[
 f'(c) = \frac{f(b) - f(a)}{b - a}.
\]

We investigate the truth of a finite difference variant of this result, namely whether, given \(f \) continuous on \([a, b]\) and given \(p \in (0, b - a) \), there is a \(c \in [a, b - p] \) such that

\[
 \frac{f(c + p) - f(c)}{p} = \frac{f(b) - f(a)}{b - a}.
\]

First, suppose \(p \) is a proper divisor of \(b - a \), i.e., \(p = \frac{b - a}{n} \) for some integer \(n \geq 2 \). Let \(m = \frac{f(b) - f(a)}{b - a} \) and \(r(x) = \frac{f(x + p) - f(x)}{p} \). Then

\[
 (1.1) \quad \frac{1}{n} \left(r(a) + r(a + p) + \cdots + r(a + (n - 1)p) \right) = \frac{f(b) - f(a)}{np} = m.
\]

All \(r(a + ip) > m \) would force the left hand side to be \(> m \) so some \(r(a + ip) \leq m \); similarly some \(r(a + jp) \geq m \). The intermediate value theorem assures us that the continuous function \(r \) must take on the value \(m \) for some \(x \) between \(a + ip \) and \(a + jp \).

2000 Mathematics Subject Classification. Primary 26A24, 26B05; Secondary 26A06.

Key words and phrases. Mean value theorem, difference quotient, multidimensional mean value theorem, mean value theorem for periodic functions.

This research was supported by a grant from the Faculty and Development Program of the College of Liberal Arts and Sciences, DePaul University.
Second, suppose that \(p \) is not a proper divisor of \(b - a \) so that \(b - a = np + \epsilon \) for some natural number \(n \) and some \(\epsilon \in (0, p) \). Set \(g(x) = \sin^2 \pi \frac{x-a}{p} - \sin^2 \pi \frac{b-a}{p} \). Then \(\frac{g(b)-g(a)}{b-a} = 0 \); but for every \(c \in [a, b - \epsilon] \), \(\frac{g(c+p)-g(c)}{p} = -\frac{p}{b-a} \sin^2 \pi \frac{b-a}{p} < 0 \). We have shown:

Theorem 1. Let \(f \) be a real-valued continuous function on a closed interval \([a, b]\) and let \(m = \frac{f(b) - f(a)}{b-a} \). If \(p = (b - a) / n \) for some integer \(n \geq 2 \), then there is a \(c \in [a, b - \epsilon] \) so that \(\frac{f(c+p) - f(c)}{p} = m \). However, if \(p \in (0, b - a) \setminus \{ \frac{b-a}{2}, \frac{b-a}{3}, \ldots \} \), then there is an infinitely differentiable function \(g = g_p \) so that for every \(c \in [a, b - \epsilon] \), \(\frac{g(c+p)-g(c)}{p} \neq \frac{g(b)-g(a)}{b-a} \).

Remark 1. The negative side of this result manifests itself in a couple of counterintuitive facts. One is that it is possible for runner \(A \) to run a marathon at a perfectly steady 8 minute per mile pace and for runner \(B \) to run that marathon so that every mile interval \([x, x+1]\), \(0 \leq x \leq 25.2 \) is run in 8 minutes and 1 second but so that \(B \) beats \(A \)! The other is that it is possible for a runner to run 1609 meters at an average rate of speed that exceeds his average rate of speed for every interval of the form \([x, x+1600]\), \(0 \leq x \leq 9 \) [1] Comparing these two phenomena motivated this paper. We now know that the connection between these facts is that 1 is not a proper divisor of 25.2 and 1600 is not a proper divisor of 1609.

The point \(c \) in the statement of the mean value theorem is strictly interior to \([a, b]\). If \(b - a = np \) with the integer \(n \geq 3 \) we can similarly find \(c \) so that \([c, c + p]\) is strictly interior to \([a, b]\). For the proof given above produces such a \(c \) except when \(r(a) = m \); while if \(r(a) = m \), either all \(r(a + ip) = m \) whence \(c = a + p \) works, or \(|r(a + ip) - m| |r(a + jp) - m| < 0 \) for some \(i, j \geq 1 \) whence a satisfactory \(c \) strictly between \(a + ip \) and \(a + jp \) can be found. However the \(n = 2 \) case is different: for example, if \(n = 2 \), \([a, b] = [0, 2\pi]\), and \(f(x) = \sin x \); then \([c, c + p] = [c, c + \pi]\) cannot be chosen to be strictly interior to \([0, 2\pi]\).

When the original interval \([a, b]\) is replaced by a circle's circumference, the conclusion becomes very different. Identify \([a, b]\) with the circumference of a circle and say that \(f \) is almost continuous if \(f \) is continuous at each point of \([a, b]\) and if \(f(b^-) = \lim_{h \downarrow 0} f(b - h) \) exists. An arc \(\alpha \beta \) of length \(p \), \(p < b - a \) corresponds to an interval of the form \([\alpha, \beta]\) if \(a \leq \alpha < \beta \leq b \) where \(\beta = \alpha + p \) or to the union of \([a, b]\) and \([a, \beta] \) when \((b - \alpha) + (\beta - a) = p \).

Theorem 2. Let \(f \) be almost continuous on the circle \([a, b]\). Then for every \(p \in (0, b - a) \) there is an arc \(\alpha \beta \) of length \(p \) so that

\[
\frac{f(b^-) - f(a)}{b-a} = \frac{f(\beta) - f(\alpha)}{p},
\]

where \(f(\beta) \) must be taken to be \(f(b^-) \) when \(\alpha + p = b \).

Let \(m = \frac{f(b^-)-f(a)}{b-a} \) and \(f^*(x) = f(x) - mx \) for \(x \in [a, b] \). Extend \(f^* \) to \(\mathbb{R} \) by making it \((b - a)\)-periodic. Then \(f^* \) is continuous at \(b \) and hence continuous. Integration over a period is independent of the starting point, so

\[
\int_a^b \{f^*(x + p) - f^*(x)\} \, dx = 0
\]
Since \(f^* \) is continuous, the integrand must be 0 at some point \(x_0 \). So if \(\alpha \beta \) is the arc determined by \(x_0 \) and \(x_0 + p \), then the corresponding result when \(f \) is proper multiple of \(y \) is

\[
\int_{\alpha \beta} f^* = f^*(x_0 + p) - f^*(x_0) = f^*(\beta) - f^*(\alpha) = mp.
\]

2. Higher dimensions

There is also a \(d \)-dimensional analogue of all this. Everything works inductively and easily, so we restrict our discussion to \(d = 2 \). Fix a function \(f : \mathbb{R}^2 \to \mathbb{R} \). By a box we mean a closed non-degenerate rectangle with sides parallel to the axes. For a box \(B := [a, a + P] \times [b, b + Q] \), an analogue of the mean value theorem asserts that if \(f \) is continuous on \(B \) and if \(f_{xy} \) exists on the interior of \(B \), then there is a point \((r, s)\) interior to \(B \) so that

\[
\frac{\Delta B}{PQ} = f_{xy}(r, s)
\]

where \(\Delta B = f(a + P, b + Q) + f(a, b) - f(a + P, b) - f(a, b + Q) \). The proof of this is a straightforward induction.[2, Proposition 2; also 4] (In \(d \) dimensions, \(\Delta B \) becomes an alternating sum of the evaluations of \(f \) at the \(2^d \) vertices of a \(d \)-dimensional cuboid, \(PQ \) becomes the volume of that cuboid, and \(f_{xy} \) becomes \(f_{x_1x_2 \ldots x_d} \).) The analogue of our original question becomes this.

Question. Let \((p, q) \in (0, P) \times (0, Q)\) be given. Must there be a box \(b \subset B \) of dimensions \(p \times q \) so that

\[
\frac{\Delta B}{PQ} = \frac{\Delta b}{pq}.
\]

The answer is just what you would expect: “yes” if \((p, q)\) is in \(\left\{ \frac{P}{1}, \frac{P}{2}, \frac{P}{3}, \ldots \right\} \times \left\{ \frac{Q}{1}, \frac{Q}{2}, \frac{Q}{3}, \ldots \right\} \) and “no” if either \(p \) is in the set \((0, P) \setminus \left\{ \frac{P}{1}, \frac{P}{2}, \frac{P}{3}, \ldots \right\} \) or if \(q \) is in the set \((0, Q) \setminus \left\{ \frac{Q}{1}, \frac{Q}{2}, \frac{Q}{3}, \ldots \right\} \). To prove the “yes” part first notice that if \(B \) is a finite union of nonoverlapping boxes \(B_i \), then \(\Delta B = \sum_i \Delta B_i \); then proceed as in the one dimensional proof by writing \(\frac{\Delta B}{PQ} = \frac{\Delta B_i}{B_i} \) as an average of \(\frac{PQ}{pq} \) terms \(\frac{\Delta B_i}{B_i} \). A counterexample when \(P = np + \epsilon \) for some natural number \(n \) and some \(\epsilon \in (0, p) \) is

\[
y \left(\sin^2 \frac{\pi x - a}{p} - \sin^2 \frac{\pi x}{p} \right),
\]

and there is a similar counterexample when \(Q \) is not a proper multiple of \(q \).

Some history: If Theorem 1 is called “the Mean Value Theorem for Differences,” then the corresponding result when \(f(a) = f(b) = 0 \) might be called “Rolle’s Theorem for Differences.” As in the infinitesimal case, the two results are quite equivalent. The positive part of the Theorem above appeared in 1806 and the negative part, at least for Rolle’s Theorem for Differences, in 1934. See [3], where Rolle’s Theorem for Differences is called “the Universal Chord Theorem,” for these facts and many more. I thank R. Narasimhan for calling my attention to the very entertaining reference [3].

References

Mathematics Department, DePaul University, Chicago, IL 60614

E-mail address: mash@math.depaul.edu

URL: http://www.depaul.edu/~mash