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Introduction

A canon of the theory of betting is that the optimal procedure is to
bet proportionally to one’s advantage, adjusted by variance (see [Ep, Th,
www.bjmath.com] for discussion and more references). This is the well-
known ”Kelly Criterion”. It results in maximum expected geometric rate of
bankroll growth, but entails wild swings, which are not for the faint of heart.
A more risk-averse strategy used by many is to scale things back and bet a
fraction of the Kelly bet. This is done commonly by blackjack teams (see
www.bjmath.com) and futures traders, e.g. [Vi], where the Kelly fraction is
referred to as “optimal f”.

In this article we examine what happens when we bet a fraction of Kelly
in terms of the risk of losing specified proportions of one’s bank. We employ
a diffusion model, which is a continuous approximation of discrete reality.
This model is appropriate when the bets made are ”small” in relation to the
bankroll. The resulting formulae are limiting versions of discrete analogs
and are often much simpler and more elegant. This is the theoretical set-up
used for the Kelly theory.

The main result presented gives the probability that one will win a speci-
fied multiple of one’s bankroll before losing to specified fraction as a function
of the fraction of Kelly bet. This formula (2.1) was reported in [Go]. There
it is derived from a more complicated blackjack-specific stochastic model.
See also [Th] for related results. Our approach results in the same formula,
but more assumes from the outset a standard “continuous random walk with
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drift” model. We do not have a historical citation, but it is certainly true
our results here are almost as old as Stochastic Calculus itself, and predate
any mathematical analyses of blackjack. It is our hope that our exposition
of these results will bring some greater unity and clarity to them in the
mathematics of blackjack and related communities.

The mathematical results quoted here require Stochastic Calculus. To
derive them from first principles would entail serious graduate study in prob-
ability theory. Less ambitious readers can just believe the results and skip
to section 2 (or even section 4), or try to view them through the lens of the
discrete analog that we will introduce first in section 1. Our main reference
is the relatively elementary text [KT], which is accessible to those with a
solid background in advanced Calculus and Probability Theory (advanced
undergraduate or entry-level graduate Mathematics). There are many other
more advanced texts on Stochastic Calculus, e.g. [Øk]. Computations of
limits and algebraic manipulations are left as easy exercises for those who
passed freshman calculus.

In proportional betting you never lose everything, since you are betting
a fraction (less than one) of your bank. It seems sensible to ask then, not
about ruin, but rather about the risk of ever losing a specified fraction of
your bank (2.1 and 2.2). We believe the present approach to be the most
direct and sensible approach to the risk of ‘unhappiness’.

In the first section we present the basic diffusion for proportional betting,
describe its relation to the discrete analog, state growth rates, and give the
main drawdown formula. We continue and interpret the formula in terms of
risk of unhappiness in a couple of ways (2.2 and 2.3). The first is an elegant
formula for the probability that you will ever reach a specified fraction aof
your bankroll. The answer turns out to be simply a power of a. We then
comment on exit times in 2.4 for the sake mathematical completeness and
as a reality check.

Some of the results here may be also obtained by manipulating ”Risk of
Ruin” formulas1, where bets are not readjusted according to the bankroll.
Indeed, in section 3 we discuss ruin formulas using a general risk formula
for linear Brownian motion, tying things in with proportional betting. The
general formula in section 2 is a geometric version of the general risk formula
in section 3. We explain how Kelly fractional betting, risk of ruin, bankroll
requirements and linear Brownian motion are related in 3.2-3.4.

We close in the 4th section with some numerical calculations, which
1Thanks to “MathProf”, a frequent contributor to the blackjack sites bjmath.com and

bj21.com for pointing this out.
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affirm (subjectively, of course) the comfort of conventional Kelly fractions
in the range of one-quarter to one-third.

1 The diffusion equation

Notation
B = B(t) bankroll at time t
µ expected return for unit bet
σ standard deviation for unit bet
v = σ2 variance for unit bet
k fraction of Kelly bet
r(k − k2/2)(µ2/v) the expected continuous growth rate (see below)

1.1 An informal discrete analog

Suppose you make a bet every unit of time ∆t. Your k times Kelly bet is
(kµ/v)B. Your expected return for this bet is then ∆B = (kµ2/v)B and
your standard deviation is σ(kµ/v)W where W is a standard normal random
variable. So your return is

∆B =
kµ2

v
B∆t + σ

kµ

v
BW.

The very rough idea now is to convert the deltas to infinitesimals by infinitely
subdividing bets; the random term W is replaced by random variable that
converges to a random process. If the random term were not present (by a
very elementary differential equation) we would obtain exponential growth
at rate (kµ2/v).

The diffusion equation below is a continuous analog, which is a good
approximation if the amount bet is a small fraction of the bankroll. This
will be the case if µ2/v is small. In blackjack, this bet is on the order of
10−4 (since the advantage is a little over 1% and the variance is a little more
than 1).

1.2 The diffusion and growth rate

The k times Kelly bet is the k times expected return divided by the variance
( kµ/v)B. The expected return from this bet is therefore (kµ2/v)B. The
diffusion equation is (cancelling σ’s in the variance term):

dB =
kµ2

σ2
Bdt. +

kµ

σ
BdW.
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where W is a Wiener process. It will be important at the end of section
3 to note that this diffusion only depends on k and the ratio µ/σ. The
diffusion is equivalent to one with σ = 1, Ito’s Lemma (a fundamental result
for stochastic differential equations, e.g. [Øk]), and a little algebra tells us
that

d(lnB) = (k − k2

2
)
kµ2

σ2
dt + (kµ/σ)dW

This is an example of “Geometric Brownian Motion”. The −k2/2 term is a
“variance penalty”.

Some well-known facts that are now apparent: The expected growth rate
is

r = (k − k2

2
)
kµ2

σ2

which is maximized when k = 1, the pure Kelly bet. In this case the rate is
µ2/(2σ2), so the variance cuts your growth rate in half. The intercepts at
r = 0 are obtained when we overbet with k = 2 or we don’t bet at all at
k = 0. In general, our growth rate r is down a factor of (2k − k2) from the
optimal µ2/(2σ2).

The practical question is: Where on this parabolic arc (with 0 < k<1)
do you want to be? Note that k > 1 is always suboptimal since we can
always do better with less risk. For example k = 3/2 and k = 1/2 give the
same growth rates.

2 Drawdown formulae

2.1 The general formula for proportional betting

Theorem 1 Suppose we bet k times Kelly as in section 1, and our initial
bankroll is one (unit). Then the probability P (a, b) that we reach b > 1before
reaching a < 1 is

P (a, b) =
1− a1− 2

k

b1− 2
k − a1− 2

k

.

This formula follows from Chapter 4 of [KT] and follows from the linear
version below (3.2). Notice that the advantage µ and the standard deviation
σ disappear. Having a bigger advantage just speeds up time (see Exit Times
below)! The σ’s cancel out, as the k times Kelly bet ‘normalizes’ variance.
If a = .5 and b = 2 we get the often quoted probability that you double
before being halved 2/3 of the time at full Kelly. This means that 1/3 of
the time you get halved before doubling. As we stated in the introduction,
Kelly betting is not for the faint of heart.
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2.2 The ultimate risk of unhappiness

The serious long-term blackjack player does not worry about winning too
much, but worries about losing. We think of getting cut down to a fraction
a as an alternate concept of “ruin” or “unhappiness”. We model this by
letting b go to infinity, and obtain the probability P(a) of ever reaching
B=a:

P (a) = a2/k−1

This is a pretty nice simplification, isn’t it? At full Kelly, k = 1, the
probability of hitting the fraction a of one’s bank is simply a. At half-Kelly
the probability is a3.

Of course if you take the limit as a goes to zero in the formula for P (a, b),
we can check that (as expected) P (a, b) → 1. So with proportional betting
you always reach your goal, if you can weather the storm.

2.3 A symmetrized risk formula

The probability that you hit b = 1/a before losing to a is P (a, b). Some
algebra reduces the ensuing expression to

P (a,
1
a
) =

a1− 2
k

1 + a1− 2
k

Thus the likelihood of tripling before losing 2/3 (i.e., a = 1/3) at full
Kelly is .75.

It is curious that, for any positive k < 2, the limit of P as a → 0 and
(as b→∞) is 1, while the limit as a→ 1 is .5 (variance overwhelms drift in
the short run).

2.4 Exit times

Assume the set-up as in the Theorem with fixed k. The expected exit time
from [KT] is

E(T ) =
1
r
(q(ln(b)− ln(a)) + ln(a))

where q = P (a, b) as in the main formula 2.1 and r = (k − k2/2)(µ2/v).
Here the random variable T is the exit time and E(T ) is its expected value.
It simplifies to

E(T ) =
1
r

ln(bq/aq−1)
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This is the mean time before you either win and hit B = b or lose to a.

The ultimate expected exit time: If you willing to weather any
storm, until you reach your goal of B = b, then taking the limit as a → 0
yields q = P (a, b)→ 1. The expected time it takes to reach b is

E(T ) =
1
r

ln(b)

This reality check should be no surprise to astute readers of section 1.

3 Drawdown Formulæ with No Bet Resizing

3.1 Ruin versus other measure of risk

In the blackjack literature and online community (e.g. [Sch]; bj21.com
green chip area, bjmath.com) there is interest in risk of ruin for a fixed
betting schemes (“units”) for various games. Risk is sometimes parame-
terized by “risk of ruin” instead of other drawdowns such as we discussed
above. There has been debate about whether to resize often or just stay with
a pre-established betting unit for a given “trip”. Resizing betting units as
often as practically possible (e.g. to the nearest green chip) is the most sen-
sible one, since any but the most foolhardy will in fact resize after enough
bankroll movement. The results above can then be used to approximate or
give bounds for various probabilities.

Still, many advantage players traditionally think in terms of risk of ruin,
assuming (contrary to reality) that they will not ever resize. Thus they have
a theoretical risk of ruin, which we think of as an instantaneous risk of ruin.
It is instantaneous because it will change (in our continuous model) as the
bankroll changes.

3.2 The Risk Formula for Brownian Motion with Linear Drift

The following result gives general exit probabilities for the linear analog of
the Geometric Brownian Motion above. It can be found in standard texts,
e.g. [KT], and implies the geometric drawdown formulae above as well as
instantaneous risk of ruin formulae (below). Here X = X(t) is the bankroll
at time t and X0 is the starting bankroll.

Theorem 2 For Brownian motion dX = rdt + sdW where r is the (con-
stant) linear drift rate s is the (constant) standard deviation, W is the stan-
dard Wiener process, and a < X0 < b, the probability that X hits b before a
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is
ef(X0) + ef(a)

ef(b) + ef(r)

where f(x) = −2xr/s2 for all x.

The proof of this follows from an “infinitesimal first step analysis”, a
Taylor series expansion and the resulting differential equation. It also follows
from the Optimal Stopping Theorem [Øk].

3.3 Risk of Ruin

This formula can be interpreted by viewing X as the bankroll in a game
with win rate r and variance s2 (per unit of time). By taking the limit of
this expression above (3.2) as a goes to zero and b goes to infinity we quickly
arrive at the often quoted ruin formula (see [Sch]) for Brownian motion with
linear drift.

Corollary 3 The probability that X will ever hit zero is

exp(
−2rX0

s2
)

where r is the linear win rate, s is the standard deviation.

3.4 Instantaneous Risk of Ruin with Initial Fractional Kelly
Bet

The bettors who initially bet a k times Kelly bet, but do not resize, have
a linear drift rate r = (kµ2/v)B and standard deviation σ(kµ/v)B where
B = X0 is the initial bankroll (see section 1). A little easy algebra using
the previous corollary gives the following ruin formula, which has appeared
at various times on bjmath.com and bj21.com. It gives the “k times Kelly-
equivalent risk of ruin”.

Corollary 4 The probability that X will ever hit zero is

exp(−2/k)

For example, at k = 1, the non-resizer has a risk of ruin of e−2 or about
13.5%, the so-called “Kelly-equivalent risk of ruin”. It follows the bettor
that constantly resizes so that his instantaneous risk of ruin (assuming no
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k risk of ruin
1.0 13.53%
.5 1.83%
.4 0.67%
.35 0.33%
.30 0.13%
.25 0.03%
.20 0.00%

subsequent resizing) is e−2 is precisely a Kelly bettor. Of course a similar
statement holds for other values of k, as we show in the table below.

We can then ask, “What risk of ruin is right for me (or my team)?”
The very small probabilities make this subjective question perhaps hard to
fathom. However, we know empirically from our experience with blackjack
teams that k = .5 is considered too risky, and most team settle in the .25 to
.35 range. Thus we have an implied risk of ruin from blackjack in the range
of .03% to about 0.3%. It should be noted that these numbers are gleaned
from professional blackjack teams. It has been suggested that individuals
might have realistically have a much smaller k (e.g. see K. Janacek on
bjmath.com), and we concur with this. It should be noted that the value
of k specifies a utility function, which characterizes risk tolerance (see e.g.
[Ep]).

4 Some Numbers

We look more closely at some special cases of the formula to see how Kelly
fractions affect risk. Here we introduce the variable x = 1/k, the inverse
of the Kelly fraction. Thus x = 1 and x = 2 correspond to full Kelly and
half-Kelly, respectively.

4.1 To Halve and to Halve Not

Below we tabulate the function f(x) = 1− a2x−1, which is the risk that you
never reach the value a, as a varies from .5 to .8. For a = .5 it appears
that this risk of being halved gets very small and doesn’t change much as
x increases above 4. This indicates (quite subjectively of course) that there
is little reason for blackjack players to be more conservative than quarter-
Kelly. Some futures traders suggest k = 1/6, a conservative fraction perhaps
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due to the fact that traders are not usually sure of their edge (among other
infelicities).

The risk of never being unhappy
x

a

︷ ︸︸ ︷
1 2 3 4 5 6

.5 .50 .88 .97 .99 .99 1.00

.6 .40 .78 .92 .97 .99 1.00

.7 .30 .66 .83 .92 .96 .98

.8 .20 .48 .67 .79 .87 .91
a=0.5,...,0.8; x= 1

k
=1,...,6;

4.2 “They never looked back”

There are those successful bettors who win and expand their bankrolls, with
no worries about sliding back into the red. There is a lot of folklore about
those winners who “never looked back”. The table below demonstrates how
that once you win big, you are very unlikely to ever go down to half of
the original bank at Kelly values k<1/3 (i.e. x = 3, 4, 5 . . .). Since the
probabilities change little (for increasing b, x>2), this means that if you are
going to get halved, it is extremely likely to happen before you double. It
is perhaps intuitively obvious, but we find the speed of convergence to the
limiting values notable. We give the probabilities P (a, b) for various Kelly
fractions k = 1/x, for a = .5 and a range of b′s in the table below. Notice
that the limiting row is the a = .5 row in the table above.

The probability of reaching goal b before being halved
x

b

︷ ︸︸ ︷
1 2 3 4 5 6

2 .67 .89 .97 .99 .99 1.00
3 .60 .88 .97 99 1.00 1.00
4 .57 .88 .97 .99 1.00 1.00
∞ .50 .88 .97 .99 1.00 1.00

b=2,3,4,∞; x=1,...,6
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