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Introduction: Even rather simple proofs and disproofs are built atop a normally unexpressed 
substructure of great logical and linguistic complexity. For example, in [7] I described a number 
of the many reasoning processes needed to establish the truth or falsity of the following 
statements: (1) The square of any rational number is rational; (2) For all real numbers a and b, if  
a > b then a2 > b2; and (3) For all real numbers x, if x is irrational then –x is irrational. The article 
cites evidence that a significant number of students taking college mathematics courses do not 
bring with them an intuitive feeling for the logic required to evaluate such statements and argues 
that some explicit instruction in logical reasoning is needed in courses that require students to 
engage in proof writing. However, because proofs and disproofs of even elementary statements 
require a substantial base of understanding, a “clarifying” analysis for a proof may be so complex 
that if students could understand it, they would not need it in the first place. Figuring out how to 
present proof construction simply enough to be intelligible yet detailed enough to be effective is 
one of an instructor's greatest challenges. 

 
The following sections contain ideas for helping students learn to construct simple proofs 

and disproofs. Most are approaches I have used myself and for which student reaction has been 
positive. Others are ideas for which colleagues have reported success.  

 
For students who come to a course with reasonably good intuition for logical principles, 

merely seeing them stated and working a few examples can be a pleasure – like the delight of the 
Molière character who learned one day that he’d been speaking prose all his life. For many 
students, however, simple exposure to principles of logic is not sufficient to counteract deeply 
ingrained incorrect patterns of thought, and follow-up instruction is needed to illustrate the uses 
of the principles in mathematical contexts. Thus Section I contains not only suggestions for how 
to take advantage of having provided students with a brief introduction to basic principles of 
logical reasoning before requiring them to make serious attempts at mathematical proof but also 
advice for how to help students develop a firmer and deeper grasp of reasoning principles as 
proof and disproof of various mathematical topics are discussed. Section II offers additional 
strategies to guide students through their initial proof efforts and lead them to see the desirability 
of expressing proofs with care, and Section III discusses additional ways to help students come to 
learn the need for proof. 
 
 
I. Building on Initial Coverage of Logical Principles 
 
Using Puzzle Problems: To make the transition from elementary logic to proof, it can be helpful 
to assign puzzle problems, such as Raymond Smullyan's knights and knaves.[20] These puzzles 
posit an island where each inhabitant is either a knight, who always tells the truth, or a knave, 
who always lies, but it is impossible to distinguish knights from knaves by their appearance. Each 
puzzle describes a situation in which certain inhabitants make certain statements, and the goal is 



   

to figure out who is lying and who is telling the truth. When solutions are discussed in class, quite 
a number of students make it clear that they do not have a natural feeling for the kind of indirect 
reasoning needed to solve most of the puzzles. Nonetheless, almost all students seem to enjoy the 
puzzles, and working on them helps develop a basis of intuition for proof by contradiction. 
Discussing the solutions serves to illustrate how inference rules are used in practice and helps 
students develop a sense for the flow of deductive reasoning, which they will use later in 
mathematical proofs of all types.  
 
Using Natural Deduction Proofs: John Barwise and John Etchemendy developed computer 
software called Tarski’s World, named after the logician Alfred Tarski, to represent situations in a 
world that consists of a grid containing a number of geometric shapes in a variety of positions. 
The accompanying courseware [2,3]  shows students how, among other things, to produce natural 
deduction proofs of statements about the shapes in the world.  Work of Lee and Stenning [11] 
supports the view that use of these materials improves students’ ability to reason deductively. 
Another teacher who uses instruction in natural deduction to prepare students for reasoning in 
more general  environments is Richard L. Morrow, a middle school mathematics coordinator with 
advanced training in logic.[16]  When Morrow first taught geometry to a group of gifted eighth 
graders, his students finished the book a month before the end of the year. Thinking to fill in the 
extra time, Morrow began the course the next year with a few weeks study of formal logic, 
focusing on student construction of natural deduction proofs. While his students said they found 
the work difficult at first, they eventually all succeeded, and, to his amazement, they then learned 
the geometry so much faster that they still finished the book a month early. 
 
Using Disproof by Counterexample: In any course that asks students to write proofs, one can 
start by giving students statements to identify as true or false, asking them to justify a 
determination of true “as best as you can” and to support an answer of false by providing a 
counterexample. One reason for beginning in this way is that most students find it easier to 
understand and construct disproofs by counterexample than to understand and construct even 
simple direct proofs. A second reason is that the more experience students have in seeing that a 
single counterexample disproves a universal statement, the more likely they are to understand that 
a general argument is needed to show that no counterexample exists. Finally, offering students 
mathematical statements whose truth or falsity they have to determine themselves helps make the 
point that proof and counterexample are first and foremost problem-solving tools. 
 
Direct Proof: Identifying the Starting Point and Conclusion to Be Shown: The most 
important initial point to communicate to beginning students about proving a universal statement 
is that they will have to move from something that is supposed to be true to something that must 
be shown to follow. It then becomes natural to  

• identify what is supposed and what is to be shown, which determines the outer structure 
of the proof, and  

• address the crucial question “How do I show that?” which determines the proof's inner 
structure and depends critically on the definitions of the terms in the statement. 

 
The most common type of mathematical statement is universal and conditional, having 

the form  
For all elements x in a certain set, if <hypothesis> then <conclusion>. 

 
A direct proof of such a statement has the following outline:  

• Suppose that x is a particular but arbitrarily chosen (or “generic”) element of the set for 
which the hypothesis is true.  

• We must show that x also makes the conclusion true. 
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The amazing thing about this proof technique is that merely by reasoning about a single element 
x, one deduces that the conclusion follows from the hypothesis for every element of the set – 
which is typically of infinite size. The validity of the reasoning is determined by the fact that x is 
arbitrarily chosen, or “generic,” which means that it has all the characteristics and only those 
characteristics common to every other element of the set. Hence everything one deduces about it 
is equally true of every other element of the set, and thus a descriptive name for this type of 
reasoning is generalizing from the generic particular. 

A dramatic way to emphasize the power of this proof method is to show how one can use 
it to structure proofs involving terms one does not even understand. For instance, given the 
statement “For all toths T, if T has a rath, then every wade of T is brillig,” the starting point and 
conclusion to be shown for a proof would be “Suppose T is any toth that has a rath. We must 
show that every wade of T is brillig.” This transformation may seem obvious to a mathematician, 
but it does not come naturally to many students.  Yet as students venture further and further into 
realms of mathematical abstraction, instinctive ability to use the transformation becomes 
increasingly essential to their success.   

 
Recognizing the “Suppose” and “To Show” in Proof by Contraposition and Proof by 
Contradiction: Once one has introduced proof by contraposition and proof by contradiction as 
well as direct proof, one can help students understand the differences among them by pointing out 
that while for each method there is something supposed and something to be shown, these 
“somethings” are dramatically different in each case. In a direct proof one supposes one has a 
particular but arbitrarily chosen object that satisfies the hypothesis, and one shows that this object 
satisfies the conclusion. In a proof by contraposition one supposes one has a particular but 
arbitrarily chosen object for which the conclusion is false, and one shows that for this object the 
hypothesis is also false. In a proof by contradiction one supposes that the entire statement to be 
proved is false, and one shows that this supposition leads to a contradiction. 
 
Use of Definitions: Mathematically speaking, the most important part of a statement’s proof is 
how one gets from the hypothesis to the conclusion.  For most of the proofs undergraduate 
students are asked to construct, the majority of this task is achieved through a logico-linguistic 
analysis of definitions. The reason is that the inner structure of a straightforward, or routine, 
mathematical proof is largely determined by the meanings of the terms.  

Note that, although they are frequently stated less formally, definitions are actually 
bidirectional. For instance, for n to be an even integer means that “n is even if, and only if, n 
equals twice some integer.” Thus if we know that n is even, we can deduce that n equals twice 
some integer (from the “only if” part of the definition), and if we know that n equals twice some 
integer, we can deduce that n is even (from the “if” part of the definition).  

To answer the question “How do I show that the conclusion follows from the 
hypothesis?” the prover needs an operational understanding of the “if” direction of the definitions 
of the mathematical terms in the conclusion. For example, to derive the conclusion that a certain 
quantity is rational, one needs to show that it can be expressed as a ratio of integers with a 
nonzero denominator. To derive the conclusion that one set is a subset of another, one needs to 
show that any element in the one set is an element in the other. To derive the conclusion that a 
function f is one-to-one, one needs to show that given any elements x1 and x2 in the domain for 
which f(x1) = f(x2), one can conclude that x1 = x2. Similarly, to work forward from the hypothesis 
toward the conclusion, the prover needs an operational understanding of the “only if” direction of 
the mathematical terms in the hypothesis. Helping students translate the formal wording of a 
definition into such operational terms is one of the most important tasks facing a teacher in a 
course introducing students to proof. 
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 One way to help students learn to use definitions is to try to induce them to see a 
definition as providing a test that has to be passed to decide whether something is the case. As 
soon as a new definition is introduced, one can introduce a range of examples, phrasing each as a 
question. For instance, immediately after defining rational, one can write “Is 0.873 rational?” and 
simultaneously ask the question out loud. To a student’s answer of “yes,” one can write “Yes, 
because” and look expectantly at the student. The student may be surprised that additional words 
seem to be called for but is generally able to supply the reason without difficulty (or other 
students may help out). One can move on to slightly more complicated examples (Is –(5/3) 
rational? Is 0 rational? Is 0.25252525… rational?), each time acting as if it is taken for granted 
that the student answering the question will give a reason. Soon students learn to give the 
reference to the definition without prompting, and gradually they come to understand the value of 
using the definition to answer such questions.  Coming to see a definition as the ultimate test 
that determines whether or not a given object has a given property can help students 
accept certain facts, such as that 0 is an even number, which, surprisingly, they often 
disbelieve. 

It is also useful to discuss alternative but logically equivalent ways to phrase definitions 
because it is often the case that the truth or falsity of a mathematical statement is more apparent if 
one uses one phrasing of a definition rather than another. Moore [15] gives several examples of 
student failure resulting from a lack of awareness of alternative versions of definitions. In an 
introductory course, an instructor needs to build in exploration of such alternative phrasings, 
reviewing the fact of their logical equivalence and showing how to operate with each version in 
the circumstances where it is superior to the others. Selden and Selden [19] argue that students' 
difficulty “packing and unpacking” the logic of mathematical definitions and theorems seriously 
undermines their ability to judge the correctness of mathematical arguments and to formulate 
arguments of their own. My experience supports this view. It is the main reason I give students 
practice in translating back and forth from formal mathematical statements to their many different 
informal versions. Because so many students find this difficult, I often continue to assign 
translation exercises throughout a large portion of the course. 

Another reason to discuss alternative wordings for definitions is to compensate for the 
fact that quite a few students are still in the process of developing a more sophisticated concept of 
variable. For example, one way to state the definition of even is “n is even if, and only if, there is 
an integer k such that n = 2k,” and in the usual development of many proofs it is important to be 
able to use this formulation. However, students with a naïve understanding of variables and 
quantification often make mistakes when they use it. For instance, to prove that the sum of any 
two even integers is even, they represent both as 2k, thereby only considering the case where the 
integers are the same. To help them come to a more mature understanding of the definition, it is 
helpful (1) to restate it less formally (as was done previously in this discussion) without using an 
additional variable such as k, and (2) to write it several times using a variable but each time with a 
different symbol to represent it, pointing out that it is the existence of the integer k, not the 
symbol used for it, that is important. 

In [21] Tall and Vinner introduced the notion of “concept image,” which shed 
considerable light on students' understanding of mathematical definitions. A concept image for a 
definition is “the total cognitive structure that is associated with the concept, which includes all 
the mental pictures and associated properties and processes.” An overly narrow concept image 
leads to mistaken assumptions and may result in incorrect mathematical arguments. For students 
to develop concept images adequate to help them effectively evaluate abstract mathematical 
statements, they need experience with a broad range of examples for each newly defined term. 
They also need to become acquainted with the diagrams and other visual representations that 
mathematicians use in reasoning about the term. These might be arrow diagrams for relations and 
functions, the image of a nonspecific real number and its floor sitting on a number line for the 
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study of the floor function, or a kind of blurry generic fraction with an indeterminate numerator 
and denominator for discussions about rational numbers. 

 
 
 
II. Guiding Students’ Fledgling Efforts 
 
No matter how much one tries to prepare students for the process of writing proofs on their own, 
a certain number find it very difficult. It seems that some students cannot believe that an 
instructor is serious about demanding coherent expression, while others simply have difficulty 
putting all the pieces together in a way that makes sense. To learn as complex a skill as proof 
construction, most students need quite a bit of individual, back-and-forth interaction with an 
instructor. To the extent that one cannot act as a private tutor to every student, one can try to 
devise effective substitutes. For example, one can  
• have students complete a few fill-in-the-blank proofs as homework to give them an  out-of-

class experience of participating in the development of a complete proof without making 
them responsible for its entire construction;  

• supply a variety of model solutions for some of the homework problems to show students that 
their individual work is really supposed to resemble the kind of proofs that have been 
developed in class;  

• suggest that students read their proofs out loud to test whether they are written in coherent 
sentences; 

• discuss the kinds of errors often made in writing proofs. 
Additional strategies are discussed in greater detail below.  
 
Student Critiques of Proofs: A number of textbooks for “bridge” and discrete mathematics 
courses contain exercises asking students to determine whether a proposed proof for a given 
statement is valid or not.  Campbell and Baker [4] developed activities that take these exercises 
one step further.  Each activity “consists of a given statement and several different proposed 
proofs of that statement,” some of which are valid and some of which are not. Students are 
divided into groups, and each group is given “one of the statement’s proposed proofs, with 
directions…to determine if the proof is an acceptable argument,” and, if so, to answer the 
following questions: 

1) “What type of logical argument did the author use (direct, contradiction, contrapositive)? 
2) How well written is the proof? 
3) Was it easy to follow? Why or why not? 
4) Can you think of some specific details which would make it clearer? If so, what are 

they?” 
If students determine that the proposed proof is not an acceptable argument, they are asked to 
“identify all the major problems” they find with it. Each time a group finishes evaluating one 
proposed proof, it is given another, until each group has critiqued the entire collection. In the next 
class period, the students and the instructor discuss the various groups’ critiques, “both on the 
level of identifying major issues, as well as minor problems such as style and clarity.” Campbell 
reports that “having a variety of proposed proofs, all of the same statement, seems not only to 
help the students in recognizing certain logical errors, but also in developing a language of their 
own, recognizing that a statement can be correctly proven in a variety of ways, and learning the 
importance of reviewing one’s work with a careful and objective eye.” She also comments that 
students have benefited by becoming aware of the importance of format and of making proofs 
reader friendly. 
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Whole-Class Proofs: One technique for increasing student involvement in the proof-
development process is for a teacher to do the writing on the board but have the students supply 
the individual steps. Richard L. Morrow [16] reported that when he uses this approach, he allows 
each student to give only one step so that as many students participate as possible. He wrote that 
“everyone gets to absorb the step, including its genesis or motivation, reason and role in the 
proof” and stated that the process makes it so that he “can  

1) demonstrate how to go to the final steps and work backwards, when getting stuck 
approaching the proof from the beginning, 

2)  knowingly allow a proof to head off in the wrong direction and ask for suggestions on 
what to do when we get stuck – something which is sure to happen to many students 
when working alone, 

3) demonstrate the value of marking up a diagram before writing down the steps, 
4) show the value of getting a holistic view of the situation before putting down the series of 

steps – the right brain is especially useful in geometry proofs, 
5) watch faces and judge how well the class or individuals are doing, 
6) demonstrate that proofs do not need to be perfect or elegant to work, 
7) let students know that everyone (or nearly so) is in the process of learning to do these 

things.” 
 
Identifying the Crux of a Proof: Many of the proofs one asks students to develop depend on a 
single central idea. Starting the proof-development process by trying to identify it accords with 
Leron's [12] suggestion to work down from a “top-level view of the proof.” For other proofs, 
however, one may only come to realize the essential features after plowing mechanically through 
its details. Coming to see the crux of a proof in this way occurs, therefore, during the part of the 
problem-solving process Polya refers to as “looking back.”[17] A practiced mathematician can 
easily reconstruct a lengthy proof just by recollecting its essence, but students often have 
difficulty when told the main idea because they are still struggling to master the underlying logic 
of proof construction. Becoming aware that it is possible to reconstruct proofs from a few central 
ideas can help motivate them to develop facility with the more routine aspects of mathematical 
argumentation. 
 
Using Informal Explanations: Hodgson and Morandi  [10] report success following an idea of 
Mason, Burton, and Stacey [14] to have students first develop an informal explanation to 
convince a fellow student of the truth of a statement before trying to write a proof formally. 
Initially, the student verbalizes the explanation, using a tape recorder to refine it until a fellow 
student finds it convincing. Then the student writes up the explanation carefully. Only after 
completing these steps does the student rewrite the explanation, filling in any necessary details 
and using standard mathematical language. In their article, Hodgson and Morandi follow a 
student through the process as she develops a proof that for all integers n, n(n+1)(n+2) is divisible 
by 6. 
 
Student Presentations: Having students present proofs from homework assignments for the rest 
of the class at the board is especially effective if started in the very first class period after proofs 
have been assigned. It is important, however, to make sure to preserve the self-esteem of the 
presenters. One can thank them for being good sports when they volunteer and point out that to 
the extent that they make mistakes, discussion about them helps everyone in the class avoid 
similar errors in the future. If a student’s proofs are good, the other students see that the demands 
made by their instructor can actually be met by one of their own kind. If a student’s proofs 
contain mistakes or sections that are not well expressed, an instructor can ask for suggestions for 
improvement from the rest of the class. A ploy is to ask students to imagine they are a research 
team for a large company and that if they can collectively come up with a perfect answer they 
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will get to share a sizeable bonus. After the class has finished its critique and some changes have 
been recorded, the instructor can take a turn, using the opportunity both to comment on 
significant errors that have gone undetected and also to show students the kinds of things the 
instructor will be looking for when grading students’ work. 

When I use this technique, I discuss small details as well as larger issues, but I try to put 
my criticisms in perspective, explaining frankly that certain corrections are more important than 
others, but that I also care about what might seem to be relatively minor points. For instance, if a 
student’s proof states that a certain number, say n, is even because it equals 2k, I would ask what 
was missing. Most likely, based on the emphasis I had previously placed on definitions, one of 
the other students would tell me to add “for some integer k.” I would agree, pointing out that, for 
example, 1=2×(1/2) and yet 1 is not even and adding that it is not enough for n to be 2 times 
something – that something has to be an integer.  

My primary reason for engaging in these kinds of critiques is to provide immediate 
feedback on students’ proof writing, but an important secondary reason is to counteract student 
anxiety about how their proofs will be evaluated. Since there is more than one right way to 
construct any given proof and since different instructors may well have different standards of 
correctness, I feel obliged to try to give my students a sense of the range of proof styles I consider 
acceptable and to indicate which parts of a proof I consider most important. So when I critique 
student proofs, present my own, and write proofs at the board that have been developed 
collaboratively with members of the class, I discuss alternative ways of expressing the steps that I 
would consider acceptable. I also talk about conventions of mathematical writing, such as giving 
only part of the reason for a certain step, enough to indicate that the writer of the proof has 
considered and resolved the issue but not so much as to overload the proof with unnecessary 
verbiage. In addition, I point out that the amount of detail included in a proof varies considerably 
depending on the intended audience. In my courses I generally suggest that students address their 
proofs to a fellow student who has missed the last few classes.  

At DePaul University some instructors have begun requiring students to present solutions 
to selected proof problems individually during office hours. Some require students to present one 
proof or disproof from each of the main types discussed in the course, while others offer students 
the possibility of raising their grade on a test by presenting a revised version of one of the 
problems they missed. Students are alerted that the instructor may stop to ask for clarification and 
base part of their grade on how effectively they respond, but because the presentations are private 
students do not need to worry about being embarrassed in front of their peers. In some cases the 
instructor’s questions simply allow the student to demonstrate understanding of the reasons for 
certain steps; in other cases they raise more serious issues about the correctness of the argument 
or the incorrect use of terminology. Because several of the student’s difficulties can be cleared up 
in the same session, such one-on-one student-instructor interaction can result in significant 
improvement in student understanding.  
 
Rewriting Proofs: Requiring students to rewrite proofs until they are correct is a useful way to 
help students improve their proof-writing skills. In a large class it may be impossible for an 
instructor to find time to provide suggestions for improvement for the majority of assigned 
problems, but it may be possible to make sure that students rewrite at least one of each type of 
proof that is assigned. Nancy L. Hagelgans, Ursinus College, gave the following concrete 
suggestions. [8] 

1) Have students submit double-spaced, word-processed drafts electronically, except for 
first drafts taken from tests. 

2) Write comments in pencil. 
3) Comment on the appropriateness of the proof method or the lack of evident method. 
4) If the method is appropriate, comment on the argument. 
5) If the argument is valid, comment on the English composition. 
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6) Mention the good points: “A great first sentence!” “Clear organization!” “Good choice 
of method of proof!” “Excellent proof so far!” 

7) Have conferences outside class with a few of the weakest students after several drafts. 
Some variations she suggests are to have the whole class discuss selected first drafts that are 
projected on a screen, have student pairs discuss and write comments on each others’ first drafts 
in class, and have students write comments on copies of selected first drafts. Another variation is 
to have students work on proofs in groups in class and go from group to group reviewing their 
work and offering hints on how to correct it.  
 
Addressing Process Issues: To help students cope with the often frustrating enterprise of 
mathematical discovery, one can encourage class discussion about the psychological aspects of 
the process. For instance, if a few students have found a counterexample for a mathematical 
statement that stymied a majority of the class, one can ask the successful students to share the 
thoughts that went through their minds when the counterexample occurred to them. One can also 
point out that mathematical discovery may involve emotional ups and downs, that even the best 
mathematicians find mistakes in their arguments which force them to abandon one approach and 
seek another. For example, work of Schoenfeld [18] supports the view that while successful 
problem solvers are persistent, they readily change to new approaches when previous ones do not 
appear to be working, though they might eventually return to a previous approach if a new 
attempt seems unsuccessful.1 

To assist students in structuring their time when they are trying to determine truth or 
falsity of a mathematical statement, one can suggest that they begin by imagining they actually 
have an object or objects satisfying the conditions described in the hypothesis. They can then ask 
themselves whether the conclusion must necessarily follow. If, after some effort, they do not see 
why this must be so, they can explore the possibility that the statement might be false by trying to 
think of elements that satisfy the hypothesis but not the conclusion. If this effort also fails, they 
can posit a situation where the hypothesis is true and the conclusion is false and try to derive a 
contradiction. If this method also seems to lead nowhere, the very process of having tried it and 
the other approaches may have resulted in insights that could lead to greater success when one of 
the previous approaches is tried again. 
 
 
III. Motivating the Need for Proof 
 
A common use of proof is to affirm the general truth of properties that one has seen to be true in 
some cases, thereby coming to understand the essential reasons why the property always holds. 
While all introduction-to-proof courses try to convey this point, in courses where exploration and 
experimentation play a major role, it is the primary way the need for proof is introduced. For 
example, in the Mount Holyoke course Laboratory in Mathematical Experimentation [6] students 
work in groups on laboratory-style projects, most of which use the computer as an experimental 
tool to generate examples. Students are expected to come to see patterns and are then prompted to 
conjecture generalizations. Finally they are asked to support their conjectures with analytical 
arguments including, when possible, complete proofs. Projects are chosen from, among others, 
number theory, dynamical systems, and graph theory. The Franklin and Marshall College course 
Introduction to Higher Mathematics is structured in a similar way. [13] An initial “module” 
guides students through a sequence of increasingly pointed questions and activities to discover 
and verify basic properties of even and odd integers. Another module leads students to discover 
patterns related to the Fibonacci sequence by having them fill in values in a table for n, fn (the nth 
                                                 
1 The Nova progam “The Proof,” which describes Andrew Wiles’ discovery of a proof for Fermat’s Last 
Theorem, provides a powerful example for the effectiveness of this strategy. 
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Fibonacci number), and S(n) (the sum of the first n Fibonacci numbers).  Later modules treat a 
variety of mathematical topics, such as polynomials and complex numbers, combinatorics and 
graph theory, difference equations and iteration, and number theory. The Foundations of 
Computing course at Butler University, developed by Peter Henderson, [9] incorporates a once-a-
week laboratory for exploration and experimentation alongside a more conventionally organized 
exposition of discrete mathematics that emphasizes logic and proof. In the lab sessions, students 
grapple with theoretical problems, which are often phrased engagingly as puzzles. These motivate 
the need for proof by requiring ingenuity and proof-like analysis (such as recursive thinking and 
identification of invariant properties) to solve.  

 
When students are skeptical about the need for proof, a particularly effective way to 

motivate it is to have them evaluate statements about whose truth or falsity reasonable people 
might reasonably disagree. Fortunately, there are more such statements than one might think 
because what is obvious to a mathematician is not always obvious to a student. It is also possible 
to find relatively elementary statements upon which most people would need to reflect in order to 
reach a definitive answer. Such statements are especially effective when used for student 
presentations in class. For instance, consider the statement “For all integers a, b, and c, if a 
divides bc then a divides b or a divides c.” If one assigns a homework problem asking students 
either to prove or provide a counterexample for this statement and then uses it for class 
discussion, it is common for one part of a class to claim it is false and another to say it is true. 
Once when two students from each group were chosen to go to the board to present their 
solutions, the result was one false proof, one partial “proof,” one incorrect counterexample, and 
one correct counterexample. Such an outcome is a powerful argument for the importance of 
careful reasoning, especially if one points out that the ability to come up with correct answers to 
such mathematical questions provides the theoretical foundation to be able to engineer airplanes 
that do not crash, develop encryption systems to keep transmission of credit card information 
secure, and so forth. 

 
This approach was developed as a formal teaching method, called “scientific debate,” by 

a group of mathematics educators in France. In a first step, “the teacher initiates and organizes the 
production of scientific [mathematical] statements by the students. These are written on the 
blackboard without any immediate evaluation of their validity.” In the second step, “the 
statements are put to the students for consideration and discussion. They come to a decision about 
their validity by taking a vote, with each opinion supported in some way, e.g. by scientific 
argument, by proof, by refutation, by counter-example, etc.” In the third step, “the statements 
which can be validated by a full demonstration become theorems, whilst those which are 
established as incorrect are preserved as “false-statements,” with a corresponding counter-
example.”[1]   

 
The approach is taken even further in courses that use the “Moore method” or a 

“modified Moore method.” In these courses students are given a list of definitions and an ordered 
set of statements proposed as possible theorems. They are given the job of proving the statements 
that are true and finding counterexamples for those that are false but are not allowed to consult 
textbooks or obtain solutions from an outside source. Classes consist primarily of presentations 
by students of their work, which is followed-up by questions and comments from members of the 
class. The method, originated by R. L. Moore for graduate courses at the University of Texas, has 
been modified by others to adapt it for use with a broader range of students and in less advanced 
courses. For instance, Chalice [5] includes elementary exercises on definitions to help the average 
student understand how they are applied to simple examples, and he encourages students to visit 
during office hours for hints on problems that give them difficulty. He also gives three exams 
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during the semester, and when students are preparing for an exam he makes available to them 
careful proofs of the theorems that will be covered. 
 
Conclusion 

 
A few years ago I had an experience with one particular class that made a special 

impression on me. The class was unusually small, only twelve students, and was the second 
quarter of a sequence. The previous quarter had dealt with logic, an introduction to direct and 
indirect proof, mathematical induction, and elementary combinatorics, all interwoven with 
various computer science applications. The second quarter was to cover set theory, function 
properties, recursion, some analysis of algorithms, relations on sets, and an introduction to graph 
theory, also with an admixture of applications. The class met only once a week but in three-hour 
sessions. 

The small size of the class and the length of the sessions gave me a chance to work with 
students more intimately than usual. I began each period by having students discuss in groups of 
three or four the homework they had prepared for that day and went from group to group talking 
with each at length. Overall the class atmosphere was excellent, and several students showed the 
kind of eager, enthusiastic intelligence that is a teacher's joy. What surprised me was that as the 
course moved from one topic to the next, almost all the students who had attained a relatively 
sophisticated level of achievement in dealing with a previous topic made it clear that they felt 
they had to struggle to succeed with the next. Yet as we worked through their questions and 
difficulties, they ultimately performed excellently with the new topic as well.  Their 
understanding of general methodological principles clearly made it easier for them to learn the 
new material but it did not make it trivial for them. 

This experience brought home to me more effectively than any before that abstract 
mathematical thinking is not something that either one is able to do or one is not able to do. 
Because of the experience I have become especially conscious of the need to respect my students 
and never to act surprised by their questions. Even when a student asks a question whose answer I 
have already discussed, I try to respond to it as if it were fresh. After all, nobody can concentrate 
100% of the time when new ideas are coming in fast and furiously. In all likelihood the student 
was not mentally prepared to absorb the answer when I previously addressed the question. For the 
student to formulate the question means that they have thought about the issue, want to know the 
answer, and are probably ready to understand it. That is cause to celebrate. It may also be that 
clarifying the issue at this point in the course (if possible in a slightly different way from that 
presented earlier) will give the other students in the class greater insight also. 

My main advice to those teaching courses whose goal is to develop students’ 
mathematical reasoning powers is to play an activist role but recognize that achieving success is a 
long-term process. I have sometimes been surprised when students who in my view fell far short 
of achieving the levels of accomplishment I strive for tell me how valuable they found the course 
in helping them do better work in their other courses or (I am always pleased to hear) in their 
jobs. 

The analogy I like to draw is of a child learning to walk. It takes months of daily effort 
for most children to take their first steps and several more months until they actually become 
steady on their feet. When a child is trying to move from one stage to the next in learning to walk 
and has failed several times, we don't say “Forget it.” We remain calm, good humored, and 
encouraging. And when the child finally succeeds, we spare nothing in expressing our delight. 
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