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Abstract

This paper presents a new clustering algorithm called
DSCBC which is designed to automatically discover word
senses for polysemous words. DSCBC is an extension of
CBC Clustering [11], and incorporates feature domain sim-
ilarity: the similarity between the features themselves, ob-
tained a priori from sources external to the dataset used at
hand. When polysemous words are clustered, words that
have similar sense patterns are often grouped together, pro-
ducing polysemous clusters: a cluster in which features in
several different domains are mixed in. By incorporating
the feature domain similarity in clustering, DSCBC pro-
duces monosemous clusters, thereby discovering individual
senses of polysemous words. In this work, we apply the
algorithm to English adjectives, and compare the discov-
ered senses against WordNet. The results show significant
improvements by our algorithm over other clustering algo-
rithms including CBC.

1. Introduction

In Natural Language Processing (NLP), automatic con-
struction of thesauri from corpus data has been an active
topic of research. Most conventional thesauri are manually
compiled by lexicographers, therefore often contain incon-
sistencies. Word senses are also sometimes too fine-grained
or uncommon, as frequently pointed out for WordNet [10].
A better approach is to automatically derive word meanings
from real data.

In the NLP research, many techniques have been devel-
oped which discover word senses or semantic classes from
corpora (e.g. [4, 9]). Most of them use distributional sim-
ilarity (the similarity of the contexts in which words oc-
curred) to group words and derive clusters of similar words

(i.e. synonyms). However, most of these techniques fo-
cused on nouns, which are largely monosemous, so their
applicability to polysemous words such as verbs and ad-
jectives is unknown. For relatively polysemous parts of
speech, Walde [18] and Boleda et al. [1] present clustering
experiments which automatically derive semantic classes
for German verbs and Catalan adjectives respectively. How-
ever, they both use standard clustering methods (e.g. K-
means) only, and no attempt is made to develop new tech-
niques tailored to polysemous words.

Pantel and Lin [11] develop a clustering algorithm called
CBC (Clustering By Committee), and report a superior per-
formance of CBC over other clustering algorithms in dis-
covering word senses from corpus texts. However, their re-
sults are shown again mostly for nouns, and in fact, the al-
gorithm does not include any special considerations to avoid
generating polysemous clusters: a cluster in which several
word meanings are mixed in. The problem of polysemous
clusters also arises in other algorithms when the data con-
sists largely of polysemous words. Indeed, some of the se-
mantic classes derived in [18] are polysemous clusters.

In this paper, we present a new clustering algorithm
called DSCBC which is specifically designed for discov-
ering senses of polysemous words (but works for monose-
mous words as well). DSCBC is an extension of CBC, and
incorporates feature domain similarity: a prior knowledge
about the similarity between features themselves. For ex-
ample, if data instances x and y are represented by features
f1 and f2, the feature domain similarity refers to the sim-
ilarity between f1 and f2 (not between x and y). Feature
domain similarity is obtained a priori from sources external
to the dataset(s) used at hand. By incorporating the feature
domain similarity in clustering, we are able to group data in-
stances which have features in the same or similar domain,
thereby producing monosemous clusters.

To test the effectiveness of DSCBC, we apply the algo-



rithm to English adjectives. In this work, we use abstract
nouns as the features to represent adjectives. From a large
corpus, we collect many instances where adjectives mod-
ify abstract nouns (e.g. “happy feeling”) and construct a
dataset. Then after applying the algorithm, we compare the
automatically derived word senses against those encoded
WordNet as the gold standards. The results show significant
improvements by DSCBC over other clustering algorithms
in discovering polysemous adjective senses.

2. Polysemy of Adjectives

Adjectives are notoriously polysemous. The function of
adjectives is to modify or elaborate the meanings of nouns.
By being modified by adjectives, nouns will come to bear
specific values for their attributes. For example, “warm
soup” is (a bowl of) soup which has the value “warm” (mod-
erately hot) for its temperature attribute. Conversely, adjec-
tives take on different meanings, or change its meaning, de-
pending on the nouns they modify as well. For example,
when “warm” modifies the noun “person”, the meaning is a
psychological one, elaborating the personality or the way a
person deals with others.

In linguistics, there is a large body of work on adjectives
(e.g. [8]), although the attention they have received is much
less than that for nouns and verbs. Likewise in NLP, there
exist little other works which tackled adjectives specifically.
Most of the recent work on adjectives in NLP has focused
either on specific applications (e.g. classifying documents
according to semantic orientation or subjectivity [19]), or
on specific types of adjectives (e.g. event adjectives [7] and
gradable adjectives [3]).

Traditionally, meanings of a polysemous word are enu-
merated in dictionaries. For example, WordNet lists ten
senses for “warm”. Distinguishing different senses of pol-
ysemous words is a difficult problem, especially for adjec-
tives which are often used metaphorically (e.g. “dark con-
versation” – a discussion on grim topics, or to talk pes-
simistically). However, salient meanings are distinguish-
able based on the domains of the co-occurring nouns [6].

In [12], Pustejovsky proposes a generative view of adjec-
tival meanings: meanings of adjectives are indifferentiable,
and a specific meaning is generated (by coercion) when an
adjective is combined with a noun in the context. He also
argues that certain combinations of generated meanings, or
patterns of meaning shift, are predictable (which he calls
systematic polysemy). We do generally agree with his view.
Our work in this paper can be considered an effort to acquire
such specific meanings that arise in the context as abstract
semantic classes of adjectives, automatically from corpora.
Then we hope to go on to investigate the systematic poly-
semy of adjectives using those classes in our future work.

3. Dataset

In this work, we use abstract nouns as the features to
represent adjectives, such as “gentle personality” (as ver-
sus concrete nouns such as “gentle goats”). Previous stud-
ies in linguistics have shown that, when an abstract noun
is modified by an adjective, it often correlates with the se-
mantic class of the adjective (e.g. “gentle” as a personality
adjective) [17]. Schmit [15] called such abstract nouns shell
nouns: a class of abstract nouns which function as concep-
tual shells that are elaborated by other words or clauses in
a text. Thus, abstract nouns provide the meanings of adjec-
tives literally and immediately, while with concrete nouns,
the meanings must be inferred.

To create a dataset, we used the Web n-gram corpus cre-
ated by Google Inc. [2]. This corpus contains English
word n-grams (uni-grams to five-grams) and their frequency
counts obtained from publicly accessible Web pages con-
taining approximately 1 trillion word tokens (collected in
January 2006). To extract adjectives co-occurring with ab-
stract nouns, we first selected 277 abstract nouns which we
thought represent a broad range of semantic domains (such
as feeling, attribute, scale, sensation). Then we extracted in-
stances of the forms ’Adj AbN’ and ’AbN BE Adj’ (where
BE stands for a copula verb, for instance “nature is gentle”)
from the bi-grams and tri-grams respectively. There were
over 15000 adjectives which co-occurred with the selected
abstract nouns in the corpus. Then we randomly selected
1500 of such instances to create the dataset.

In the dataset, we represented each adjective by a feature
vector, where a feature was an abstract noun co-occurring
with the adjective. The value was the Mutual Information
(MI) computed from the frequency counts in the corpus.1

The MI between two words x and y, denoted I(x, y), is:

I(x, y) = log
p(x, y)

p(x)p(y)

where p(z) is the probability of a word z, and p(x, y) is the
joint probability of x co-occurring with y. MI indicates the
mutual dependence between two random variables, where
I(x, y) = 0 if x and y are independent, or non-zero (ac-
tually positive) otherwise. In our case, I(x, y) essentially
indicates how well a feature noun predicts (or is correlated
with) a given adjective. MI has been often used in NLP as a
way to put weights on feature values (e.g. [4]).

4. Sense Discovery Algorithm for Polysemous
Words

Our sense discovery algorithm is an extension of Clus-
tering By Committee (CBC) Clustering [11]. We first in-

1Actually, we took the log of base 10 of the frequency counts, since the
values were quite high and their range was wide as well.



Phase I: Find clusters.
Let L be a list of clusters, initially empty.
For each word w ∈ W in the dataset,

Select a set c of at most n words from W
which are the most similar to w, and
add c to L if it is not already in L.

Sort L in the descending order of the scores of
the clusters.(1)

Phase II: Find committees.
Let C be a list of committees, initially empty.
For each cluster c ∈ L (in the sorted order),

Compute the centroid of c.(2)

If it is not similar to any other committee
in C, add c to C.

Phase III: Assign words to committees.
For each word w ∈ W ,

Select all committees in C whose centroids
are similar to w above a threshold θ.
As a committee is selected, remove all of its
features from w.

Figure 1. The CBC Algorithm

troduce CBC and discuss its limitations, then describe the
modifications we made to CBC to derive our algorithm.

4.1. CBC Algorithm

CBC is an unsupervised clustering algorithm which au-
tomatically derives a set of committees. A committee is a
cluster of words which are very similar to each other – simi-
lar in notion to a synonym set (synset). As with synset, each
committee corresponds to a word sense. CBC committees
are automatically derived by first finding a tight cluster of
words which are similar to a given word, for every word in
the dataset, then selecting a subset of the derived clusters
that are dissimilar/orthogonal to each other as committees.
After obtaining the committees, CBC discovers the senses
of a word by assigning the word to its most similar com-
mittees – all committees with which the similarity is above
a threshold, and removing the features of the selected com-
mittees from the word as they are selected.

Figure 1 shows the overall steps of the CBC algorithm.
A cluster found in Phase I is tight in that it consists of at
most n similar words (where n = 10 is used in [11]). Then,
clusters are selected into the set of committees in the de-
scending order of their scores (indicated with (1) in the al-
gorithm). This way, CBC guarantees that only the tight
clusters which are also well scattered in the feature space
are selected as committees. The score of a cluster c is com-
puted as |c|× avgsim(c), where |c| is the number of words in
c, and avgsim(c) is the average pairwise similarity between

the words in c. Note that throughout the CBC algorithm,
the cosine coefficient [14] is used to measure the similarity
between vectors, and MI is used to compute the values in
the word vectors.

However, one problem with CBC is that it does not work
well for polysemous words despite its claimed utility. The
reason is because the algorithm uses the centroid to rep-
resent a committee (indicated with (2) in the algorithm).
Consider the adjectives “warm” and “cold”. These words
have similar sense patterns, in particular, they both have
the senses of temperature and personality. Many other ad-
jectives which elaborate temperature such as “cool” have
those two meanings as well. Since their word vectors are
similar, they are most likely grouped in the same cluster.
And if this cluster is selected as a committee (where the
algorithm has no mechanisms besides cosine threshold to
prevent it), the committee centroid will end up having both
senses, thus producing a polysemous cluster. Consequently,
when a word is assigned to committees, the most similar
committee would naturally be the one in which the word
was the member in the first place, thereby failing to dis-
cover the two individual senses.

Note that the same problem also exists in other clustering
algorithms as well. When polysemous words are clustered,
those which have similar polysemous patterns are grouped
together, resulting in a heterogeneous, polysemous cluster
in which different senses are mixed.

4.2. Feature Domain Similarity

To overcome the polysemous cluster problem discussed
above, we developed a new metric which measures the sim-
ilarity between the features themselves, which we call the
Feature Domain Similarity. This is the primary characteris-
tics and the contribution of our algorithm.

Consider the following data:

a b c d
x: 1 1 0 0
y: 1 0 1 0
z: 1 0 0 1

where x, y, z are data instances, and a, b, c, d are features.
In most clustering algorithms, features are assumed to be in-
dependent to each other, or their dependencies are ignored.
So in the example, x is equally likely clustered with y or
z, because the similarity between x and y, and x and z are
the same (based on the Euclidean distance, for example).
However if we have a priori, general knowledge about the
features that b’s domain is more similar to that of c than to
d, it is better to cluster x and y instead of x and z, because
the {x, y} cluster is “tighter” than the {x, z} cluster with
respect to the domains of the features.



Feature domain similarity can be obtained from any lin-
guistic resources (but should be external to the dataset(s)
to be used in the experiments). In this work, we used
javasimlib:2 a Java-based tool which computes the simi-
larity between words (or synsets) over the WordNet hierar-
chies based on an information theoretic metric [16]. Given
two words or synsets, javasimlib returns a value between 0
and 1, where 1 indicates the highest similarity. For each
noun, we considered the top (at most) two senses in the
calculation in order to avoid spurious results arising from
rare or unimportant senses encoded in WordNet. Then we
defined the similarity between two nouns as the maximum
value between their top two senses:

fdsim(a, b) = arg max
i,j∈{1,2}

jsim(a#i, b#j)

where a, b are nouns, fdsim(a, b) denotes the feature do-
main similarity between a and b, a#i is the ith sense of a,
and jsim(x, y) is the similarity between two synsets x and
y returned by javasimlib. Then we computed all pairwise
similarities between the nouns/features and stored them in
a matrix.

Next, we defined a notion of domain tightness for a sin-
gle word vector. This metric indicates how “tight” the vec-
tor is with respect to the domains of its features (i.e., the
degree of domain homogeneity). For a given word vector v,
the domain tightness of v, denoted dt(v), is define as:

dt(v) =
1
n

∑
a,b∈F ;a6=b

v(a) + v(b)
2

fdsim(a, b)

where F is the set of features used to represent v, v(x) is
the value in v for the feature x ∈ F , fdsim(a, b) is the
feature domain similarity between a and b described above,
and n is the number of pairwise combinations of the fea-
tures in F where their feature-values are greater than zero
(i.e., n = count(〈a,b〉 : v(a) > 0 and v(b) > 0)). Thus it is
the average feature domain similarity between two non-zero
features in v, weighted by the average of the two feature-
values.

Finally, we defined a new similarity metric between two
word vectors that incorporates the feature domain simi-
larity, which we call dsSim, as follows. For given word
vector v1 and v2, the similarity between them, denoted
dsSim(v1, v2) is:

dsSim(v1, v2) = w0 × cos(v1, v2) + w1 × dt(v3)

where cos(v1, v2) is the cosine between v1 and v2, v3 is a
vector in which v1 and v2 are merged (i.e., v3 = v1 + v2),
and w0, w1 are weights which sum up to 1. We used w0 =

2Available from http://wordnet.princeton.edu/links#extensions

0.95 and w1 = 0.05 in our experiments. This new mea-
sure is essentially based on cosine, added with the domain
tightness of the merged vector. We looked at the merged
vector, because a cluster centroid is a vector in which all
member word vectors are merged (and averaged), and that’s
precisely what we wanted to improve upon CBC – the do-
main tightness of the cluster/committee centroids.

4.3. The Sense Discovery Algorithm
(DSCBC)

In addition to feature domain similarity, we also incorpo-
rated a few more ideas which may help derive monosemous
committees. One idea is to limit the number of features
to be used in the committee centroids. By taking the top
k features, only the most salient features are kept (which
hopefully are features in one domain), and other insignifi-
cant features are discarded. Another idea is to use only the
features that appeared with the majority of the words which
make up the committee.

Furthermore, we derived the committees incrementally
in two steps: first produce committees from the original
dataset, then derive the final set of committees from those
produced in the first step. This hierarchical scheme aims to
find the second or higher-order features (such as those in a
transitive similarity relation).

Finally, we present our algorithm named DSCBC (for
Domain Similarity CBC) in Figure 2. Overall, it applies
the (modified) Phase I and II of CBC twice successively.
The modifications to the original CBC are: (1’) use the new
similarity measure dsSim instead of cosine to compute the
scores of the derived clusters; and (2’) remove from com-
mittee centroids the features which co-occurred with less
than σ percent of the member words or which are not in
the top k features. In our experiments, we used k = 10
and 6, and σ = 0.8 and 0.6 in Step 1 and Step 2 respec-
tively. We reduced k from Step 1 to Step 2 in order to refine
the salient features. For σ, we used somewhat higher val-
ues, especially in Step 1, because the dataset was relatively
dense (since word usage is extremely diverse in web pages).
All other parts of the algorithm are unchanged from CBC.

Note that DSCBC may still group “warm” and “cold” in
the same cluster (or clusters; a given adjective may appear
in more than one cluster, as with CBC). However, such a
cluster would have a lower dsSim value (hence the cluster
score) because the domains of temperature and personality
are not similar themselves, thus is less likely to be selected
as a committee. If it were, features in less dominant do-
mains (i.e., extended meanings) are discarded because only
the top k features are retained in the centroid, thereby result-
ing in a monosemous committee. In this sense, a DSCBC
committee is not equivalent to a synset – rather, it is a list of
features (abstract nouns) which explicitly describe the se-



Step 1: Derive committees from data.
Apply Phase I and II of CBC to the dataset using:
- dsSim in computing avgsim(c)(1

′)

- the top k features that are also shared by
more than σ percent of the words in the
committee to represent its centroid.(2

′)

Step 2: Derive committees from committees.
Repeat Step 1, but with the committees derived in
Step 1.

Step 3: Assign words to committees.
Apply Phase III of the CBC algorithm to the dataset
using the final set of committees derived in Step 2.

Figure 2. The DSCBC Algorithm

mantic domain(s) of the cluster.
As we mentioned in the previous section, the main con-

tribution of our algorithm is the incorporation of feature
domain similarity in clustering. Our algorithm is novel,
and different especially from other clustering algorithms
which consider features in some way. For example, Rapp
[13] uses a statistical technique called Independent Com-
ponent Analysis (ICA) to discover word senses. ICA is
similar to Principal Component Analysis (PCA), and finds
components (combinations of features) that are indepen-
dent to each other and have higher-order similarities. Here,
the components are essentially equivalent to CBC/DSCBC
committees. However, neither ICA nor PCA can separate
features that co-occur frequently – those in the first-order
similarity (such as temperature and personality), nor do they
limit the features used in the components.

In summary, the key to overcoming the polysemous clus-
ter problem is to use externally obtained information about
the similarity/dependency between features and incorporate
the information in the clustering process. Filtering insignif-
icant features also helps pick out features in the most dom-
inant semantic domain.

5. Evaluation

To evaluate our algorithm DSCBC, we applied it to the
dataset described in section 3, and compared the results with
other clustering algorithms, in particular CBC, a graph-
based clustering (which uses a min-cut partitioning) and K-
means. For the graph and K-means algorithms, we used
a tool called CLUTO.3 Also for those two algorithms, we
made some modifications so that they do soft-clustering
(which assigns an instance to one or more clusters) in or-
der to make them comparable with CBC and DSCBC. To
make modifications, we closely followed the way described

3Available at http://glaros.dtc.umn.edu/gkhome/views/cluto

Table 1. Committee Statistics
Total # Ave # Ave Domain Ave Cosine
comm. features Tightness

(p-value) (p-value)

DSCBC 38 3.3 0.470 (–) 0.010 (–)
CBC 50 4.9 0.196 (*) 0.012 (0.18)
DSGr 38 6.0 0.224 (*) 0.018 (*)
Gr 50 6.0 0.221 (*) 0.022 (*)
DSKmeans 38 6.0 0.209 (*) 0.012 (0.20)
Kmeans 50 6.0 0.198 (*) 0.011 (0.37)

in [11]: first apply the algorithm to the dataset and obtain
clusters, then apply MK-means [20] using the centroids of
those clusters as the initial centroids. MK-means is a gen-
eralized version of the standard K-means algorithm, and as-
signs each instance to one or more clusters with which it
has the similarity greater than a pre-specified threshold. As
with K-means, MK-means performs several iterations until
a pre-specified number of iterations is reached. In our ex-
periments, we set the maximum number of iterations to be
5, as with [11].

Furthermore, since DSCBC is an extension of CBC with
the domain feature similarity, we also implemented the ver-
sions of the graph and K-means algorithms which extend
the base algorithms in the same way. So in all, we com-
pared a total of six algorithms: DSCBC, CBC, DSGr, Gr,
DSKmeans and Kmeans.

5.1. Derived Committees

First we examined the committees derived by the algo-
rithms. Table 1 shows some statistics. DSCBC produced
a total of 38 committees, while CBC produced 50 commit-
tees. Other DS algorithms (DSGr and DSKmeans) and non-
DS algorithms (Gr and Kmeans) were pre-specified to pro-
duce the same number of committees as DSCBC and CBC
respectively. The average number of (non-zero) features 3.3
by DSCBC and 4.9 by CBC. For all other algorithms, the
average number of features was 6 (= k).

The column “Ave Domain Tightness” indicates the aver-
age domain tightness (dt) of the committees derived by each
algorithm. Here, a higher value means the feature domain
similarity of the committees are overall more similar, there-
fore the committees are less polysemous. As you can see,
DSCBC showed the highest tightness (0.47). The results by
all other algorithms, including other DS algorithms, were
much lower than DSCBC, and the differences were statisti-
cally significant, as evidenced by the p-values.4

The column “Ave Cosine” indicates the average pairwise
cosine between the committees for each algorithm. Here,

4The p-values shown in Table 1 are obtained by one-sided t-tests against
DSCBC. A symbol (*) indicates < 0.05.



DSCBC
{smell, aroma}
{appearance, look}
{quantity, amount, number}
{attitude, countenance, nature}
{day, shade, room, light, face, color}

CBC
{taste, smell, scent, aroma}
{beauty, appearance, look, light, color, thing}
{amount, number, time, information, system}
{tone, attitude, voice, word}
{day, sound, face, light, word, thing}

Figure 3. Example DSCBC and CBC Commit-
tees

a lower value means the committees are dissimilar to each
other, thus scattered well in the feature space. The result
shows that DSCBC had the lowest value, although the dif-
ferences were not statistically significant in some cases. As
for the graph and K-means algorithms, the graph in general
seems to produce more monosemous but more correlated
clusters than K-means.

Figure 3 shows some example committees derived by
DSCBC and CBC. Most of the DSCBC committees seem
to pick out a single semantic domain fairly well, whereas
CBC committees tend to include extremely abstract nouns
such as thing and information, and are more polysemous in
general. But some of the DSCBC committees are still pol-
ysemous clusters. For example, {attitude, countenance, na-
ture} seems to be a mixture of mental state, appearance and
inner quality. Also, {day, shade, room, light, face, color}
seems to group different domains – probably caused by the
polysemy of color or luminance adjectives such as “bright”
and “dark”.

5.2. Assigned Word Senses

Next we inspected the senses/committees assigned to
words. For each word, the algorithms assign one or more
committees. Here, each committee should correspond to a
sense of the word. To determine whether or not a committee
indeed corresponds to a correct sense of a word, we com-
pared it against the sense encoded in WordNet as the gold
standards. Then the evaluation was measured with respect
to precision and recall.

5.2.1 Evaluation Methodology

To evaluate the assigned senses, we first looked up each of
the 1500 adjectives in the dataset in WordNet and obtained
its senses/synsets. Then for each synset, we mapped it to

its related noun so that we could utilize the WordNet noun
hierarchy to compute the similarity/correspondence.5 For
a given synset, we traversed the attribute relation encoded
in WordNet, for example, “warm#1” → “temperature#1”.
If the attribute relation was not available, we traversed
the derivationally related form relation (for de-nominalized
noun), for example, “warm#4” → “warmness#1”. Word
senses which are not indicated with either relation were ig-
nored in the evaluation. The average number of senses (of
the 1500 adjectives) which were associated with either re-
lation in WordNet was 1.63 (while the average of the to-
tal number of senses was 2.22).6 Finally, we determined
that an automatically derived committee corresponds to the
mapped noun synset if the average similarity between the
nouns in the committee and the synset is above a threshold:

1
|c|

∑
f∈F (c)

jsim(f, s) ≥ θ

where c is a committee, f is an abstract noun in F (c) (the
set of (non-zero) features in c), s is the mapped WordNet
noun synset, jsim(f, s) is the similarity between f and s
obtained through javasimlib, and θ is the threshold. For
jsim(f, s), the top (at most) two senses were considered
for the feature noun f , and the maximum of the two values
returned by javasimlib (jsim(f#1, s) and jsim(f#2, s))
was used.

Figure 4 shows the first three senses assigned/discovered
by DSCBC for “cold”, “flat” and “democratic”. Indicated
next to each word string are the number of senses assigned
by DSCBC and the number of synsets associated with the
two relations in WordNet for the word respectively.

For the evaluation measures, we computed the precision
of an adjective a as the ratio of the correctly assigned com-
mittees of all committees assigned by the algorithm for a.
For example, if an algorithm assigns a total 5 senses to a
word and 3 of them corresponded to some WordNet sense
of the word (including cases when multiple assigned senses
corresponded to the same WordNet sense), the precision is
0.6. The precision of an algorithm was the average preci-
sion of all adjectives in the dataset.

Then the recall of an adjective a was computed as the
ratio of the correctly discovered senses of all senses (with
either the attribute or derivationally related form relation)
encoded in WordNet for a. So for example, if WordNet en-
codes either relation to 4 senses for a word and 2 of them
were correctly discovered by an algorithm, the recall is 0.5.
This recall actually is a tough measure, because the cover-
age of our dataset is much more limited than WordNet. But

5In WordNet, adjectives are not organized hierarchically; instead they
are simply categorized into two large groups (descriptive and relational
adjectives).

6Though this number may sound rather low, in the 1500 adjectives, 723
(= 48%) of them had more than one sense in WordNet, which is quite high.



“cold” [DSCBC: 3, WN: 6]
{complexion, color, face}
{attitude, countenance, nature}
{smell, aroma}

“flat” [DSCBC: 4, WN: 9]
{complexion, color, face}
{figure, form, body, pattern, area, system}
{surface, region}

“democratic” [DSCBC: 8, WN: 3]
{framework, concept, approach, idea, model}
{tendency, view, nature}
{figure, form, body, pattern, area, system}

Figure 4. Example Sense Assignments by
DSCBC

Table 2. Precision, Recall and F-measure
(when θ = 0.25)

Precision Recall F-measure
DSCBC 0.397 0.397 0.397
CBC 0.304 0.264 0.283
DSGr 0.214 0.251 0.231
Gr 0.192 0.202 0.197
DSKmeans 0.254 0.213 0.232
Kmeans 0.169 0.162 0.166

we thought this measure could provide some indication on
the coverage of the algorithms and be utilized to rank the al-
gorithms. The recall of the algorithm was the average recall
of all adjectives in the dataset.

5.2.2 Results

Table 2 shows the precision, recall and F-measure for the
English dataset when θ = 0.25. The F-measure was com-
puted as standard:

F =
2RP

R + P

where R is the recall, P is the precision. As you can see,
DSCBC produced the highest precision as well as recall.
Also, the DS-extended algorithms performed considerably
better than their non-DS counterparts for both precision and
recall – verifying the positive effects made by the incorpora-
tion of domain feature similarity. Also notice CBC showed
a better performance over other standard algorithms (graph
and K-means), including their DS-extended versions. This
verifies that CBC is indeed an effective tool for word sense
discovery, and that using CBC as the base algorithm for ex-
tension in our work was a good choice.

Figure 5. F-measure for varying θ

To investigate further, we also inspected the performance
of the algorithms with different values of the threshold θ,
since the determination of a correct assignment is dependent
on this value. As θ is raised, the precision and recall (thus
F-measure) will decrease, because only the higher corre-
spondence values are considered as correct. Figure 5 shows
the F-measure for varying θ for all algorithms. DSCBC
has the highest F-measure consistently for all θ by a large
margin. The DS algorithms are showing a better perfor-
mance over their non-DS counterparts here as well for all
θ, although the differences (between DSGr and Gr, and
DSKmeans and Kmeans) are not as dramatic as the differ-
ence between DSCBC and CBC.

5.3. Discussions

One thing to note about the sense assignment results is
that precision is overall rather low. The reason would prob-
ably be because we examined only a subset of the Word-
Net senses (those which are mapped to nouns). So even
when an assigned sense indeed corresponded to a WordNet
sense/synset but if the synset is not mapped to a noun in
WordNet, it ended up having no matches, thus was consid-
ered incorrect in the calculation of precision.

Note that, since the features/nouns are not disambiguated
in our dataset, the problem of lexical ambiguity does exist.
For example, homonyms (words with multiple meanings in
different domains, e.g. “nature” as a quality or the natu-
ral world) could in effect “pull” data instances/adjectives in
different domains closer, thereby potentially producing pol-
ysemous clusters. However in our inspections, lexical am-
biguity of features was not so serious – probably because
the collocations extracted from the web were already dense.
Rather, the most outstanding problem was still due to the
polysemy of adjectives, for example the committee men-



tioned earlier, {day, shade, room, light, face, color}.

6. Conclusions and Future Work

In this paper, we presented a new algorithm for dis-
covering word senses for polysemous words, and showed
improved results over other clustering algorithms. By in-
corporating the feature domain similarity in the clustering
process, the algorithm produces clusters which are more
monosemous and homogeneous with respect to the feature
domains.

For future work, an immediate task would be to do a
manual evaluation in order to see if the results by the au-
tomatic evaluation indeed correlate with human intuitions.
Another task would be to investigate exactly which ele-
ment(s) in the algorithm contributed the most to the im-
proved performance in the current work. Our preliminary
inspection indicates the feature domain similarity made
more significant contributions than feature filtering.

We would also like to apply the algorithm to other
datasets. In fact, we have just completed a preliminary ex-
periment with Japanese adjectives. We applied the same six
algorithms to a dataset which contains instances of Japanese
adjectives with modifying nouns extracted from newspaper
articles [5], and manually compared the derived committees
with the senses listed in a conventional dictionary called
Daijirin. The results so far indicate our algorithm produced
better results with respect to precision and recall as well as
relative ranking. In addition to adjectives, we would also
like to apply the algorithm to other polysemous parts of
speech such as verbs. For example, it would be interest-
ing to apply our algorithm to the German verb dataset used
in [18] and compare the results.

To extend the current work, we are planning to use the
automatically derived committees to investigate the poly-
semy of adjectives, as we had mentioned earlier in sec-
tion 2. Since the derived committees are essentially se-
mantic classes of adjectives, by clustering adjectives based
on them, we can obtain various patterns of adjectival pol-
ysemy defined at an abstract level, such as temperature-
personality-color. By inspecting these polysemy patterns,
we can study how various adjectival meanings extended –
polysemy, metonymy and metaphor of adjectives – attested
in real data.

Finally, we would like to investigate the usefulness of the
derived word senses in practical tasks and applications such
as word sense disambiguation and question-answering.
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