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1. INTRODUCTION. Over the past several decades, many of those involved with
mathematics education at the college and university level have turned their atten-
tion to the difficulties students experience in mathematics courses requiring them
to write proofs. Because even mathematics majors have trouble in more advanced
courses, a number of mathematicians have written “transition” books whose aim is to
bridge the gap between lower-level, computationally oriented courses and upper-level
classes where deductive reasoning and abstraction play a major role. See, for example,
books by Smith, Eggen, and St. Andre [44], Mason [28], Lucas [27], Velleman [50],
Solow [45], and Fletcher and Patty [18]. Moreover, because computer science stu-
dents also need to learn to operate in a mathematically sophisticated environment, one
of the goals of discrete mathematics courses is to enhance students’ logical reason-
ing and proof-writing abilities. See, for example, Gersting [20], Johnsonbaugh [26],
Rosen [38], Ross and Wright [39], Gries and Schneider [22], Epp [13], and Dubinsky
and Fenton [9]. Over the same period, researchers in mathematics education have been
investigating the cognitive processes that underlie students’ difficulties with proof pro-
duction. A summary of some of this research can be found in Tall [46]. Among recent
contributors are Goetting [21], Harel and Sowder [23], Moore [30], [31], Selden and
Selden [41], [42], and Thompson [49]. Many additional references and articles can be
found on the Internet website “Preuve,” the “International Newsletter for the Teaching
and Learning of Proof™ (http://www-didactique.imag.fr/preuve/).

In the late 1970s, before texts for transition courses had become generally available,
I started teaching a course to provide background for students who would go on to take
advanced undergraduate courses in mathematics and computer science. Initially, I had
assumed that the reason our students were doing so poorly in our advanced courses was
that the teachers moved too quickly to “interesting mathematics” and paid inadequate
attention to basic material such as sets, functions, and relations. I expected that the
new course would solve this problem by giving students an adequate amount of time
to focus exclusively on foundations.

As I taught the course, however, I found that my students’ difficulties were much
more profound than I had imagined. Indeed, I was almost overwhelmed by the poor
quality of their proof-writing attempts. Often their efforts consisted of little more than
a few disconnected calculations and imprecisely or incorrectly used words and phrases
that did not even advance the substance of their cases. My students seemed to live in
a different logical and linguistic world from the one I inhabited, a world that made it
very difficult for them to engage in the kind of abstract mathematical thinking I was
trying to help them learn.

2. THE NEED FOR INSTRUCTION IN FORMAL REASONING SKILLS.
Evaluating the truth and falsity of even very simple mathematical statements involves
complex cognitive activity. The examples to follow analyze the reasoning that under-
lies valid determinations of the truths of three mathematical statements. A person need
not have conscious knowledge of the logical principles used in the arguments, but
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the principles must be employed in order for the reasoning to be valid. For instance,
consider how a person might validly determine that

the square of any rational number is rational.

1. One must realize that the statement makes a claim about every element in the
infinite set of rational numbers, that no amount of checking the claim for a finite
number of instances will suffice to establish its general truth.

2. One must have a sense that, to establish the general truth of the claim, one sup-
poses one is given a particular rational number about which one knows nothing
besides the fact that it is rational. One then must show that the square of this
number is rational.

3. One must be aware (perhaps unconsciously) of the importance of definitions in
evaluating mathematical claims, that to draw a conclusion about a rational num-
ber one must have a precise understanding of what “rational number” means.

4. One must appreciate (perhaps unconsciously) that definitions are universal state-
ments and that they have both an “if” and an “only if” direction. Given a par-
ticular but arbitrarily chosen rational number r, one instantiates the “only if”
direction of the definition to conclude that r can be written in a certain way.
Later, after one has established that r> has a certain form, one instantiates the
“if” direction of the definition to conclude that r? is rational.

5. One needs to have a sense that the rule for multiplying fractions is a universal
statement that applies to all pairs of fractions, even to two that are the same.

As another example of the complex underpinning of a simple disproof, consider the
reasoning needed to establish validly that the following statement is false:

for all real numbers a and b, if a > b then a* > b*.

1. One must realize (consciously or unconsciously) that the given statement is uni-
versal, that since it makes a claim about all pairs of real numbers, a single coun-
terexample will serve to show that it is false. In other words, one must have
some, perhaps unconscious, awareness that the negation of a universal statement
is existential.

2. One must understand that to obtain a counterexample, one must find real num-
bers a and b so that a > b but a® # b?. That is, one must be aware (consciously
or unconsciously) that the negation of if p then g is p and not q.

3. Having understood the requirements a counterexample must satisfy, one must
realize that it may be necessary to explore a variety of types of real numbers to
find one.

An example of the reasoning underlying a valid elementary argument by contradic-
tion is illustrated in the proof that

for all real numbers x, if x is irrational then —x is irrational.

1. One must have a sense that one can evaluate the truth of the statement by sup-
posing that there is a real number x for which x is irrational and —x is rational
and seeing whether this supposition leads logically to a contradiction.

2. Alternatively, one must either have a sense that the statement is logically equiv-
alent to

for all real numbers x, if —x is rational then x is rational,
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or equivalently (and this involves the fact that —(—x) = x and a rather sophisti-
cated understanding of variables) that

for all real numbers x, if x is rational then —x is rational.

Also one must know how to establish the truth of this statement by a direct
argument; in other words, one either needs an intuition for the structure of proof
by contradiction or for the fact that a conditional statement and its contrapositive
are logically equivalent.

Many mathematicians take the reasoning described in these examples for granted.
Yet in many years of working with several thousand such students at a university clas-
sified as “selective,” I have observed that very few have an intuitive understanding of
the reasoning principles that I have listed. For detailed discussions about the types of
difficulties such students exhibit, see Selden and Selden [41], [42], Moore [30], [31],
Epp [12], and Harel and Sowder [23]. Work by Thompson [49] and Goetting [21,
pp- 142-148] indicates that statements requiring proof by contradiction or proof by
contraposition are particular sources of difficulty, even for students who have taken
advanced mathematics courses. Fishbein and Kedem [17] and Vinner [51] suggest that
even when students appear to understand a correct proof for a mathematical statement,
they may not appreciate that it obviates the need for further verification.

Since the 1960s, researchers such as Wason, Johnson-Laird, Legrenzi and Legrenzi,
Ceraso and Provitera, Rips and Marcus, Taplin and Staudenmayer, Nisbett, and Cheng,
among others, have been conducting experiments that indicate the extent to which sub-
jects (usually college students) tend spontaneously to employ the rules of formal rea-
soning when they make deductions. Much of this work is summarized in Anderson [1,
pp. 296-327], Evans [16], and Rips [37, pp. 14-30]. For instance, in a path-breaking
experiment, which has been widely replicated and is known as the “selection task,”
Wason [53] showed that while all but a tiny fraction of students reliably use modus
ponens even in the most abstract settings, a much smaller proportion can be counted
upon to make use of modus tollens, and significant numbers commit the fallacies of af-
firming the consequent and denying the antecedent.! The summaries in Anderson also
describe research showing the kinds of difficulties faced by subjects when reasoning
with quantifiers.

3. DIFFERENCES BETWEEN EVERYDAY AND MATHEMATICAL LAN-
GUAGE. One reason students may have problems with formal mathematical reason-
ing is that certain forms of statements are open to different interpretations in informal
and formal settings. In everyday speech potential ambiguity occurs frequently, with
context and world knowledge normally determining which interpretation to accept
from among an array of possibilities. By contrast, mathematical language is required
to be unambiguous, with each grammatical construct having exactly one meaning.
This meaning, however, is often selected arbitrarily, by common convention, from
among its potential natural language interpretations.

Traditional mathematical instruction makes very few of these linguistic conven-
tions explicit to students. An exception is the word “or.” Mathematicians often teach
students that while “or” is used both exclusively and inclusively in ordinary speech,

Umodus ponens: from p — g and p we can deduce g; modus tollens: from p — g and ~ g we can deduce
~ p; fallacy of affirming the consequent: from p — ¢ and ¢ we can deduce p; fallacy of denying the an-
tecedent: from p — ¢ and ~ p we can deduce ~ ¢
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it is always used inclusively in mathematics. However, they typically fail to provide
guidance about the equally important distinctions between ordinary and mathematical
language that relate to if-then and quantified statements.

For example, consider the variety of if-then statements used in everyday life. A
parent who wishes to communicate to a child, “You can go to the movie if, and only
if, you finish your homework™ seldom, if ever, uses this sentence. Normally such a
parent either promises “If you finish your homework, then you can go to the movie”
or threatens “You can go to the movie only if you finish your homework.” But the
parent offering the reward in the first statement intends the child to understand that
if the homework is not finished the child will not be able to go to the movie (even
though this threat is not technically a part of the statement), and the parent threatening
the punishment in the second statement would certainly not withhold the reward if
the homework were completed (even though the statement made does not actually
promise it). Similarly, most people reading a job advertisement saying, “Applications
will be considered only if they are received by the deadline,” would assume that if an
application is submitted by the deadline it will be considered.

These examples illustrate how in everyday language both if-then and only-if state-
ments are often meant to be interpreted as if-and-only-if statements. The informal
convention appears to be that when one direction of an if-and-only-if statement is con-
sidered to be “obvious,” only the less obvious direction is stated explicitly. Perhaps
one reason why so many of my students make the “converse error” (from if p then
g and g, deducing p) is that they have come to take for granted that the truth of if
p then g implies the truth of if g then p—unless their “world knowledge” obviously
contradicts this assumption, which is not usually the case when they try to analyze a
new mathematical situation.

My students also have difficulty accepting that p only if g is logically equivalent to
if p then q. A reason may be that in certain real-world situations the statements are not
interchangeable. If we try to apply the equivalence to if-then statements that express
causal or temporal relationships, the result is nonsense. For instance, “If it rains, then
I won’t go,” would be equivalent to “It rains only if I won’t go,” which is gibberish.

Many of my students also make mistakes when they try to negate if-then state-
ments. In mathematical logic the negation of if p then g is simply p and not q,
and this has important and broad ramifications for how mathematical arguments are
structured. Ordinary language contains many different varieties of if-then statements
besides the mathematical kind—ones referring to causal relationships, temporal rela-
tionships, counterfactual situations, and so forth. There are conventions for negating
if-then in these other situations, but they are different from the conventions of mathe-
matical logic. Imagine that a friend states “If I were Ann, I wouldn’t do what she did”
and we disagree. We might well say, “No, if you were Ann, you would do exactly what
she did.” Similarly, if we dispute the statement, “If Tom works overtime, then he’s paid
extra,” we might say, “No, if Tom works overtime, he’s not paid extra.” Or to counter
the claim that “If carbon emissions continue to occur at the present rate, the earth’s
temperature will increase by 10 degrees,” we might say “No, even if carbon emissions
continue to occur at the present rate, there does not necessarily have to be a 10-degree
increase in the earth’s temperature.”

Another set of examples of differences between formal and informal discourse con-
cerns quantified statements. In mathematics the distinction between “all” and “some”
is crucially important. Whether a statement begins “for all” or “there exists” com-
pletely determines how to tell whether or not it is true and what we can deduce from it.
Yet in ordinary language the statement “All A are B” is normally understood to imply
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the existence of at least one A, whereas in mathematical discourse we allow the state-
ment to be vacuously true. In an informal setting if a person has certain knowledge
that “All A are B” and only states that “Some A are B,” many people would regard
the person as dishonest. In other words, the statement “Some A are B” is normally
taken to imply that “Some A are not B.” But in mathematics, this implication is in-
valid. Similarly, in mathematical writing “Some A is a B” and “Some A are B” are
both acceptable ways to express “There exists x such that x is an A and x is a B,”
but in informal discourse the two sentences are not logically equivalent. See Rips [37,
pp- 22, 56, 228-9, 403—4] for a discussion of these phenomena.

Negations of quantified statements in mathematics cause students at least as much
difficulty as negations of if-then statements. In ordinary English, one can negate a
universal or existential statement in several different ways, one of which is simply to
insert the word “not.” For instance, to negate the statement “All grass is green,” we
may say “Some grass is not green,” “Not all grass is green,” or “All grass is not green.”
Some grammarians ask us to avoid the phrasing “All grass is not green” because it is
potentially ambiguous (indicating either a denial of the given statement or an allegation
about the nongreenness of every blade of grass), but the usage is widespread even in
formal writing in high-level publications (such as “All juvenile offenders are not alike,”
Anthony Lewis, The New York Times, 19 May 1997, Op-Ed page) or in literary works
(such as “All that glisters is not gold,”> William Shakespeare, The Merchant of Venice,
Act 2, Scene 7, 1596-1597).

Dubinsky and Yiparaki [10] show (and my own experiments confirm) that a sig-
nificant fraction of students interpret “There is a positive number b such that for all
positive numbers a, b < a” to mean the same as “For all positive numbers a, there
is a positive number b such that b < a” when, in fact, these statements have opposite
truth values. In formal logic, statements of the form “There exists an x such that for
all y, P(x, y)” are interpreted according to a strict rule: the universal quantifier is en-
compassed within the scope of the existential quantifier. In informal speech, however,
sentences in which an existential quantifier appears to the left of a universal quanti-
fier are frequently interpreted in the opposite way, as if their logical form were for
all. .. there exists. Consider, for instance, the biblical proverb: “There is a time to ev-
ery purpose under the heaven.” The continuation in Ecclesiastes makes perfectly clear
that the for all. .. there exists meaning is intended. This way of interpreting such mul-
tiply quantified statements is so pervasive that it is difficult to think of an example
of an ordinary sentence of the form “There is a... for every...” that a majority of
people would express formally as there exists... for all. The data of Dubinsky and
Yiparaki support this observation, as do linguists such as Chierchia and McConnell-
Ginet [7].

Informal ways of expressing negations of statements containing and and or may
also mislead students when they come to work in a formal mathematical setting. For
instance, a person who expresses the negation of “John is tall and thin” as “John is
not tall and thin,” which is entirely correct, not only uses the word “and” but also
avoids having to think about the specific circumstances that would falsify the given
statement. So perhaps it should not be surprising that when students are asked to write
the negation of “John is tall and John is thin,” a large number respond with “John is
not tall and John is not thin.” Similarly, many students negate “1 < x < 3” by writing
“l>x >3"

Many examples of the special linguistic conventions used in formal mathematics
can be found in Wells’s Handbook of Mathematical Discourse [54].

2This quotation is often thought to be “All that glitters is not gold.”

890 © THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 110



4. INFLUENCE OF PREVIOUS INSTRUCTION IN MATHEMATICS. An ad-
ditional reason for students’ problems with formal mathematical reasoning in inter-
mediate and upper-level college and university courses may result from their previous
instruction in mathematics itself. Mathematics teachers often face a difficult dilemma:
emphasize general principles or focus on concrete strategies. Emphasizing general
principles probably leads to deeper understanding, but if time is limited, weaker stu-
dents may fail to connect the principles with specific problems and therefore do rel-
atively poorly on examinations. Focusing on narrow problem-solving strategies may
lead to greater success for a larger fraction of students in solving standard problems,
but it may obscure basic ideas and provide an inadequate basis for more advanced
work. Given the pressures that have been mounting on teachers over the past several
decades to help the majority of their students achieve success on standardized tests, it
would be natural for some to choose strategies and short-cuts over general principles.

For example, calculus students who are encouraged to memorize what the chain
rule looks like in each of the common cases (u(x))", cos(u(x)), e**), and so forth,
often forget the general statement, but they may attain more rapid success with routine
applications than students who are only shown the general formula and examples of
how to apply it in each specific instance. Yet students who are taught always to work
from the general formula are more likely to learn it well, and the resulting familiarity
creates fertile ground for actual understanding to grow. Moreover, while the process
of learning to apply the general formula to a large variety of instances may take more
time than learning to apply more specialized formulas, students who achieve success
develop greater understanding for the power of general mathematical theorems. They
also deepen their intuition for the logical principle known as universal instantiation,
thereby improving their ability to operate with abstract mathematical symbols.

Similar distinctions can be made between students who learn only the FOIL method
for multiplying two binomials and those who learn a general strategy for multiplying
one polynomial by another, between students who learn to use the vertical line test
for whether a graph represents a function and those who learn to tell the difference
between functions and nonfunctions by direct application of the definition of func-
tion, and between students who use a mechanical method for finding the inverse of a
function and those who find the inverse by explicit use of the definition. For a more
extensive discussion of these distinctions, see Epp [14], [15].

Presumably in an attempt to appear accessible, mathematicians frequently write
definitions as if-then when they really intend them to be understood as if-and-only-if.
Those who know that the only-if direction is supposed to be obvious have no difficulty
making use of it when they reason about mathematical objects, but students often need
to be taught how to use the only-if direction in mathematical situations.

Formal mathematical discourse itself may suggest flexibility about the interpreta-
tion of order of quantifiers because the telltale signal that a statement is universal some-
times appears as a trailer at the end of a statement rather than at its beginning, as, for
example, when the commutative law is stated as “a + b = b + a for all real numbers a
and b.” Indeed, universal quantifiers are routinely suppressed entirely in formal math-
ematical writing, as when a function f is defined to be even “iff f(x) = f(—x),” or
when arelation R is called symmetric “iff a Rb whenever b Ra.” Hazzan and Leron [24]
point out some of the serious misunderstandings to which such suppression of quanti-
fiers occasionally leads.

Ways in which mathematics instruction may subtly encourage students to confound
conditional statements and their converses occur in the kinds of justifications given for
mathematical theorems. For instance, a teacher’s explanation may encourage students
to remember the theorem asserting that if the first derivative of a function is posi-
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tive, then the function is increasing, by imagining a nice-looking increasing function
whose derivative is everywhere positive, thereby indirectly leading them to conclude
that the derivative of an increasing function is always positive. They may propose a
similar mental image to help remember the relation between the second derivative and
concavity. Of course, calculus also offers opportunities for pointing out the logical
distinction between a conditional statement and its converse—in the relation between
differentiability and continuity and the relation between convergence of a series and
having the terms of the series tend to zero—but these topics are discussed somewhat
less often than in the past because of a trend to deemphasize “pathology” in elementary
calculus and to move infinite series to a higher-level course.

Both Harel and Sowder [23] and Goetting [21, p. 1] refer to teachers’ practice of
omitting proofs of theorems and relying on examples as justification. In so doing,
teachers may unwittingly convey the impression that empirical evidence suffices to
establish the truth of mathematical statements. Hoyles [25] points out that some of the
new curricula, which were designed to remedy past problems in mathematics educa-
tion, may in fact be increasing students’ belief in the sufficiency of empirical justi-
fication to establish general results. A number of recent textbooks contribute to this
misperception. And although there is a worldwide move to require mathematics stu-
dents at all levels to give explanations for their answers, at present this requirement
is only imposed by a relatively small fraction of teachers. Many students arrive in a
course emphasizing proof never having had to write a complete sentence in a mathe-
matics course.

Senk [43] found that only 30 percent of a sample of students who took a one-year
high school geometry course emphasizing traditional two-column proofs achieved a
75 percent mastery level. Her results were widely interpreted to indicate a failure
of traditional methods and a need to focus more on developing intuition and under-
standing of basic geometric relationships through exploration of examples. Certainly,
one deplores the idea of students going mechanically through abstract proof processes
without a good intuition for fundamental aspects of geometry. But it is possible that
the resulting de-emphasis on formal proof will lead to even fewer numbers of students
emerging from secondary school with a real sense for deductive argument. If adequate
measures are not taken to cultivate students’ proof abilities as well as their familiarity
with geometric objects, Senk’s statistics may eventually come to be seen as signs of
success rather than failure of traditional teaching methods.

5. CAN INSTRUCTION HELP STUDENTS DEVELOP FORMAL REASON-
ING SKILLS? The question of whether or not abstract reasoning skills developed in
one domain can transfer to other domains has long been a subject of debate among
psychologists and educators. For a historical summary, see Nisbett [34, pp. 1-9]. In
one of the studies using the Wason selection task (a test of understanding of the logic
of conditional statements) Cheng et al. [6] found no difference in performance between
university students who had taken an introductory logic course and a control group of
students who had not. An earlier study by Deer [8] also seemed to indicate that an ex-
plicit unit on logic was ineffective in improving high school students’ ability to prove
geometry theorems.

Although these studies provide evidence that traditional study of formal logic may
not be sufficient to produce noticeable gains in students’ reasoning abilities, the work
of Cheng et al. [6] indicates that (1) when training in the abstract rules of logic is
combined with training using concrete, discursive examples, improvement in students’
reasoning performance is significantly greater than when either abstract training or
examples training is administered alone, and (2) explaining logical principles by ref-
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erence to analogous “pragmatic reasoning schemas,” such as are used in everyday
discourse about permission and obligation, increases the likelihood that students will
apply the principles in more abstract contexts. Similarly, a study by Platt [36] indicated
that a unit in formal logic was beneficial for higher achieving geometry students and
one by Mueller [32] suggested that instruction in logic could, in fact, lead to greater
success in geometry if the logic units were interwoven with the geometry and if cues
were given to help students realize the relevance of the logic to the specific geometry
tasks. Berriozabal [4] also reports considerable long-term impact of the study of logic
on the students in his TexPrep program.

Anderson, Reder, and Simon claim that the overall body of research about transfer
of skills in cognitive psychology shows that “the amount of transfer depends on where
attention is directed during learning.” Regarding the effectiveness of training in the
component skills that are needed to accomplish more complex tasks, they maintain that
“the evidence shows that... a learner who is having difficulty with components can
easily be overwhelmed by the processing demands of the complex task™ [2, p. 241] and
that ““a large history of research in psychology shows that part training is often more
effective when the part component is independent, or nearly so, of the larger task™ [2,
p- 241]. But they also state that to achieve transfer of skills from one setting to another,
“training on the cues that signal the relevance of an available skill may deserve much
more emphasis than they now typically receive in instruction” [2, Internet version,
paragraph 33].

Trying to change thinking habits, especially ones that have become ingrained over
a period of years, is a very difficult task. Many cognitive psychologists believe that
the human brain consists of multiple parts that operate more or less independently
and often do not communicate very well with each other. For a general discussion of
this model of brain function see, for example, Gazzaniga [19] or Minsky [29], and
for a discussion of some of its implications for the process of learning mathematics
see Tall [47]. The novelist George Eliot expressed insight into this phenomenon more
than a hundred years ago when she wrote: “The human soul is hospitable, and will en-
tertain conflicting sentiments and contradictory opinions with much impartiality” [11,
Proem]. A likely consequence for mathematics instruction is that in order to learn a
complex process such as proof and disproof, effective integration of new modes of
thought with pre-existing contradictory modes is a major undertaking. It is not surpris-
ing that easy solutions have not yet been discovered.

Despite their difficulties, students are often grateful for the opportunity to under-
stand the underlying structure of mathematical thought on a deeper level than they had
previously been exposed to. Instructors who evaluate their work may wish that they
had made greater progress, but the students often believe they have achieved a great
deal. A recent questionnaire, which asked students about the general mathematics pro-
gram at DePaul University, contained a question inquiring what course had been most
beneficial and in what way. A significant fraction of the students in a postcalculus “In-
troduction to Mathematical Reasoning” class cited that class as most beneficial, giving
as their reason that it had helped them improve their logical reasoning skills.

6. AT WHAT POINT SHOULD THE PRINCIPLES OF LOGIC BE INTRO-
DUCED? In the 1930s the Russian psychologist L. S. Vygotsky coined the phrase
“zone of proximal development” [52, pp. 84-91, 102]. I believe that these words artic-
ulate a profound truth about education, namely, that at any given point in the learning
process, the insight and intuitions the learner has previously developed provide a basis
that determines the amount that can be accomplished in the next stage of instruction. In
the afterword of their edited collection of Vygotsky’s work, Mind and Society, editors
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V. John-Steiner and E. Souberman summarized his thinking as follows: ‘““To implement
the zone of proximal development in instruction, psychologists and educators must
collaborate in the analysis of the internal (‘subterranean’) developmental processes
which are stimulated by teaching and which are needed for subsequent learning” [52,
p. 131].

The first few times I taught a course with a focus on developing mathematical rea-
soning, I covered preliminary material on logic in the briefest and most perfunctory
way before launching into specific topics such as sets, functions, and relations. In time,
however, I came to see benefit in helping students broaden their zone of proximal de-
velopment before introducing them to the concepts of proof and disproof proper. As a
result, I now spend a few weeks at the beginning of the course discussing basic notions
of elementary logic and giving students formal and informal practice in working with
the language of the logical connectives and the quantifiers.

Some mathematics educators are impatient with this approach. They argue that logic
is too dry to capture students’ interest and that it is more important to engage students
right away with interesting mathematical problems that will lead them to see the need
for proof and disproof. A drawback to this method, however, is that some members
of the class may lack sufficient logical apparatus to acquire the understandings the
instructor thinks must inevitably follow from considering the mathematical problems.
In some cases, problems may be adequately solved in group settings by more able
members of the class while the rest of the students flounder and lack the intellectual
scaffolding to help them catch up. Meanwhile, even strong students may make mis-
takes because of a lack of knowledge of logical principles and fail to achieve insights
about the problem-solving process that a background in logic would have enabled them
to recognize.

If instructors could spend extended periods in one-on-one discussions with students,
they could focus as needed on just those issues that were causing difficulty. However,
as Harel and Sowder note, “While this approach [individual discussions] appeared to
be effective, it demanded from the instructors, as was expected, enormous amounts
of time outside the regular classroom hours” [23, p. 279]. Since instructors’ time is
limited, it may simply be more efficient to incorporate an introductory unit on the
principles of logical reasoning and the associated linguistic conventions in a course
where a primary theme is proof and disproof. This approach does not, of course, elim-
inate all difficulties, but it does cut down on the amount of time and effort needed to
resolve them.

Another important reason for discussing logic explicitly is to help prepare the next
generation of teachers. Unfortunately, at least in the United States, a large number of
K-12 teachers have only a weak command of the principles of logical reasoning. It is
simply not possible for such teachers to promote effectively their students’ reasoning
development (as is expected by the NCTM Principles and Standards of School Math-
ematics [33]) when they themselves do not have a feeling for what is or is not a valid
deduction or what it means for statements of various forms to be true or false.

The extent to which we eliminate proof in the broad sense from the K-12 curricu-
lum and the first two years of college is the extent to which we perpetuate the weakness
of our teachers. For one thing, when careful deductive reasoning is virtually absent
from lower-level mathematics courses, the wrong people may be attracted to the sub-
ject. Too often, such students do adequate work through the first two years of college
and then barely squeak through the remaining courses in their degree programs. In-
terviews by Bonn and Olson [5] and by Pagallo and Blue [35] with students majoring
in secondary mathematics education indicate that some actually disdain higher-level,
more rigorous mathematics courses because they believe (from their own experience!)
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that they will not need to understand this material or these modes of thought in their
future teaching.

7. TEACHING LOGICAL REASONING. Unfortunately, as noted earlier, it is pos-
sible to teach logic in a mechanical way that does not appear to have much effect on
most students’ reasoning abilities. I believe in presenting logic in a manner that con-
tinually links it to language and to both real-world and mathematical subject matter,
following up by referring to logical principles as they arise later in the course. Starting
with logic makes the course seem coherent and provides students with a supportive
framework, which they can lean on while the various aspects of proof and counterex-
ample are falling into place. It builds students’ confidence in the rationality of the
mathematical enterprise and helps allay their fear of failure. Determining truth and
falsity of mathematical statements is so complex that, even when they are motivated,
students often fail to “get it” if they do not have some knowledge and experience with
basic logical tools. Preceding the discussion of proof and disproof with a treatment of
logic provides a language for instructors to explain why mathematicians do the things
they do when they prove and disprove mathematical statements and to communicate
with their students when they make mistakes.

Exploiting similarities between formal and everyday language. Although there are
many differences between everyday and mathematical language, almost all the linguis-
tic conventions of mathematics can be found somewhere in ordinary discourse. For
instance, most students understand that “If Sam lives in Chicago, then Sam lives in the
U.S.” does not imply that “If Sam lives in the U.S., then Sam lives in Chicago.” They
also easily see that to disprove “All the people in this room are at least twenty years
old,” it suffices to find a single person in the room under the age of twenty.

Some students are not quite so quick to understand that “Italy will win the World
Cup only if it wins tonight’s game” is equivalent to “If Italy does not win tonight’s
game, then it will not win the World Cup,” and that these statements do not imply that
“If Italy wins tonight’s game, then it will win the World Cup.” But almost all come to
develop an intuitive feel for these relationships if given an opportunity to think them
through, as in a class discussion.

To motivate students to accept the reasonableness of the principles of mathematical
reasoning, it is helpful to introduce each principle with examples of sentences whose
“natural” interpretation agrees with the one used in standard logic. One can even sug-
gest that students learn a few of these sentences to refer to as prototypes when they are
unsure about how to interpret formal mathematical statements. It is also helpful, how-
ever, to acknowledge explicitly some of the differences between mathematical logic
and the logic used in everyday life. This aids students in resolving what otherwise
would be contradictory and assists them in integrating the new rules into a cognitive
framework. Moreover, by pointing out that the logic used in mathematics is essentially
just a small fraction of the much more complex logic they are accustomed to using,
they are encouraged to conclude that mathematical logic will not be so difficult to
learn.

Translation exercises. Symbolic summaries of logical principles are concise and help
focus students’ attention on essentials. Nonetheless, as indicated earlier, there is evi-
dence that simply memorizing abstract logical formulas and learning to apply them
mechanically has little impact on students’ broader reasoning powers. Thus, in the
sections on logic, one can emphasize exercises where students apply logical principles
to a mix of carefully chosen natural language and mathematical statements. It is es-
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pecially useful to stress the formulation of negations, because to be able to evaluate
whether or not a statement is true, one must understand what it would mean for it to
be false.

Furthermore, because of the importance of quantified statements in mathematics
and because of the large variety of different ways such statements are expressed in-
formally in mathematical writing, it is desirable to give students quite a bit of prac-
tice translating back and forth between formal and informal modes of expression.
Seldin and Seldin cite students’ weak ability to “unpack informally written mathe-
matical statements into the language of predicate calculus” [41, p. 123] as a significant
stumbling block to their ability to construct and validate proofs. One way to work up
to translation exercises involving quantified statements is to begin modestly by having
students evaluate statements for small finite systems such as those in Tarski’s World
used by Barwise and Etchemendy [3]. Then one can ask students to write statements
such as the following informally in several different ways without using variables or
formal quantifiers: “V integers n, if n? is even then n is even.” Or one can ask them
to rewrite a statement like “Every polynomial function is continuous” in the form:
“v if then ” In [30] Moore reported that students in a transition-
to-higher-mathematics course made good progress in learning to perform such trans-
lations and that a number cited the experience as contributing to their ability to do
proofs.

Some students pick up the finer points of English usage without explicit instruc-
tion—the difference between “affect” and “effect” or between “lie” and “lay,” for
example—but most need a teacher’s help to become aware of these distinctions and
learn to make them reliably. Similarly, a large majority of students need assistance to
become linguistically adept in a mathematical environment. Many students lack re-
spect for symbols and the “little” words—symbols like = and words like if, and, and
or—that make such a difference to the interpretation of mathematical statements. Exer-
cises that mix logic, language, and mathematics help sensitize them to the importance
of such expressions. Because of the complexity and subtlety of the logic of ordinary
discourse, however, it is important to formulate such translation exercises carefully, so
as to make them unambiguous and meaningful.

Use of truth tables. What role should truth tables play in communicating the prin-
ciples of logical reasoning? I believe it is important for students to learn to express the
definitions of not, and, or, and if-then in words, not just to see the definitions in a table.
For instance, they should understand that an and statement is true if, and only if, both
components are true, and that an if-then statement is false if, and only if, its hypothesis
is true and its conclusion is false. Facts about negations of forms of statements follow
naturally from such formulations.

Using truth tables to a limited extent, however, does help some students organize
their knowledge about logical principles and gives them concrete objects to hang onto
while they deal with the abstraction of the logic. It is important to make clear, though,
that truth tables merely summarize all the various possible truth values that may be
taken by a compound statement of a given form—values that are completely deter-
mined by the truth values of the component statements.

And although truth tables can help convey the concepts of logical equivalence and
validity and invalidity of arguments, one must take pains to steer students away from
interpreting them mechanically. For instance, students will often say that a truth table
shows the logical equivalence of two statement forms “because the results match,”
and it can be very difficult to get them to make the connection that the “results” are
truth values. When this problem arises in my classes and once the connection has been
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made clear through class discussion, I strongly urge students to explain their finding
of logical equivalence by writing something like “because the table shows that the two
forms of statement always have the same truth values.” Absent an explanation, the
process of constructing and interpreting the truth table may do little to advance their
understanding of the concept of logical equivalence.

In a similar way students can learn a procedure to test for validity of an argument
form without understanding the concept of validity, simply by mechanically converting
the argument to a tautology and checking that all the truth values are 7. So I require
students to identify the columns containing the premises and the conclusion and check
that in every case where the premises are true the conclusion is also true. I also insist
that they include an explanation with their answer, and the explanations in the model
answers I give them are written so as to emphasize concepts. For example, to explain
how a table shows invalidity, I suggest that they annotate the table by pointing an arrow
to the appropriate row(s) and urge them to write something like “This row shows that
it is possible for an argument of this form to have true premises and a false conclusion.
Hence this form of argument is invalid.”

Dealing with transfer issues. As a course with an emphasis on proof progresses, one
can follow the advice about transfer issues given by Anderson, Reder, and Simon to
help students recognize “the cues that signal the relevance of an available skill” [2,
Internet version, paragraph 33] by continuing to refer explicitly to logical principles
as they arise naturally in mathematical contexts. Thus, for example, in introducing the
notions of formal proof and counterexample, one can refer back to the definition of
truth and falsity of a universal statement and recall a simple example, such as how to
disprove that every person in the room is at least twenty years old. One would naturally
follow up with mathematical examples that make the same point, but it is helpful to
ground the discussion in something very basic that has been previously considered.

Similarly, when one talks about the reasons for steps in proofs, one can point out
how in most cases they are applications of the principle of universal instantiation—
knowing that if a property holds for all elements in a set, then it holds for any partic-
ular element in the set. And when students have difficulty finding counterexamples or
starting off proofs by contradiction, their frustration is reduced when they realize that
they have only to make use of a skill they learned fairly well before, namely, how to
formulate the negation of a statement.

It takes time for students to come to accept the validity of logical principles in
all their generality. For example, prior to a discussion of one-to-one functions not all
students may have achieved an intuitive feeling for the logical equivalence between
a conditional statement and its contrapositive. But both their understanding of one-
to-one functions and their understanding of logic is enhanced when they perform the
exercise of stating the contrapositive of the standard form of the definition of one-to-
one and contemplate the equivalence in that particular situation. Indeed, since students
would have studied proof by contradiction by such a point in the course, an instructor
could offer a proof by contradiction that, if a conditional statement is true, then so is
its contrapositive. Some students find such a proof more convincing than a proof that
uses truth tables.

Another example occurs when one discusses properties of binary relations. Learn-
ing to evaluate whether they possess various properties is much easier for students
who are familiar with how to take the negation of universal conditional statements.
Moreover, pointing out that the definitions of the properties are both universal and
conditional and reviewing the implications of these facts helps the weaker students
whose command of the subject is still shaky. And stronger students are often charmed
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to encounter examples of binary relations that are symmetric or transitive because the
definition of the property is vacuously true.
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