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Abstract

In this survey, we review fundamental properties of coalgebras and
their representation theory. Following J.A. Green we present the block
theory of coalgebras using indecomposable injectives comodules. Using
the cohom and cotensor functors we state Takeuchi-Morita equivalence
and use it to sketch the proof of existence of “basic” coalgebras, due to the
author and S. Montgomery. This leads to a discussion of theory of path
coalgebras, quivers and representations. Some quantum and algebraic
group examples are given.

1 Introduction

This survey article is aimed at algebraists who are not neccesarily specialists
in coalgebras and Hopf algebras. As coalgebras are the unions of their, finite
dimensional subcoalgebras, their representation theory can be viewed as a gen-
eralization of the theory of finite dimensional algebras. We will see that many
fundamental results extend to coalgebras.

We begin by reviewing some of the most basic definitions and properties of
coalgebras and their representations, with the nonspecialist in mind. Some of
this material is covered in standard texts [Abe, Mo, Sw], though perhaps in
different ways. We mainly follow the treatment in [Gr], with updated termi-
nology. We discuss local finiteness, simple comodules, the coradical filtration
and coradically graded coalgebras, and pointed coalgebras in section 2. We
proceed in section 3 is to see how the structure theory for finite dimensional
algebras extends to coalgebras, with injectives comodules playing a role closely
analogous to the role of projectives in module theory. We see that block theory
extends to coalgebras, and then discuss the Ext-quivers of coalgebras, and path
coalgebras of arbitrary quivers. In a final subsection we describe a special case
of the Brauer correspondence for modular coalgebras.
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We continue in section 4 by discussing the cohom and cotensor functors, the
adjoint pair that dualize hom and tensor for module categories. These functors
yield a category equivalence theory for comodules due to Takuechi [Tak], that is
now known as Morita-Takeuchi equivalence. This in turn allows the construction
an equivalent basic coalgebra in section 5, which is pointed over an algebraically
closed field. The construction of a basic coalgebra first appeared in [Sim], and
reappeared [CMo] where it was.studied further. It follows that any arbitrary
coalgebra is equivalent to a suitably large subcoalgebra of the path coalgebra of
its quiver (5.1). In the hereditary case, we get the entire path coalgebra (5.2)
Representations of path colgebras can be regarded as quiver representations
that are locally nilpotent (5.3)

Examples drawn from quantum and algebraic group theory are given in
section 6 . Quantum and algebraic groups provide an example of a setting
where coalgebras and comodules are pertinent. When the base field is infi-
nite comodules correspond to rational representations of the (quantum) group.
Recent work [CKQ], addresses the transpose and the existence of almost split
sequences for comodules. We discuss this work in section 7, and present a
special case, which allows for the construction of almost split sequences in the
category of finite-dimensional comodules. This result enables the construction
of the Auslander-Reiten quiver.

We conclude with a remark from [Tak] characterizing comodule categories
among abelian k -categories. The reader may find hypotheses required an abelian
k -category to be a comodule category to be suprprisingly mild.

Conventions:

k a fixed base field
⊗ = ⊗k

C = (C,∆, ε) a coalgebra over k
M = (M,ρ) a right C-comodule
BMC the category of B,C -bicomodules
MC the category of right C -comodules
∗ = Homk( , k)
HomC(M,M ′) = HomMC (M,M ′)

2 Coalgebras and Comodules

Definition A coalgebra is a vector space C with a comultiplication ∆ : C⊗C →
C and a counit map ε : C →k satisfying

(a) coassociativity (id⊗∆)∆ = (∆⊗ id)∆
(b) counitary property (id⊗ ε)∆ = (ε⊗ id)∆ = idC .

Thus a coalgebra is obtained by dualizing the associative multiplication map
A⊗A→ A and unit map k→ A. So a finite dimensional coalgebra is the linear
dual of a finite dimensional algebra (and vice-versa). While this duality might
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lend an air of redundancy to coalgebra theory, there are properties are enjoyed by
infinite dimensional coalgebras which are denied infinite dimensional algebras.

Comodules are similarly defined by dualizing the definition of module.

Definition A right C-comodule for a coalgebra C is a vector space M with a
comodule structure map ρ = ρM : M →M ⊗ C satisfying

(a) (id⊗∆)ρ = (ρ⊗ id)ρ
(b) (id⊗ ε)ρ = idM .

We shall assume that comodules are on the right unless we say otherwise.
If M happens to be a subspace of C, then (with ρ = ∆),we have that M is

a subcomodule if ρ(M) ⊂M ⊗ C; here M is said to be a right coideal of C.
By further analogy, we say that a subspace D ⊂ C is a subcoalgebra if

∆(D) ⊂ D ⊗D. If I ⊂ ker ε satisfies ∆(I) ⊂ I ⊗ C + C ⊗ I, we say that I is a
coideal.

A linear map between comodules f : M → N is a comodule homomorphism if
(id⊗f)ρM = ρNf . Let HomC(M,N) denote the space of comodule morphisms
for M,N ∈MC .

The fundamental homomorphism theorems hold as one would guess. The
category MC of right comodules is an abelian category.

Coalgebras generalize finite dimensional algebras because of the following
fact, sometimes known as the

2.1 “Fundamental Theorem of Coalgebras”

Proposition 1 Every coalgebra is the sum of its finite-dimensional subcoalge-
bras.

We shall prove this fact soon, after surveying some notation and results. We
follow [Gr] here.

Let X and Y be vector spaces with bases {xj} and {yk} respectively. Let
u ∈ X ⊗ Y and express

u =
∑

uik ⊗ yk =
∑

xj ⊗ vji.

where uik ∈ X and vji ∈ Y are uniquely determined. Define

L(u) = span{uik} and R(u) = span{vji}

Note that L(u) and R(u) are finite dimensional. The definitions of L and R
extend in the obvious way to subsets of X⊗Y by taking sums. Obviously L(U)
and R(U) are finite dimensional if U is.

Now let M be a right C-comodule. It is easy to see that for any subset
U ⊂M , L(ρ(U)) is the subcomodule of M generated by U (i.e. the intersection
of subcomodules containing U). In particular, if U is a right comodule, then
L(ρ(U)) = U . These facts follow from the counitary property (b) for comodules.
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Now let M be a comodule with basis {mi}. Write ρ(mi) =
∑

t mt ⊗ cti, for
some uniquely determined cti ∈ C and observe that coassociativity implies that

ρ(cij) =
∑

t

cit ⊗ ctj .

Let R(ρ(M)) be denoted by cf(M), which is known as the coefficient space
of M . It is the subspace spanned by the cti as just defined and it is evident
from the equation just displayed that

1. cf(M) is a subcoalgebra of C .

2. M is a cf(M)-comodule that is finite dimensional if M is finite dimen-
sional.

Now for the proof of the Proposition. Let c ∈ C and let M = L(∆(c)) be the
right subcomodule generated by c. The counitary property idC = (ε ⊗ idC)∆
implies that c ∈ cf(M). Thus every element of C is contained in a finite
dimensional subcoalgebra of C.

We shall denote the subcoalgebra of generated by c by (c).
Remarks: It can be shown that (c) = R(∆(L(∆(c))), the coefficient space of

the right subcomodule generated by c. Also (c) can be expressed as C∗ ⇀ c ↼
C∗, using the left and right “hit” actions of C∗ (see [Mo]). The coefficient space
is a notion dual to the annihilator of module; in fact cf(M)⊥ is the annihilator
of M as a left C∗-module.

2.2 Simple Comodules

A comodule is said to be simple if it has no proper nontrivial subcomodules. A
coalgebra is said to be simple if it has no proper nontrivial subcoalgebras. By
results above, these simple objects are finite dimensional.

Let S be a simple comodule, and let D = cf(S). Then by dualizing Artinian
ring theory, it is not hard to see that:

• D is a simple subcoalgebra of C and

• D is isomorphic as a comodule to the direct sum of dimEnd(S)(S) copies
of S.

2.3 The coradical filtration

Let C0 = corad(C) denote the sum of the simple subcoalgebras of C. It is also
the socle (=sum of simple subcomodules) of C as a comodule, on either side.

Let Cn be defined inductively by

Cn = ∆−1(Cn−1 ⊗ C + C ⊗ C0)
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This is known as the coradical filtration of C. It is equal to the socle series
of C as a comodule. More generally we can describe the socle series of M by
M0 = ρ−1(M ⊗ C0) and

Mn = ∆−1(Mn−1 ⊗ C + M ⊗ C0)

Here M0 equals the direct sum of the simple subcomodules of M (as our termi-
nology suggests).

The next Lemma is a useful property of the degree one term.

Lemma 2 (see [Mo1], 5.3.1) Let f : C → D be coalgebra map. Then f is
monic if and only if its restriction to C1 is monic.

A coalgebra that is an N-graded vector space C=⊕C(n) is said to be (N-)
graded if ∆C(n) ⊂

∑
i C(i) ⊗ C(n − i) for all n ∈ N. Basic results concerning

graded coalgebras can be found in [NT]. A graded coalgebra is said to be corad-
ically graded [CMu] if C0 = C(0) and C1 = C(0)⊕C(1). The coradical filtration
can then be expressed in terms of the grading. Coradically graded coalgebras
are a special case of strictly graded coalgebras [Sw], and have recently been
generalized in [AS].

Proposition 3 (CMu) If C is a coradically graded coalgebra, then Cn=⊕i≤nC(i)
for all n ∈ N.

The next result is used in [CMu] to find the coradical filtration for quantized
enveloping algebras (see Example 6d below). The statement here is a corrected
version of [CMu, 2.3] where the the hypotheses originally only required the
coalgebras to be bialgebras.

Proposition 4 Proposition 5 CMu2] Let C and D be pointed Hopf algebras
with the same coradical A. Then H = C ⊗A D is coradically graded, where

H(m) =
m∑

i=0

H(i)⊗H(m− i)

2.4 Pointed coalgebras and skew primitives

C is said to be pointed if every simple subcoalgebra is of dimension one.
Define the group-like elements of C to be

G(C) = {g ∈ C|∆(g) = g ⊗ g}.

The kg, g ∈ G(C) are precisely the one dimensional subcoalgebras, so the
span of the G(C) is C0 if and only if C is pointed. If C is cocommutative
(∆ = twist ◦∆) and k is algebraically closed, then a coalgebraic version of the
Nullstellensatz says that C is pointed. A related fact says that the coordinate
Hopf algebra of an affine algebraic group is pointed if and only if it is solvable.
Other examples include (quantized) enveloping algebras. See example (d) at
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the end of this article. G(C) is a group in case C is a Hopf algebra, and thus
C0 is a group algebra.

Assume that C is pointed. We describe how the skew primitive and group-
like elements make up the first two terms of the coradical filtration.

We have C0 = kG(C). Let g, h ∈ G(C) and set

Pg,h = {c ∈ C|∆(c) = g ⊗ c + c⊗ h}

The Pg,h are called (g, h)-skew primitives. Choose a vector space complement
P

′

g,h for k(g − h) in Pg,h (the “nontrivial” ones).
The Taft-Wilson theorem (see [Mo1], 5.4.1)states that

C1 = C0 ⊕
∑

g,h∈G(C)

P
′

g,h.

The Pg,h are called (g, h)-skew primitives.

3 Structure theory

3.1 Injectives

Let X be any k -space. We make X⊗C into a C-comodule via the map idX⊗∆.
If M is a comodule, we write (M)⊗C to denote the comodule with (M) being
the underlying vector space of M (whose comodule structure is ignored). This
“free” comodule is just the direct sum of dim M copies of C.

It is known that the category of comodules is a locally finite abelian category
(see section 8 below, if interested), and thus has enough injectives. Let’s make
this more concrete.

Theorem 6 (a) C is an injective comodule
(b) MC has enough injectives
(c) direct sums and direct summands of injective comodules are injective.

Proof. We prove (a) and (b). Let f ′ ∈ HomC(M,C) and define f ∈
Homk(M, k) by setting f = ε ◦ f ′. We can recover f ′ from f by seeing
that f ′ = (f ⊗ idC)ρ. This yields a natural isomorphism between the func-
tors HomC(−, C) and Homk(−, k) :MC  Mod(k). Since the latter is exact,
so too is the former. This shows that C is injective. Similarly any direct sum
of copies of C is injective.

Next we show that every comodule embeds in an injective comodule. To
see this consider the map ρ : M → (M) ⊗ C. It is straightforward to check
that this is an embedding of comodules. For instance the counitary property
immediately implies that ρ is a monomorphism. This proves (b).

Remarks: Part (c) of the theorem above might seem surprising since the
statement is false for modules in general. Generally, the direct product of co-
modules does not have a comodule structure.
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The category MC does not necessarily have enough projectives. If C =
span{xi|i = 0, 1, 2, · · ·} is the divided power coalgebra, with

∆(xn) =
n∑

i=0

xi ⊗ xn−i.

ThenMC has no projectives (so it doesn’t have enough). Let Cn = span{xi|i =
0, 1, 2, · · ·, n}. It is not hard to see that a projective comodule would have
C∗ = lim

←
C ∗n as a homomorphic image as a C∗-module. But C∗ is a not rational

as a C∗-module.

Injective Hulls exist in the “usual” sense: Every comodule M is contained in
a maximal essential extension, which is minimal with respect being injective and
containing M. This comodule is denoted by I(M). As usual, I(M) ∼= I(M0).The
proofs are similar to the module case.

A key Lemma in constructing injective hulls is

Lemma 7 Let I ∈ MC be injective. If e0 = e2
0 ∈ EndC(I0), then there exists

e = e2 ∈ EndC(I) extending e0.

The proof involves inductively constructing idempotents en ∈ endC(In), so
that en+1 extends en for n = 0, 1, 2, ... This is done by a generalization of
Brauer’s “famous idempotent lifting procedure”. The point here is that the
sequence {en} specifies an idempotent endomorphism of I.

3.2 Indecomposable Injectives

Let G be a full set of simple comodules inMC . For each g ∈ G, let m(g) denote
the multiplicity of g in C. The coefficient space of g is a cosemisimple coalgebra
and as a right comodule is isomorphic to the direct sum of m(g) = dimEnd(g) g
copies of g. It is known [Gr] that

Theorem 8 The I(g) form a full set of indecomposable injectives in MC . As
right C-comodules,

C ∼= ⊕g∈GI(g)m(g).

This generalizes the structure theory for finite-dimensional algebras where
injective indecomposables replace porjective indecomposables. We see next
that block theory generalizes as well.

3.3 Blocks and Quivers

Define the (Ext-) quiver of C to be the directed graph Q(C) with vertices G and
dimkExt1(h,g) arrows from g to h. Notation as in 3.2 above. The blocks of C
are the vertex sets of components of the graph (ignoring directionality) Q(C).
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In other words, the blocks are the equivalence classes of the equivalence relation
on G generated by arrows.

Let bl(g) denote the block containing g, so that G=∪̇g∈T bl(g) where T is
a set of representatives of blocks of C. In a manner dual to the decomposi-
tion theory for finite dimensional algebras, the blocks determine the coalgebra
decomposition of C.

Theorem 9 ([Gr]) Let C(g) = cf(I(g)) Then C(g) = C(h) for all h ∈ bl(g).
Also
(a) C(g) ∼=

⊕
h∈bl(g)

I(h)m(h) as right comodules, and

(b) C = ⊕g∈T C(g)

As a consequence, C(g) is the largest indecomposable subcoalgebra con-
taining g. Also C is indecomposable as a coalgebra if and only if its quiver is
(topologically, ignoring directionality) connected.

When C is a Hopf algebra, G = G(C) is a group, C(k1G) is a Hopf subalgebra
and P := bl(k1G) is a normal subgroup of G. Furthermore, C is isomorphic as
an algebra to a crossed product C(k1G)#tG/P , see [Mo2].

3.4 Quivers for Pointed Coalgebras

Assume C is pointed. Then the simple subcoalgebras are in bijection with the
grouplikes G = G(C). Furthermore, there are dimk P

′

g,h arrows (see 2.4) from
g to h, for all g, h ∈ G. This can be seen by considering the extension

0→ kg → kg + kd→ kh→ 0

corresponding to the (g, h)-skew primitive d. The ordinary (1, 1)- primitives for
a bialgebra thus correspond to loops.

The enveloping algebra U(g) of a Lie algebra g is a cocommutative pointed
Hopf algebra with quiver consisting of a single vertex and dim g loops.

We shall discuss more examples near the end of this article in section 7.

3.5 Modular Theory

A tool in the computation of the structure of indecomposable injectives for some
coalgebras is Green’s [Gr1] coalgebraic generalization of the Brauer correspon-
dence. Let us summarize this in a nice special case (that is relevant to example
6c below). Let C be a coalgebra defined over a field K,which is the quotient
field R, a discrete valuation ring with maximal ideal m. Let k= R/m be the
residue field. Assume C contains an R-lattice C0 with C = C0⊗R K, and write
C = C0⊗Rk.

Now assume that

• C is cosemisimple with {Vj | j ∈ J } a complete set of simple right comod-
ules.
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• The simple C-comodules Vj are absolutely simple (i.e., remain simple upon
any field extension of K).

Let V j be a specialization of the simple comodule to k (which generally is
no longer simple).

Let Si, i ∈ I denote a complete set of simple comodules for Ck and Ii the
injective hull of Si. Let dji denote the multiplicity of Si in V j and let cki denote
the multiplicity of Si in Ik (i, k ∈ I). The matrices d = (dji) and c = (cki) are
known respectively as the decomposition and Cartan matrices. These matrices
are infinite in general.

Assume further that

• End(Vj) = K and End(Si) =k for all i, j.

J. A. Green’s result says (t =transpose):

Theorem 10 c = dt·d

4 Morita-Takeuchi Equivalence

4.1 Cotensor and Cohom

Define the cotensor product �C as follows. Let M ∈ MC , and N = (N,λ) ∈
CM and define

M�CN = {α ∈M ⊗N |(ρ⊗ idN )(α) = (idM ⊗ λ)(α)},

which also can be expressed as the appropriate coequalizer.

Lemma 11 With � = �C and a subcoalgebra D ⊂ C,
M�Cn

∼= Mn for all n.
M�C ∼= M
M�D ∼= ρ−1(M ⊗D).

The last statement is proved by seeing that the comodule embedding ρ :
M →M ⊗D has image isomorphic M�D. The first two statements are special
cases.

Takeuchi solves the problem of determining when there is a left adjoint to
−�CN, N ∈ CM, see below. The left adjoint functor gives rise to coendomor-
phism coalgebras that extend (and dualize) the endomorphism rings of finite
dimensional modules.

Definitions Let M,N ∈ MC and write {Ni} be the directed system of
finite dimensional subcomodules of N , ordered by inclusion. Define

cohomC(M,N) = lim
→

Hom(Ni, N)∗.

We write coendC(M) for cohomC(M,M)
We say that M ∈MC is:

9



• finitely cogenerated if M embeds in a finite direct sum of copies of C.

• quasi-finite if Hom(F,M) is finite dimensional for finite dimensional F ∈
MC .

• a cogenerator (for MC) if C embeds in a direct sum of copies of M .

We note that quasi-finite implies finitely cogenerated.

Proof. It suffices to show that HomC(F,C) is finite dimensional for fi-
nite dimensional F ∈ MC . But we showed in the proof of Theorem 3 that
HomC(−, C) is naturally isomorphic to ( )∗ = Homk(−, k). The assertion fol-
lows immediately.

Also, one can observe that M is quasi-finite if and only if HomC(g,M) is
finite dimensional for simple g ∈ MC , which holds if and only if every simple
has finite multiplicity in M0. It is now easy to produce examples of quasi-finite,
non-finitely cogenerated comodules.

Adjunction Property: If X ∈ BMC is quasi-finite in MC , then −�BX :
MB → MC has left adjoint cohomC(X,−) : MC → MB [Tak, 1.9]. The
cohom functor is characterized by the adjunction property.

The following characterizes equivalent comodule categories.

Theorem 12 ([Tak]) Let B,C be coalgebras and let E ∈ BMC . The following
are equivalent:
(a) −�BE :MB →MC is an equivalence of categories.
(b) E is a quasi-finite injective cogenerator in MC and B ∼= coendC(E).

In the case that (a) and (b) are true say that B and C are “(Morita-Takeuchi)
equivalent” coalgebras and write B ∼ C. The inverse functor can be expressed
as

−�Ccohom(E,C) ≈ cohom(E,−).

It is shown [Tak] on the other hand that if MB and MC are equivalent cate-
gories, then the bicomodule E as in the statement of the theorem exists.

Here is a lemma that is useful in reducing things to finite dimensional sub-
objects.

Lemma 13 Let D be a subcoalgebra of C and E ∈ MC ; set F = ρ−1
E (E ⊗

D) (∼= E�CD).Then
(a) E injective implies F injective in MD.
(b) E finitely cogenerated and D finite dimensional implies F finite dimensional.

A key observation in proving this lemma ([CMo]) is that HomD(Y,E) =
HomD(Y, F ) for all Y ∈MD.

Remark We can see how coend(M) is the direct limit of coalgebras and so
is a coalgebra.. (In [Tak] this is deduced from a universal property of cohom
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instead.) Write E as the directed union of finite dimensional subcomodules Ei

as before. Put
Ci = cf(Ei)

Fi = ρ−1
E (E ⊗ Ci)

as in the lemma above. Then as above,

HomC(Fi, E) = HomC(Fi, Fi);

so:
cohom(E,E) = lim

→
Hom(Ei, E)∗

= lim
→

Hom(Fi, E)∗

= lim
→

End(Fi)∗

where the second equality holds because of the cofinality of {Fi}. Thus cohom(E,E)
is a direct limit of finite dimensional coalgebras.

It follows similarly that E ∈ coendC(E)MC .

5 Basic Coalgebras

We can write C ∈ MC as a direct sum of indecomposable injectives with mul-
tiplicities. Let E denote the direct sum of the indecomposables where each
indecomposable occurs with multiplicity one. Clearly E is injective, called a
“basic” injective for C. Define

B = BC = coendC(E).

By Theorem 9, B is Morita-Takeuchi equivalent to C. The coalgebra B is
basic in the sense that

Theorem 14 ([Sim], see also [CMo]) The simple subcoalgebras of B are duals
of finite dimensional division algebras.

As in the remark above, B = lim
→

End(Fi)∗. Using the fact that Fi is injective

in MCi , and in fact basic, the theorem is proved by reducing to the finite-
dimensional case, where the result is known.

Corollary 15 ([CMo]) If k is algebraically closed, then B is pointed.

Remark 16 In [CG], it is shown that two coalgebras are equivalent if and only
if their basic coalgebras are isomorphic. Moreover it is shown that the basic
coalgebra of C is e ⇀ C ↼ e where e ∈ C∗ acts on the left and right by the
usual hits. It follows that Morita-Takeuchi equivalence can be expressed with
idempotents, just as is the case with artinian algebras. The theory of Morita-
Takeuchi equivalence cna be thus simplified.

11



5.1 Path Coalgebras

Let Q be a quiver (not necessarily finite) with vertex set Q0 and arrow set Q1.
The path coalgebra kQ of Q is defined to be the span of all paths in Q with
coalgebra structure

∆(p) =
∑

p=p2p1
p2 ⊗ p1

ε(p) = δ|p|,0

where p2p1 is the concatenation atat−1...as+1as...a1 of the paths p2 = atat−1...as+1

and p1 = as...a1 (ai ∈ Q0). Here |p| = t denotes the length of p and the starting
vertex of ai+1 is the end of ai.

Thus vertices are group-like elements, and if a is an arrow g ← h, with
g, h ∈ Q0, then a is a (g, h)− skew primitive. It is apparent that kQ is pointed
with coradical (kQ)0 = kQ0 and the degree one term of the coradical filtration
is (kQ)1 = kQ0⊕ kQ1. More generally, the coradical filtration of kQ is given by

(kQ)n = span{p||p| ≤ n}.

Alternatively, kQ can be defined as the cotensor coalgebra [Ni] associated to
the kQ0, kQ0 -bicomodule kQ1.

If kQ is finite dimensional, it is the dual of the usual path algebra (or its
opposite). Note that if there are infinitely many vertices, the path algebra lacks
a identity element; the path coalgebra always has a counit.

Now let C be an arbitrary coalgebra, let B be the associated basic coalgebra
and assume k is algebraically closed. Then B is pointed and Q(C) = Q(B).
From the universal property of cotensor coalgebras [Ni], it follows that there
exists a coalgebra map B → kQ(C) which is a bijection on the degree one
subcoalgebras. By lemma 2, this map is an embedding. Thus we obtain a
coalgebraic version (with no finiteness restrictions) of a fundamental result of
Gabriel for finite dimensional algebras:

Corollary 17 ([CMo]) Every coalgebra C over an algebraically closed field is
Morita-Takeuchi equivalent to a subcoalgebra of kQ(C) containing kQ(C)1

5.2 Hereditary Coalgebras

A coalgebra C is said to be hereditary [NTZ] if homomorphic images of injec-
tive comodules are injective. Pointed hereditary coalgebras are exactly path
coalgebras kQ for some quiver Q [Ch]. With the aid of the preceding result we
also have

Theorem 18 (Ch) Every coalgebra C over an algebraically closed field is
Morita-Takeuchi equivalent to its path coalgebra of kQ(C).
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5.3 Representations of Path algebras

We define a representation of a quiver Q as usual by assigning a vector space
Vg to each vertex g and a linear map fa : Vg → Vh corresponding to each arrow
a : g → h. By composing f ’s we obtain maps fp for all nonempty paths p. The
category of representations is denoted by rep(Q). It is a standard fact that
rep(Q) is equivalent to the category of modules over the path algebra of Q (at
least when Q is finite).

Let C denote the path coalgebra kQ, and let M be a C-comodule. To M
we associate an object of rep(Q(C)) = rep(Q) as follows. Let I be the coideal
spanned by paths of length at least 1, and define π : C → C/I ∼= C0 as the
projection. Set ρ0 = (idM ⊗ π) ◦ ρ. Define

Vg = {v ∈M |ρ0(m) = m⊗ g}

and define fp : Vg → Vh for paths p (from g to h) by

ρ(v) =
∑

fp(m)⊗ p.

where the sum is over paths p starting at g. Since the paths are linearly inde-
pendent, the fp are well-defined and we get a representation of Q. Note that
the sum has only finitely many nonzero terms. Checking details, we find that
MkQ corresponds to the subcategory of “locally nilpotent” representations.

Proposition 19 (see [CKQ]) For any quiver Q, MkQ is equivalent to the full
subcategory of rep(Q) consisting of representations (V, f) such that for all g ∈
Q0 and v ∈ Vg, fp(v) = 0 for all but finitely many paths p (starting at g).

Let Q be the quiver with a single vertex g and a single loop a. Let Vg =k
and fa = λ·, λ ∈ k. This representation does not correspond to a kQ-comodule
unless λ = 0 (though of course it is a module over the path algebra k[a]).

We would like two mention the articles [Sim2, NS] that contain interesting
results concerning certain types of path coalgebras.

6 Examples

a. Let C be the coordinate Hopf algebra of an affine connected simply connected
semisimple algebraic group G or the quantum variant where q is not a root of 1
(see [CP]). If k is of characteristic zero, then C is cosemisimple. So the blocks
are singletons.

b. Let C be the coordinate algebra of SL(2). If k is of positive characteristic
zero, then C is cosemisimple. The blocks are infinite and infinite in number.
The quiver structure is somewhat complicated, and are given by “p-reflections”
see [Cl].
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c. Let C = kζ [SL(2)] be the q-analog of the coordinate algebra of SL(2) (see
[CP]), where q is specialized to a root of unity of odd order l. Assume k is of
characteristic zero. The quiver structure is given as follows: For each nonnega-
tive integer r, there is a unique simple module L(r) of highest weight r (closely
analogous to the simple highest weight modules for nonquantum groups). These
comodules exhaust the simple comodules.

Write
r = r1l + r0

where 0 ≤ r0 < l. Define an “l-reflection” τ : Z→ Z by

τ(r) = (r1 − 1)l + l − r0 − 2

if r0 6= l − 1, and τ(r) = r if r0 = l − 1. Put σ = τ−1 (perhaps after checking
that τ is a bjiection).

Theorem 20 ([CK]) Set I(r) = I(L(r)) for all integers r ≥ 0.
(a) If r0 = l − 1, then I(r) = L(r).
(b) If r < l − 1, then I(r) has socle series with factors

L(r), L(σ(r)), L(r).

(c) If r > l (and r0 6= l − 1), then I(r) has socle series with factors

L(r), L(σ(r))⊕ L(τ(r)), L(r).

This determines the quiver as having vertices labelled by nonnegative inte-
gers and with an arrow r � s in case r0 6= l − 1 if and only if s = τ(r). In case
r0 = l − 1, the block of r is a singleton (equivalently L(r) is injective). Thus
the nontrivial block containing L(r), r < l − 1 has quiver

r � τ(r)� τ2(r)� · · ·

The injectives indecomposable comodules are all finite dimensional, in con-
trast to the injectives for the ordinary (nonquantum) modular coordinate coal-
gebra. Also, the result shows that the coradical filtration is of length 2 (i.e.
C = C2). It follows that C is semiperfect (see [Lin]) in the sense that every
finite dimensional comodule has a projective cover.

These results are obtained using the modular result at the end of section
3. We sketch here a short proof of (b) and (c) above. The simple comodules
for C = kζ [SL(2)] are known to be highest weight modules, say with weight
r ∈ N, which can be specialized to C. The resulting C−comodules are the
simple ones L(r) in case r1 = l − 1 or r < l; otherwise they have composition
series L(ρ(r)) ≤ L(r). [CK]. Fixing r < l − 1, we can list the simples of the
nontrivial block containing L(r) as the comodules Si = L(τ i(r)), i ∈ N. Thus
the decomposition matrix d = (dij) for this block is given by dii = 1 = di+1,i,
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and 0’s elsewhere. By the Brauer correspondence in section 3, the Cartan matrix
c = (cij) is given by cii = 2 and ci+1,i = ci,i+1 = 1, and 0’s elsewhere. Now
the conclusions (b) and (c) follow once we know the there are no self-extensions
of simples. This fact follows by following the argument or the nonquantum
modular theory, e.g. [Ja, 2.14].

In [CK], we also determine the indecomposable injectives for the standard
quantum analogs of coordinate coalgebras of 2 × 2 matrices and general lin-
ear group at odd roots of unity. The situation is more complicated for these
coalgebras.

d. Let C be the quantized enveloping algebra Uq(g), associated to a finite
dimensional complex simple Lie algebra g of rank n, defined over a field k of
characteristic zero. See [Lu1] and e.g., [Mo], [CP] for definitions.

Assume q is specialized to an element of k which is not a root of unity. C
is generated as an algebra by group-likes K±1

i and the (Ki, 1)− skew primitives
Ei and KiFi, i = 1, ..., n. C is pointed with G(C) being a free abelian group
of rank n. It turns out that the only skew primitives are the “obvious” ones,
spanned by gEi , gFi , and the “trivial” ones g−h, (g, h ∈ G(C)). (The nonsimple
root vectors are not skew-primitive.) Thus the vertex set is G(C), and arrows
are

gKi
−→→ g,

for any g ∈ G(C), 1 ≤ i ≤ n.
This result was obtained in [CMu] when q is transcendental over the ratio-

nals. Further progress was made (working with quantized coordinate algebras)
in [Mus]. E. Müller [Mü] solved the problem of determining the coradical filtra-
tion more generally, including versions for specializations to roots of unity. His
methods rely on Lusztig’s newer construction of quantized enveloping algebras
[Lu]. Another recent broad generalization appears in [AS].

7 Almost Split Sequences

In [CKQ], we investigated the existence of almost split sequences for comodules
given a fixed right or left-hand term. To construct the Auslander-Reiten quiver,
one needs to be able to iterate the construction in some subcategory.

A coalgebra is defined to be right semiperfect [Lin] if every simple left C-
comodule has an finite-dimensional injective hull (equivalently, every finite-
dimensional right comodule has a projective cover). In the context of group
schemes, (left and right) semiperfect coalgebras were called virtually linearly
reductive in [D1,D2].

Theorem 21 (CKQ) Let C be a right semiperfect coalgebra such that soc(I(S)/S)
is of finite length for all simple right C-comodules. Then the category of finite-
dimensional right C-comodules has almost split sequences.
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A coalgebra is defined to be right semiperfect [Lin] if every simple left C-
comodule has an finite-dimensional injective hull (equivalently, every finite-
dimensional right comodule has a projective cover). In the context of group
schemes, (left and right) semiperfect coalgebras were called virtually linearly re-
ductive in [D1,D2]. The theorem applies to right semiperfect coalgebras whose
Ext-quivers have only finitely many arrows ending at each vertex. Special cases
of this are coalgebras whose Ext-quivers have only finitely many arrows and
finitely many paths ending at each vertex. Hence, finite-dimensional comod-
ules over subcoalgebras of path coalgebras of such quivers have almost split
sequences.

The theorem applies to kζ [SL(2)], which is semiperfect, as in 6c above,
(though not to the path coalgebra of its quiver). More generally, let kζ [G] be
a quantized coordinate algebra at the root of unity ζ as in [APW]. Then by
[loc. cit., section 9] (see also [AD] for a different proof), kζ [G] is a semiperfect
coalgebra. It should be noted that a Hopf algebra is semiperfect as a coalgebra
if and only if it is right semiperfect.

8 Abelian Categories

We append a remark from [Tak].
Let A be an abelian k -category that

• has exact directed colimits and has a set of objects of finite length which
generate A (i.e. A is “locally finite”), and such that

• A(S, S) is finite dimensional for all simple objects S.

Takeuchi [Tak] says such categories A are of “of finite type”. He shows that

Theorem 22 An abelian k-category A is equivalent to a comodule categoryMC

for some coalgebra C if and only if A is of finite type.

The proof mirrors the construction of the basic coalgebra. Let E be a an
injective cogenerator, which is the direct sum of injective objects, each occurring
with multiplicity one. Then E is isomorphic to the direct limit of its finite length
subobjects Ei. Letting C = lim

→
A(Ei, E)∗ works.
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