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Logic and Discrete Mathematics in the Schools

Susanna S. Epp

Albert Einstein once said [3], “the whole of science is nothing more than
a refinement of every day thinking.” This quotation aptly summarizes the
essential interdependence between the concrete and commonsensical and the
abstract and theoretical. Developing students’ abilities to shift smoothly and
flexibly between these two levels, while operating effectively on each one, is
arguably the central task of mathematics and science instruction.

In the language of the NCTM Standards [6], a primary goal of math-
ematics instruction should be to develop students’ “mathematical power,”
which is the ability “to explore, conjecture, and reason logically, as well as
... to use a variety of mathematical methods to solve nonroutine problems.”
As Uri Treisman and Dick Stanley have put it [9], mathematics instruction
should “concentrate less on the low-level use of high-level ideas and more on
the high-level use of low-level ideas.”

Those involved in the mathematics education reform movement have
identified various specific elements that contribute to developing students’
higher-level reasoning skills, such as experience working with open-ended
and slightly ill-formed problems, opportunities for learning to perceive math-
ematical issues in a broad variety of different contexts, practice in recogniz-
ing the need for and in providing justification for mathematical assertions,
increased use of cooperative learning, and employing calculators and com-
puters to provide answers to routine parts of problems.

But success in these reformed mathematical environments requires that
students—whether they know they are doing so or not—correctly apply the
laws of classical logic in a variety of different settings. Specifically, in order
to be able to reason effectively, students need to know

e that just because a statement of the form “if p then ¢” is true, one
cannot conclude that “if ¢ then p” is also true {or “if not p then not
q", for that matter);

e that another way to phrase a statement of the form “if p then ¢” is
“if not ¢ then not p”;
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e what it means for statements of the following form to be false: “p and
q,” “por ¢’ and “if p then ¢”;

e that if a property fails to hold in just one instance, then it does not
hold universally;

e that to show a property holds universally, one shows that it holds in
a particular but generic instance;

e that certain forms of argument are inherently erroneous (invalid)
whereas other forms can be trusted to produce true conclusions if

given true premises.

The Problem

Unfortunately, research by cognitive psychologists strongly suggests that
the vast majority of students do not develop the reasoning skills described
above during their high school years. Moreover, although a small proportion
of the population (approximately 4%) appears seemingly spontaneously to
develop a good capability for formal reasoning, most of the population does
not [1]. Thus most students, both in high school and college, need assistance
in order to improve their ability to think logically.

Perhaps in an ideal world the fundamentals of logical reasoning would
be adequately conveyed to students in the context of studying other topics
by teachers who know how to seize the “teachable moment” and who recog-
nize the importance of instilling general principles of reasoning in students’
minds. But the world is not ideal. For one thing, most of us are less adept at
catching that elusive moment than we would wish. But, more importantly,
if logical reasoning is always presented as a subtext, in an implicit rather
than explicit way, how are we to convey the expertise required to teach it
from one generation to the next?

One problem is that some mathematics teachers are not completely se-
cure in their own reasoning abilities while others take correct reasoning so
much for granted that they are not able to communicate effectively with
students who do not think as they do. Another problem is that when in-
struction in logical reasoning is not made an explicit priority, it is usually
subordinated to other considerations.

An ironic consequence of the attention given to mathematics instruction
over the past thirty years is that, especially in algebra, clever teachers and
textbook authors have devised numerous ways to help students obtain cor-
rect answers to problems by following certain mechanical procedures rather
than by reasoning them through. For instance, it used to be that students
were taught to solve the problem of finding all real numbers = such that
(z + 1){(z — 2) > 0 by applying the basic principle that a product of two
real numbers is positive if and only if both numbers have the same sign.
Use of this approach reinforced the notion that success in mathematics re-
sults from the intelligent application of a small number of basic principles,
and it taught several important methods of logical reasoning (for instance,
argument by division into cases and the logic of and and or). Nowadays,
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because they didn’t understand the definitions of the given functions, but
because they didn’t understand what it means for statements of the form
displayed above to be false. That is, they did not understand (even on an
intuitive level) that the negation of a universal statement is existential and
that the negation of “if p then ¢” is “p and not ¢.”

After several years of experimentation, we eventually settled upon the
method we still use today. Cognitive psychologists have demonstrated fairly
conclusively that instruction in the abstract -principles of formal logic alone
does not guarantee an increase in students’ reasoning abilities [7]. Our expe-
rience also showed that in order to significantly affect cognitive processes as
fundamental and broadly applicable as the correct use of the rules of formal
logic, a one-shot approach is not sufficient. Just as a person’s personality
does not change overnight, even after the revelation and acceptance by the
person of some profound personal psychological truth, neither do a person’s
cognitive processes undergo an instantaneous transformation even though
the person may have understood and accepted (at some level) the truth of
certain logical principles.

In our course, therefore, and in the book that has developed out of it [4],
we use several methods to tie formal principles of logic to their use in actual
reasoning situations. (Substantial portions of [8] reflect a similar approach
at the high school level.) First, when we introduce the principles, we include
a very large number of natural-language examples. Thus, for instance, be-
fore using truth tables to derive the law asserting that the negation of a
statement of the form “p and ¢” is “not p or not ¢q,” we give examples of
very simple and statements and have students think about and discuss what
the negations of these statements should be. Then, after the law has been
derived formally, the bulk of the exercises ask students to apply it in natural-
language situations. Later on in the course, when the law is actually used as
an important step in a reasoning process, we point out its occurrence to the
students. And when students occasionally use the law incorrectly in their
written work, mentioning their error by name helps them better understand
what they did wrong.

Student difficulties dealing with negations of universal and existential
statements are handled similarly. For instance, when we introduce students
to proof by contradiction (a difficult topic for most of them), we might ask
students to prove that the double of any irrational number is irrational.
Here is a version of a common response:

Theorem: The double of any irrational number is irrational.
Proof (by contradiction): Suppose it is not. That is, suppose
the double of any irrational number is rational. But we pre-
viously proved that v/2 is irrational and also that 2v/2 is ir-
rational. These results contradict our supposition. Hence the
theorem is true.

When the class has not previously discussed how to negate quantified state-
ments, a teacher has great difficulty helping students understand the error in
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however, a popular way to teach students to solve such inequalities asks
them to learn that the solution consists of certain intervals and that if sub-
stitution of a value from one of these intervals makes the inequality true,
then the interval is part of the solution. For most students, this method,
while effective, serves no larger educational purpose than obtaining a correct
answer to a particular problem. .

Similarly, in an ideal situation, discussion of the “vertical line test”
should help students deepen their understanding of the relationship between
the analytic and geometric versions of the definition of a function. Instead
the rule is often presented in such a way that students learn to get the
right answer to the question “does this graph represent a function?” with-
out making any real progress toward understanding what a function is. In
practice, use of the vertical line test enables students to avoid dealing with
the linguistic complexity of the function definition and thus fails to advance
their ability to understand similarly complex statements in the future. In
much the same way, students who are taught to find the inverse of a function
f by solving f(z) = y for z and then interchanging z and y are deprived
of the opportunity to deepen their understanding both of functions and of
the logic of quantified statements. Students not taught this short-cut are
forced of necessity to use the definition of inverse function, learning to ask
and answer the question, “given any y in the co-domain of f can I find an
2 in the domain so that f(z) = y?”

The Development of our Course

In 1978 at DePaul University we began developing a course to help stu-
dents make the transition from traditional computationally-oriented math-
ematics to more abstract mathematical thinking. At the outset we thought
that if we just gave students an opportunity to learn subject matter — such
as set theory, relations, and function properties — that forms the basis of
upper-level work in mathematics and computer science, they would be suc-
cessful. What we discovered was that students had much more difficulty
learning the material than we anticipated, and that to a great extent this
difficulty resulted from a general lack of reasoning skills.

For instance, many applications involving one-to-one functions use one
form of the definition:

for all z; and x9 in the domain of f, if f(z1) = f(x2) then z; = x9,
whereas other applications use the alternate form
for all z; and x2 in the domain of f, if x; # x9 then f(z1) # f(x2).

When we first started teaching the course, we merely commented on the
equivalence of the definitions in passing, using whichever was most conve-
nient in any particular situation. But we soon realized that what was obvious
to us (the logical equivalence of the definitions) was a major stumbling block
for many of our students. Similarly, a large number of students had diffi-
culty determining whether or not particular functions were one-to-one, not
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the above “proof.” In a class where there has been prior experience working
with such negations, the error is less common. And when it does occur, the
teacher can recall that the class previously agreed that the existence of just
one college student aged 30 or over was exactly what was needed to falsify
the general statement “All college students are under 30.” Then the teacher
can draw the parallel, pointing out how, in the same way, the existence of
just one irrational number whose double is rational is exactly what one needs
to negate the statement “the double of any irrational number is irrational.”
So that is the supposition from which a contradiction must be deduced in
order to prove the theorem by contradiction.

Contrast this approach with an approach in which general logical prin-
ciples have never been explicitly discussed. In such a case, the teacher is
in the awkward position of having to point out an error and at the same
time convince the student that it really is an error. We find that a student
who has already thought about the particular logical principle in question
and at least partially accepted its validity is much more ready to integrate
an appreciation for the new instance of it than a student who has never
thought about the issue before. Thus by identifying a few logical principles
and giving them names early in the course, we create a basis for developing
a fuller understanding of them and a means by which to communicate with
students about them throughout the remainder of the course.

This approach is similar to that used in both English and foreign lan-
guage courses. English teachers agree that the most important part of teach-
ing writing is having students spend time doing it. But interspersed with
actual writing practice is a certain amount of explicit instruction in the
rules of grammar and organization, and an important component of writ-
ing exercises is the process of correction and revision. Similarly for foreign
language instruction. Before the age of about eleven, children can learn lan-
guage purely by osmosis. But after the age of eleven people seem to benefit
from some formal instruction in the rules of a new language as well as from
immersion in it.

Outcomes

On the whole, we and our students have been very pleased with the
results of our approach. We do expect at times to have to listen to and read
student explanations that are quite garbled (in the early stages of discussing
set theory proofs, for instance). Deeply ingrained mental habits take time
to change. But what we do see is significant growth in most students as the
course progresses.

For instance, we wait to discuss equivalence relations until late in the
second quarter, having interspersed the more theoretical course topics with
more straightforward topics and applications earlier on. The advantage is
that by the time we reach this topic, the large majority of students really
understand what it means for a binary relation to be or not to be reflexive,
symmetric, and transitive (which requires a well-developed sense of the logic
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of quantified statements, if-then, and, and or). The observation that a
certain relation is, say, transitive “by default” is typically made with relish
by several students simultaneously. And when we discuss the proof that
an equivalence relation defined on a set partitions the set into a union of
disjoint subsets, virtually the whole class participates in its development.

Similarly by the time we discuss the fact that any tree with n vertices
has n — 1 edges (see Figure 1), we find that _the majority of our students
have sufficient familiarity with the logic of if-then and quantified statements
to comprehend the subtlety of the proof by mathematical induction. The
difficulty in the proof comes in understanding why the proof of the inductive
step proceeds as it does. In our course, the structure of the proof is seen
as a natural consequence of the general logical principle that to prove a
statement of the form

for all elements in a set, if (hypothesis) then (conclusion),

one assumes that one has a (particular but arbitrarily chosen) element of the
set which makes the hypothesis true, and one shows that this element makes
the conclusion true also. That is why in the proof of the inductive step one
assumes that k is any positive integer for which property P(k) holds (that
is, one assumes that any tree with k vertices has k — 1 edges), and then one
shows that P(k + 1) must also hold (that is, one shows that any tree with
k + 1 vertices has k edges). Moreover, to show that any tree with k£ + 1
vertices has k edges, application of the same logical principle leads one first
to suppose that T is any (particular but arbitrarily chosen) tree with k£ + 1
vertices and then to show that (this particular) T has k edges.

Even after so many years of intimate connection with this course, I am
still amazed that students who are clearly bright by many measures and have
done extremely well in preceding parts of the course nonetheless need to take
their time and feel their way with each new topic. Given encouragement,
however, and the opportunity to explore, discuss, and make mistakes, such
students not only succeed but they also thoroughly enjoy their success. The
point is that the ability to reason with mathematics, to deduce, to justify,
and to switch back and forth between abstract definitions and theorems and
concrete and applied situations, is not something that students either do
or do not possess. Nor is it necessarily or primarily innate. Rather it is a
conglomerate of knowledge, attitudes, and tendencies whose cultivation is
the greatest challenge that mathematics educators can address.

Connection with Discrete Mathematics

The primary reason for the current interest in discrete mathematics is
that it provides the theoretical foundation for the technology of the infor-
mation age. The ability to reason logically in abstract settings is essential
for success in computer science courses at all levels of the undergraduate
curriculum. Moreover, knowledge of particular topics in formal logic is in-
dispensible for understanding the design of digital circuits and automata,
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Lemma: Any tree with more than one vertex has a vertex of degree 1.
Proof: Let T be any tree with more than one vertex. Pick a vertex v
at random and search outward from v on a path along edges from one
vertex to another looking for a vertex of degree 1. As each new vertex
is reached, check whether it has degree 1. If so, a vertex of degree 1 has
been found. If not, it is possible to exit from the new vertex along a
different edge from that used to reach the vertex. Because T is a tree, it
is circuit-free, and so the path never returns to a previously used vertex.
Since the number of vertices of 7T’ is finite, the process of building a path
must eventually terminate. When that happens, the final vertex of the
path must have degree 1.

Theorem: For any positive integer n, any tree with n vertices has n—1
edges.
Proof: Let P(n) be the property

any tree with n vertices has n — 1 edges

We use mathematical induction to show that this property holds for all
integers n > 1.

Basis Step: Let T be any tree with one vertex. Then T has zero
edges (because it contains no loops). Since 0=1-1, the property holds
for n =1.

Inductive Step: We must show that for any positive integer k, if the
property holds for k then it holds for k + 1. Let k be a positive integer
and suppose the inductive hypothesis: that any tree with k vertices has
k—1 edges. We must show that any tree with k41 vertices has k edges.
Let T be any tree with k + 1 vertices. Since k is a positive integer,
k+1 > 2, and so T has more than one vertex. Hence by the lemma,
T has a vertex v of degree 1. Also since T has more than one vertex,
there is at least one other vertex in T besides v. Thus there is an
edge e connecting v to the rest of T. Let 7" be the subgraph of T

and removing an edge and a vertex cannot create a circuit) and 7" is
connected (since T is connected and removing a vertex of degree 1 and
its adjacent edge from a graph does not disconnect the graph). Hence
T’ is a tree with k vertices, and so 7" has k — 1 edges by inductive
hypothesis. But then, since 7 has one more edge than T, T has k
edges.

FIGURE 1.
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relational database theory, programming languages, and knowledge-based
systems. Because of its importance as a topic in computer science as well as
its central role in the kind of critical thinking in which computer scientists
must routinely engage, logic is now a standard topic of introductory discrete
mathematics courses at the college level.

Implications for the K-12 Curriculum

The majority of the reasoning skills emphasized in courses such as ours
should not have to be taught for the first time at the college level. By the
time students reach us, we have to expend as much effort helping them un-
learn the incorrect modes of thought to which they have become accustomed
as we do teaching them the correct thought processes on which mathemat-
ics is based. To achieve the lofty goals of the NCTM Standards, instruction
in a few basic logical principles should be woven throughout the K-12 cur-
riculum. Kindergarten is not too early for teachers to begin exploring the
precise use of language with children. Indeed, even very young children can
become sensitive to and enjoy making subtle linguistic distinctions. For ex-
ample, starting in the primary grades, the Russian mathematics curriculum
translated as part of the University of Chicago School Mathematics Project
includes exercises specifically designed to develop children’s logical sense [5].
In France, excellent materials have been developed for grades 6-10 for help-
ing students make a transition to abstract mathematical thinking. (See, for
instance, [2].)

In grades K-12 in the United States, however, explicit attention to the
development of logical reasoning skills has been minimal or nonexistent.
Our experience as described above has shown that logic can be taught ex-
plicitly and successfully within discrete mathematics. Including logic as an
official topic of discrete mathematics throughout the K-12 years will not
only provide a basis for more advanced study at the college level, but will
help insure that the principles of formal reasoning are no longer overtooked.
While there is a danger that logic will be taught in isolation, this can be
avoided by well-constructed curricular materials.

The historical rationale for requiring the study of mathematics was that
it sharpened the mind. Over the years this rationale has been deemphasized
and greater attention has been given to the goal of acquiring specific com-
putational skills and techniques thought to be needed in future courses or
in the “real world.” But the computer technology of today renders many of
these computational skills less important. Using calculators and computers
effectively requires general mental powers, flexibility of mind, and an un-
derstanding of concepts. Our primary goal as teachers should be to develop
these abilities in our students.
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