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Introduction

In this article we consider risk aversion for advantage poker players. We
discuss a sense in which poker players can proportionally Kelly-bet. This
results in a method of prescribing bankroll requirements depending on risk
aversion. It also provides a companion to the results of [CI] (in this volume)
whose formulæ will apply to poker players exercising bankroll management
and stake selection as prescribed. Employing a continuous diffusion model
as in [CI], we show that if stakes are chosen in accordance with bankroll
as prescribed, then the bankroll will follow the same stochastic process as
for a fractional Kelly bettor with unit variance. One’s risk-aversion can
be parameterized by an instantaneous risk of ruin, or equivalently by a
Kelly fraction k, which in turn corresponds to a utility function. The Kelly
fractions we recommend are ones commonly used by blackjack professionals.

In the second section we use the concept of Certainty Equivalent (CE)
to quantify how big a pot must be in order to call a bet with a drawing
hand, depending on risk aversion. This makes precise a common assertion
that one should forgo borderline positive expectation wagers that have high
variance. As one might expect, except for longshot draws and low bankroll
situations, the effect of risk-aversion is small but not negligible. We solve for
the CE break-even points exactly for a range of Kelly fractions and provide
numerical computations. Benefitting from the brevity of the one-half Kelly
CE break-even formula, we obtain a simplified formula to approximate CE
break-even points, in the last subsection.

Our investigation is based on limit holdem. With sufficient data the
same considerations should apply to other wagering, such as no-limit holdem

1



and tournaments. The excess pot odds values are analogous to risk-averse
playing indices in blackjack.

1 Proportional Betting for Poker Players

A common rough benchmark for limit holdem players (at least up to mid-
stakes) is an hourly expectation of 1 big bet and a variance of 100 big bets
squared. Thus the unitless ratio of hourly expectation to hourly standard de-
viation is 10. While your mileage may vary, we shall see that for our analysis,
the ratios of expectation to variance and expectation to standard deviation
are what matter. Some games may have higher expectation, but often their
variance is higher, and the reverse may occur. We model the benchmark
situation as Brownian motion with linear drift r = 1 (big bets/hour) and
hourly standard deviation s = 10 big bets.

Poker players do not resize their bets as they do in blackjack. But they
essentially choose their betting levels by which game they play. Let us
assume a fixed ratio of expectation to standard deviation equal to a positive
constant r/s. We model this game as Brownian motion with linear drift as
earlier in this section. The resulting risk of ruin is given in [CI, 3.3 Corollary
3] as

exp(−2xr/s2)

where x is the bankroll. Now let us assume that the player’s risk tolerance is
specified by her Kelly fraction k, and their attendant risk of ruin exp(−2/k).
Setting the two risks of ruin equal, we get

xr/s2 = 1/k

i.e.

x = s2/kr

This says that the k times Kelly player ideally has a bankroll
always equal to s2/kr.

We note for our benchmark (s2/r = 100) game:

An optimal (full Kelly) player ideally always choose a game where
the bankroll is 100 big bets, and this gives the optimal geometric
growth rate.
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As we noted in [CI, section 1], betting with k > 1 is always subopti-
mal. Therefore is always wrong to have less than s2/r (=100 big bets in
benchmark) as a bankroll. A 1

3 ·Kelly player will have 300 big bets. The
more conservative quarter-Kelly players need 400 big bets, etc. This gives
an answer to bankroll requirements for holdem players in terms of fractional
Kelly betting. The range of answers seem be higher than bankroll recom-
mendations commonly given (sometimes by erroneous reasoning) by poker
experts, e.g. [Mal], www.twoplustwo.com.

Overall, more conservative money management is recommended. Im-
portant reasons for scaling back k for poker versus blackjack include the
relative lack of certainty about r and s. Using a value a k = 1/6 and a bank
of 600 big bets would not seem unreasonable. As we pointed out above, even
smaller values of k may be appropriate. For an individual, the bankroll is
one’s total net worth minus expenses (including the present value of future
earnings). However, many defy this definition and play with a “gambling
bankroll” or “what they can afford to lose”. In such artificial cases, playing
closer to the optimal k = 1 may be recommended.

As a practical matter, suppose one settles at a risk tolerance of say
around k = 1/6 or k = 1/5 and is playing a game with 600 big bets. If a
losing streak of 100 big bets occurs, then it is time to consider scaling back
to a smaller game. Although the resizing is not perfect, one can operate
within certain risk tolerance bounds.

One’s bankroll B with constant rate of return r and standard deviation
s (for a session of fixed length) is modeled by the stochastic equation

dB = rdt + sdW,

which results in Brownian motion with linear drift at rate r. Mathematically,
the player that chooses stakes according to his or her bankroll as we have
just prescribed is equivalent to a fractional Kelly bettor. Precisely, the
equivalence is given by the following observation, whose proof is a simple
algebraic simplification.

Conclusion 1 Consider the equation dB = rdt + sdW where W is a stan-
dard Wiener process. If µ = r/s is a positive constant and stakes are al-
ways chosen so that B = s2/(kr), then the equation is the same as dB =
kµ2Bdt+kµBdW. The bankroll will thus follow the same process as the frac-
tional Kelly bettor. The latter equation is our diffusion for k times Kelly,
with unit, as discussed in section 1 in [CI].

Proof. Set
µ =

r

s
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and assume that this ratio is constant. A player who continuously adjusts
stakes so that B = s2

kr satisfies

dB = r
B

B
dt + s

B

B
dW

= r kr
s2 Bdt + s kr

s2 BdW

= k
(r

s

)2
Bdt + k

r

s
BdW

= kµ2Bdt + kµBdW

This is proportional betting paradigm for fractional Kelly betting, with
growth rate µ = r

s and σ = 1.

2 Micro Risk Adjustment

A basic wager is to win a pot of p bets, risking a call of 1 unit where the
drawing odds are 1 : d, i.e., the wager will be won with probability 1

d+1 .
The expected value of the wager is

p

d + 1
− d

d + 1
=

p− d

d + 1
.

Let x = p− d the excess pot odds. It is rudimentary that p = d (i.e. x = 0)
is the break-even point for expectation.

The Certainty Equivalent (CE) of a wager X is the risk-free value that
has utility equal to the expected utility of X. CE is used as a risk-adjusted
way of comparing bets, depending on the choice of utility function u(t). We
use utility functions

u(t) =
t1−

1
k

1− 1
k

which correspond to the Kelly fraction k with 0 < k < 1. Full Kelly betting
at k → 1 corresponds to u(t) = ln t.

We CE equal to zero and solve for x using various values of d, k and B.
It is important to keep in mind that the values of B and x are measured in
units of “bets”. So if when the (limit holdem) pot is raised your bankroll
is numerically halved. The values of x give the excess pot size required to
break even in CE, in excess of what would be required by pure expectation.
Thus, to break even in CE the pot size needs to be p = x + d.
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2.1 k = 1

The CE break-even point for logarithmic utility is expressed by

v(u(B − 1)
d

d + 1
+ u(B + x + d)(

1
d + 1

)) = B

where u(t) = ln t and v(t) = exp t,which has exact solution for x:

f(d, B) = x = B exp (− (ln(B − 1) d + (lnB) d)−B − d

2.2 k = .5

We set u(t) = −t−1 = v(t) and obtain the relatively simple CE break-even
point function

f(x,B) =
d(d + 1)

B − d− 1
.

2.3 k = 1/3

Let u(t) = −1/t2 and v(t) = (−t)−
1
2 . The meaningful solution to the

quadratic break-even equation is

x =
1

2 (1 + d− 2Bd + B2 − 2B)
·

(2Bd− 2d− 2B − 2d2 + 2dB2 + 4Bd2 + 4B2 − 2B3

−2
√

(B2 + dB2 − 4B3 + 5dB4 − 4B3d + 6B4 − 2B5d− 4B5 + B6)).

2.4 k = 1/4

Let u(t) = −1/t3 and v(t) = (−t)−
1
3 . The meaningful solution to the cubic

break-even equation is

x =
B

d + 1 + 3B2d− 3dB −B3 + 3B2 − 3B
·((

−B3 + 3B2 − 3B + 1
) (

d + 1 + 3B2d− 3dB −B3 + 3B2 − 3B
)2

) 1
3 −B − d
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2.5 Break-even tables with fixed k

Using the break-even formulae above we tabulate values of x. The values of
d are chosen to reflect some holdem drawing odds. E.g. d = 46 is a longshot
draw to a single out, whereas d = 4 is approximately for a straight or flush
draw.

k = 1
d
4
7
11
16
22
46

B = 25
. 435
1. 27
3. 17
7. 04
14. 4
92. 5

B = 50
. 208
. 596
1. 44
3. 08
5. 98
30.6

B = 100
.102
.289
.690
1.45
2.75
12.8

B = 200
.051
. 142
. 338
. 701
1. 32
5. 87

k = 1/2
d
4
7
11
16
22
46

B = 50
. 444
1. 3
3. 47
8. 24
18. 7
721

B = 100
. 211
. 609
1. 5
3. 28
6. 57
40. 8

B = 200
.103
.292
.702
1.49
2.89
14.1

B = 400
.051
. 143
. 340
. 712
1. 34
6. 13

k = 1/3
d
4
7
11
16
22
46

B = 75
. 448
1. 36
3. 60
8. 81
21. 4
−

B = 150
. 211
. 613
1. 52
3. 35
6. 81
47. 2

B = 300
.103
.293
.707
1.50
2.90
14.7

B = 600
.0506
. 143
. 341
. 713
1. 35
6. 22
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k = 1/4
d
4
7
11
16
22
46

B = 100
. 450
1. 37
3. 67
9. 14
23. 2
−

B = 200
. 212
. 616
1. 53
3. 39
6. 94
51.8

B = 400
.103
.292
.709
1.51
2.91
15.0

B = 800
.0 51
. 143
. 342
. 715
1. 36
6. 27

The missing values do not exist as real numbers, so unless the pot has
imaginary chips, you should not call in these situations. The paradoxical
lack of real solutions is an is explained by the fact that the utilty function
is bounded above.

Notice that the values for fixed kB (e.g. kB = 100 in boldface) are very
close for a range of values of B and d. This is perhaps unsurprising given the
popular continuous CE approximation E − s2

2kB with expectation E = p−d
d+1 ,

though it is an approximation that we have discarded as inaccurate for the
current computations.

2.6 Approximations

We use k = .5 as a model and adjust for other k’s proportionally

x =
d(d + 1)

2k(B − d− 1)

or as a slightly more crude underestimate:

x =
d(d + 1)

2kB
For the sake of comparison, we show the approximated values versus the
more crudely underestimated ones for two values of kB. The result is that
the approximated values are quite good except for the longshot draws.

kB = 50
d
4
7
11
16
22
46

k = 1
. 208
. 595
1. 44
3. 08
5. 98
30. 6

k = .5
. 210
. 609
1. 50
3. 28
6. 57
40. 8

k = 1/3
. 211
. 613
1. 52
3. 35
6. 81
47. 2

k = 1/4
. 212
. 616
1. 53
3. 39
6. 94
51.8

d(d+1)
2kB
.20
.56
1.3
2.72
5.06
21.6

7



kB = 100
d
4
7
11
16
22
46

k = 1
. 102
. 289
. 689
1. 45
2. 75
12. 8

k = .5
. 103
. 292
. 702
1. 49
2. 86
14. 1

k = 1
3

. 103

. 293
. 706
1. 50
2. 90
14. 7

k = 1
4

. 103

. 293

. 709
1. 51
2. 92
15.0

d(d+1)
200
.10
.28
.66
1.4
2.5
11
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