# Uniqueness and non uniqueness for harmonic functions with zero nontangential limits

J. Marshall Ash\*, DePaul University, Chicago, IL 60614 Russell Brown†, University of Kentucky, Lexington, KY 40506

#### 1. Introduction.

Definitions. By D we mean the open unit disc which is centered at the origin in the complex plane and by T we mean its boundary, *i.e.*, its circumference.

The question we will address here is to what extent does the limiting behavior of a harmonic function on T determine its values on D. A simple result in this direction follows from the maximum principle: If a harmonic function has limit 0 at each point of T, then the function is 0 on D (see Thm. 1 in Section 2). Emboldened by this, one might conjecture that if a harmonic function merely has radial limit 0 at each point of T then the function is 0 on D. Unfortunately, this is not so. In fact, consider the function  $u_1(r,\theta) := Im\left(\frac{z}{(1-z)^2}\right) = \sum_{n=1}^{\infty} n \sin(n\theta) r^n$ , which is harmonic on D. If  $e^{i\theta} \neq 1$ ,

$$\lim_{z \to e^{i\theta}} u_1(z) = Im\left(\frac{e^{i\theta}}{(1-e^{i\theta})^2}\right) = Im(\frac{1}{4}\csc^2\frac{\theta}{2}) = 0,$$

and  $\lim_{r\to 1^-} u_1(r,0) = \lim_{r\to 1^-} \sum_{r\to 1^-} 0 = 0$ .

Although  $u_1$  is unpleasant, it is, in a strong sense, the worst that can happen. Given a harmonic function u and a positive number r, let  $m(r) = m(r, u) := \sup_{|z| \le r} |u(z)|$ . The classical Theorem 3 of Section 2 asserts that if a harmonic function has radial limit 0 at each point of T and if  $m(r) = o((1-r)^{-2})$ , then the function is 0 on D. That  $m(r, u_1)$  is exactly  $O((1-r)^{-2})$  is a reflection of the sharpness of this result.

Definition. For any  $0 < \alpha < \pi$ , let  $C_{\alpha}$  be the circumference  $|z| = \sin \frac{\alpha}{2}$ . By  $\Omega_{\alpha}$  we mean the closed region bounded between the two tangents from z = 1 to  $C_{\alpha}$  and by the more distant arc of  $C_{\alpha}$  between the points of contact. Then  $\Omega_{\alpha} := \bar{\Omega}_{\alpha} \setminus \{1\}$  and the Stolz region  $\Omega_{\alpha}(w)$  is the region  $\Omega_{\alpha}$  rotated through an angle  $\arg(w)$  around z = 0. Note that the angle between the two straight edges of  $\Omega_{\alpha}$  is  $\alpha$ . When there is no confusion, we shall write  $\Omega(w)$  instead of  $\Omega_{\alpha}(w)$ .

Definition. We say that the nontangential limit of u at w is s and write

$$\lim_{z\to w} n.t._{z\to w} u(z) = s$$

if, for each choice of  $\alpha$ ,  $0 < \alpha < \pi$ ,

$$\lim_{\substack{z \to w \\ z \in \Omega_{\alpha}(w)}} u(z) = s.$$

The function  $u_1$  does not have a limit as  $z \to 1$  while staying within  $\Omega_{\alpha}(1)$  no matter how small  $\alpha > 0$  is chosen, so it seems reasonable to conjecture that if a harmonic

<sup>\*</sup> Partially supported by a leave of absence granted by the DePaul University Research Council.

<sup>†</sup> Supported in part by the National Science Foundation.

function has nontangential limit 0 at every point of T, then the function is 0 on D. Even this is not so. In section 3 we present two examples of nontrivial harmonic functions on D which have nontangential limit 0 at each point of T. The first is somewhat complicated, but has less rapid growth at the boundary. The second was communicated to us by Walter Rudin.

The examples of Section 3 show that some growth condition is necessary. By choosing modes of convergence intermediate between the unconditional limit of Theorem 1 and the radial limit of Theorem 3, and pairing them with corresponding growth rates intermediate between the vacuous one of Theorem 1 and the very restrictive one of Theorem 3, we will interpolate a scale of theorems indexed by a real parameter  $\alpha$  between Theorem 1 and Theorem 3. These theorems, Theorem  $2\alpha$ , Section 2, form a more quantitative version of this corollary:

Corollary 1. If a harmonic function has nontangential limit 0 at each point of T and if there is a real number N so that  $m(r) = o((1-r)^{-N})$  as  $r \to 1$ , then the function is 0 on D.

Neither this corollary nor Theorem  $2\alpha$  are as sharp as a result of F. Wolf (see [W], page 65, last sentence and page 66, first sentence) which allows m(r) to be larger, but our method of proof is different from Wolf's.

Although the examples of Section 3 show that some growth condition is necessary for Theorem  $2\alpha$ , they are somewhat disappointing in that they do not give any insight as to whether even the growth rate required by Wolf's version of Theorem  $2\alpha$  is really necessary. A second corollary, Corollary 2, Section 2, applies Theorem  $2\alpha$  to trigonometric series.

#### 2. Results

Theorem 1. Let u be harmonic on D. If

$$\lim_{\substack{z \to w \\ |z| < 1}} u(z) = 0$$

for each  $w \in T$ , then u(z) = 0 for all  $z \in D$ .

*Proof.* The maximum of a harmonic function which is continuous on the closure of D is attained on T.

Theorem  $2\alpha$ . Let u be harmonic on D. Let  $\alpha \in [0, \pi)$ . If

$$\lim_{\substack{z \to w \\ z \in \Omega_{\alpha}(w)}} u(z) = 0$$

for each  $w \in T$ , and if

$$m(r) = o\left(\frac{1}{(1-r)^{\frac{2\pi}{\pi-\alpha}}}\right)$$

then u(z) = 0 for all  $z \in D$ .

Corollary  $2\gamma$ . Let  $\frac{a_o}{2} + \sum (a_n \cos n\theta + b_n \sin n\theta)$  be a trigonometric series satisfying  $|a_n| + |b_n| = o(n^{\gamma})$ , as  $n \to \infty$ . Assume that for each  $w \in T$ , (writing  $z = re^{i\theta}$ ) we have

$$\lim_{\substack{z \to w \\ z \in \Omega_\alpha(w)}} \left\{ \frac{a_0}{2} + \sum (a_n \cos n\theta + b_n \sin n\theta) r^n \right\} = 0,$$

where  $\alpha = \pi \left( \frac{\gamma - 1}{\gamma + 1} \right)$ . Then all  $a_n$  and all  $b_n$  are 0.

Proof of Corollary  $2\gamma$ . The sum in curly brackets, call it u, is harmonic in D. It is easy to see that  $m(r) = \sum_{n=1}^{\infty} o(n^{\gamma}) r^n = o\left(\frac{1}{(1-r)^{\gamma+1}}\right)$ . (Use formulas III.1.9 and III.1.15 of [Z] for this.) Note that if  $\alpha := \pi\left(\frac{\gamma-1}{\gamma+1}\right)$ , then  $\frac{2\pi}{\pi-\alpha} = \gamma+1$  and apply Theorem  $2\alpha$  with this  $\alpha$  to get that  $u(r,\theta) = 0$  on D. For any fixed r < 1, the series defining  $u(\theta) = u(r,\theta)$  converges uniformly to zero. By I.4.10 of [Z], all of the  $a_n$  and  $b_n$  are 0. QED

Theorem 3. (F. Wolf [W], V. Shapiro [S], B. E. J. Dahlberg [D], compare S. Verblunsky [Z], IX.8.1, [V]) Let u be harmonic on D. If  $\lim_{r\to 1^-} u(rw) = 0$  for each  $w\in T$ , and if  $m(r) = o\left(\frac{1}{(1-r)^2}\right)$ , then u(z) = 0 for all  $z\in D$ .

Remark. The various proofs of Theorem 3 have different embellishments, such as allowing small exceptional sets with additional hypotheses. Of course Theorem  $2\alpha$  also admits some of these extensions without much additional effort, but we resist that temptation here.

Remarks. Our proof of Theorem  $2\alpha$  follows Dahlberg's proof of Theorem 3. In fact, if you set  $\alpha=0$  in the proof of Theorem  $2\alpha$  given below, you will have essentially Dahlberg's proof of Theorem 3. [D] Similarly, if you set  $\gamma=1$  in Corollary 2, Verblunsky's uniqueness theorem for Abel summable trigonometric series follows. [Z],IX.8.1, [V] Finally, Theorem 1 may be thought of as Theorem  $2\alpha$  with  $\alpha=\pi$ .

Definition. To an arc I of T associate the curvilinear triangle  $S(I) := \{tw \in D : w \in I \text{ and } 0 \le t < 1\}$ . For future reference, we note that  $\bar{S}(\bar{I}) = S(\bar{I}) \cup \bar{I}$ .

*Proof of Theorem*  $2\alpha$ . Let u be harmonic on D and fix  $\alpha$  in  $[0,\pi)$ . Assume that

$$\lim_{\substack{z \to w \\ z \in \Omega_{\alpha}(w)}} u(z) = 0$$

for each  $w \in T$ . Our goal is to show that u(z) = 0 for every  $z \in D$ . Let  $\mathcal{O} := \{w \in T : \limsup_{z \to w} u(z) \leq 0\}$ . It suffices to show that  $\mathcal{O} = T$ . For by symmetry it would then be immediate that  $\{w \in T : \lim_{z \to w} u(z) \geq 0\} = T$  also, so that  $\{w \in T : \lim_{z \to w} u(z) = 0\} = T$ . The goal would be reached, since this is exactly the hypothesis of Theorem 1. Letting  $u^+(z) := \max\{u(z), 0\}$  as usual, it is clear that  $\mathcal{O} = \{w \in T : \lim_{z \to w} u^+(z) = 0\}$ . Collecting the known properties of  $u^+$ , we will restate what must be done as Lemma 1. Thus, modulo the proof of Lemma 1 we are done.

Lemma 1. If p(z) is

(1) subharmonic, continuous, and non-negative on D,

(2) 
$$\lim_{\substack{z \to w \\ z \in \Omega_{\alpha}(w)}} p(z) = 0 \quad \text{for each } w \in T,$$

and if  $m(r) := \sup\{p(z) : |z| \le r\}$  satisfies

(3) 
$$m(r) = o\left(\frac{1}{(1-r)^{\frac{2\pi}{x-\alpha}}}\right);$$

then  $\mathcal{O} := \{ w \in T : \lim_{z \to w} p(z) = 0 \} = T.$ 

Proof of Lemma 1. We first show that  $\mathcal{O}$  is open. Let  $w_o = e^{i\theta}$  be a point of  $\mathcal{O}$ . Then there is a neighborhood of  $w_o$ , say of the form  $\{(r,\varphi): 1-\delta < r < 1 \text{ and } |\varphi-\theta| \leq \delta\}$  for some  $\delta > 0$ , on which p is bounded. But p, being continuous on the compact set  $\{(r,\varphi): 0 \leq r \leq 1-\delta \text{ and } |\varphi-\theta| \leq \delta\}$  is also bounded there. Hence p is bounded on S(I) where  $I := \{e^{i\varphi} \in T: |\varphi-\theta| \leq \delta\}$ . To proceed with the proof of Lemma 1 we will need:

**Lemma 2.** Let p satisfy (1) and be bounded on S(I) for some closed interval  $I \subset T$ . Suppose  $\lim_{r\to 1^-} p(rw) = 0$  for each  $w \in I$ , then  $\lim_{z\to w} p(z) = 0$  for each w interior to I

Proof of Lemma 2. Let  $M := \sup\{p(z) : z \in S(I)\}$ . Let F be a conformal map of the unit disc onto S(I) and let I be the closed interval of T satisfying F(I) = I. Define a function v on I by  $V(\zeta) = p(F(\zeta))$ . Then V still enjoys property (1) and  $1 \le V \le M$  on I. Then I has a least harmonic majorant I ([T], pp. 172–173). Since the constant function I is itself a harmonic majorant of I is a bounded harmonic function on I is a bounded harmonic function I on I is a point I to denote the Poisson integral of I:

$$\frac{1}{2\pi} \int_0^{2\pi} H(e^{i\varphi}) \frac{1-r^2}{1-2r\ \cos(\theta-\varphi)+r^2} \, d\varphi.$$

Also,  $\lim_{\zeta \to \eta} n.t. \ h(\zeta) = H(\eta)$  almost everywhere [T], pp. 172-173. Since  $\Omega(w)$  contains the radius terminating at w, it follows from (2) that

$$\lim_{\substack{\zeta \to \eta \\ \zeta \in C(\eta)}} v(\zeta) = 0$$

for each  $\eta$  interior to J where for  $\eta = F(w)$ ,  $C(\eta) := F^{-1}(\{rw: 0 \le r \le 1\})$  is a curve orthogonal to T at  $\eta$ . It follows that H must be 0 almost everywhere on J. In particular, H is essentially 0 on J and hence essentially continuous there, so that  $\lim_{\zeta \to \eta} h(\zeta) = 0$  at all points interior to J ([T], p. 130). But then v is squeezed between 0 and h so  $\lim_{\zeta \to \eta} v(\zeta) = 0$  everywhere on the interior of J, which is to say that  $\lim_{z \to w} p(z) = 0$  everywhere on the interior of I. This proves Lemma 2.

Returning to the proof of Lemma 1, note that since the radius terminating at w is contained in  $\Omega(w)$  for all choices of  $\Omega$ , from Lemma 2 we can conclude that every point of T within  $\delta$  of  $w_o$  is in  $\mathcal{O}$ . Thus each point of  $\mathcal{O}$  is interior to  $\mathcal{O}$ , so  $\mathcal{O}$  is an open subset of T.

Let  $p^*(w) := \sup\{p(z) : z \in \Omega(w)\}$ . Define  $F_j := \{w \in T : p^*(w) \leq j\}$ . Then  $F_j$  is closed. For if  $\{w_k\}$  is a sequence of points in  $F_j$  tending to w, and if  $z \in \Omega(w)$ , then for each k there is a point  $z_k \in \Omega(w_k)$  with  $|z_k - z| < |w_k - w|$ . Since  $p(z_k) \leq p^*(w_k) \leq j$  and since p is continuous at z,  $p(z) \leq j$ . Since z was arbitrary,  $p^*(w) \leq j$ ,  $w \in F_j$ , so  $F_j$  is closed.

Our goal is to show  $\mathcal{O} = T$ ; so, letting  $K := T \setminus \mathcal{O}$ , we must show the closed set K to be empty. Assume not. From (2) it follows that  $\bigcup F_j = T$ , so that  $\bigcup (F_j \cap K) = K$ . By the Baire Category Theorem, there is an interval  $I \subset T$  and an integer j so that the nonempty set  $K \cap I$  is contained in  $K \cap F_j$ , i.e.,  $K \cap F_j$  contains a portion of K [Z], I.12.1 If I = (a, b), let  $M = \max\{p^*(a), p^*(b), j\}$ . To prove Lemma 1, we will show

(4) 
$$p(z) \le M$$
 for every  $z \in S(\bar{I})$ .

From Lemma 2 it will then follow that  $\lim_{z\to w} p(z) = 0$  for every  $w\in I$  and hence for at least one  $w\in K$ , contrary to the definition of K. Thus Lemma 1, and, consequently, Theorem  $2\alpha$  will be proved. Write  $I\setminus K$  as a countable union of open intervals and let (c,d) be one of these intervals. (If c and d are points of T, by (c,d) we will mean the shorter arc of T lying between c and d. Note  $|c-d|=2\sin\frac{\theta}{2}$  when the arclength of (c,d) is  $\theta$ .) By Lemma  $3\alpha$  below it follows that  $p\leq M$  on  $T_{cd}$ . Since  $S(\bar{I})$  is covered by the union of these triangles together with a union of regions  $\Omega(w)$  where  $w\in F_j$ , (4) follows.

Lemma 3 $\alpha$ . Suppose p satisfies (1), (3),  $p^*(c) \leq M$ ,  $p^*(d) \leq M$ , and  $\lim_{z \to w} p(z) = 0$  for all w in the arc (c,d). Then  $p(z) \leq M$  for all  $z \in S([c,d])$ .

Proof. Let  $T_{cd}$  be the curvilinear triangle bounded by the arc (c,d) and the line segments pc and pd where p is the point of intersection of the straight side of  $\Omega(c)$  closest to d and the straight side of  $\Omega(d)$  closest to c. We need only show that  $p(z) \leq M$  for  $z \in T_{cd}$ . Let F be a conformal mapping of  $T_{cd}$  onto the unit disc D. Then the angle at c of  $\frac{\pi-\alpha}{2}$  is straightened out into an angle of  $\pi$  by F. In other words, neglecting a translation and a rotation, for  $z \in T_{cd}$  near c, F is asymptotically  $z^{\frac{2\pi}{\tau-\alpha}}$  (which maps  $e^{i0}$  to  $e^{i0}$  and  $e^{i(\frac{\pi-\alpha}{2})}$  to  $e^{i\pi}$ ). Hence if  $|\zeta - F(c)| = \delta$ , then  $|F^{-1}(\zeta) - c| \simeq \delta^{\frac{\pi-\alpha}{2}}$ ; so letting  $v(\zeta) := p(F^{-1}(\zeta))$ , it follows from (3) and Lemma 4 below that  $|v(\zeta)| = o(\frac{1}{\delta})$ . Similarly if  $|\zeta - F(d)| = \delta$ , then  $v(\zeta) = o(\frac{1}{\delta})$ . For  $\eta \in (c,d)$ ,  $\lim_{\zeta \to \eta} v(\zeta) = 0$ , and for  $\eta \in T \setminus [c,d]$ ,  $v(\eta) = u(F^{-1}(\eta))$ , where  $F^{-1}(\eta) \in \Omega(c) \cup \Omega(d)$ , so  $v(\eta) \leq M$ . Thus we may apply the Phragmén-Lindelöf Lemma 5 below to complete the proof of Lemma  $3\alpha$ . QED

Lemma 4. Let p(z) satisfy (1),  $m(r) = o((1-r)^{-N})$  for some positive real number N, and  $\lim_{z\to w} p(z) = 0$  for all w in the arc  $(c_1, c_2)$ . Then, for both i = 1 and i = 2, as z tends to  $c_i$ , we have

(5) 
$$p(z) = o(|z - c_i|^{-N}).$$

*Proof.* We observe that if B is a disk centered at z and v a function harmonic in B and continuous on  $\bar{B}$  and if  $p \in (0,1)$ , then

(6) 
$$|v(z)| \le C_p \left(\frac{1}{|B|} \iint_B |v(x,y)|^p dx dy\right)^{\frac{1}{p}}.$$

This result is stated and proved on pages 172–173 of [FS]. For our purposes we need to lighten the hypothesis for inequality (6) from harmonic to subharmonic and nonnegative.

This is straightforward, so we will limit ourselves to a few remarks on p. 173 of [FS]. In line 3, "= r" should be "=  $r^2$ "; in line 6, append "provided  $p > 1 - \theta$ "; and in line 11, change the second upper limit of integration to 1. The only real change involves establishing the estimate  $m_{\infty}(\rho) \leq A(1 - \rho r^{-1})^{-n}m_1(r)$  on line 8 for a nonnegative subharmonic function p. The notation  $m_p$  is from [FS]. To see this, introduce the harmonic function h which agrees with p on the origin-centered spherical surface of radius r and note (i) the estimate holds for h, (ii)  $m_{\infty}(\rho, p) \leq m_{\infty}(\rho, h)$  by the maximum principle, and (iii)  $m_1(r, h) = m_1(r, p)$  by the definition of h.

Let  $I := (c_1, c_2)$  and define

$$v(z) := \begin{cases} p(z), & \text{if } z \in S(I) \\ 0, & \text{if } z \notin S(I). \end{cases}$$

Then v(z) is actually subharmonic and nonnegative on the infinite wedge  $W:=\{rw: w\in I, 0\leq r<\infty\}$ . This is easy to check: for example, if  $w\in I$  and B is a ball about w small enough to be contained in W, then  $v(w)=0\leq |B|^{-1}\int_{B\cap D}p=|B|^{-1}\int_Bv$ . We will deduce the required estimate (5) only at  $c_1$ , since the argument at  $c_2$  is symmetric. Write  $z=c_1-\delta e^{i\varphi}$ , so that the vector from  $c_1$  to z makes an angle of  $\varphi$ ,  $0<\varphi<\frac{\pi}{2}$ , with the vector from  $c_1$  to the origin. If  $0<\varphi\leq\frac{\pi}{4}$ , then it is geometrically evident that there is an absolute constant C such that  $|z-c_1|^{-1}\leq C(1-|z|)^{-1}$ , whence (5) is immediate. So assume  $\frac{\pi}{4}<\varphi<\frac{\pi}{2}$ , which insures that B, a disc of radius  $\delta/8$  (say) about z is contained in W. Let A be the polar rectangle  $\{(r,\theta):1-2\delta\leq r<1, \arg(z)-\frac{\delta}{8}\leq\theta\leq\arg(z)+\frac{\delta}{8}\}$ . Clearly  $B\cap D\subset A$ . Applying the inequality (6) we have, for any q>0,

(7) 
$$v(z)^{q} \leq C_{q} \frac{1}{|B|} \iint_{B} v(x,y)^{q} dxdy = C_{q} \frac{1}{|B|} \iint_{B \cap D} p(x,y)^{q} dxdy \\ \leq C_{q} \frac{1}{|B|} \iint_{A} p(x,y)^{q} dxdy.$$

Now set q := 1/2N, change to polar coordinates, note  $|B| = O(\delta^2)$ , note that the hypothesis on m(r) can be rewritten as  $p(r,\theta) = o((1-r)^{-N})$ , and estimate the Jacobian r by 1. All this substituted into inequality (7), raised to the 2N th power yields

$$v(z) = O\left(\delta^{-2} \int_{1-2\delta}^{1} o((1-r)^{-\frac{1}{2}}) dr \int_{\arg(z)-\delta/8}^{\arg(z)+\delta/8} d\theta\right)^{2N} = o(\delta^{-2+1/2+1})^{2N} = o(\delta^{-N}).$$

QED

Lemma 5. (Phragmén-Lindelöf Lemma) Let p(z) satisfy (1) and suppose that

$$\limsup_{z \to w} p(z) \le M$$

for all  $w \in T \setminus \{c_1, ..., c_n\}$ . Suppose also that for each  $j, 1 \leq j \leq n$ , we have

(8) 
$$|p(z)| = o(|z - c_j|^{-1}) \text{ as } z \in D \text{ tends to } c_j.$$

Then  $p(z) \leq M$  in D.

Proof. Let  $D(c, \delta) := \{z : |z - c| < \delta\}$ ;  $I(c, \delta) := D(c, \delta) \cap T$ , so that I is the arc  $(c^-, c^+)$  of T where  $\arg(c^{\pm}) = \arg(c) \pm \arcsin(\frac{\delta}{2})$ ; and  $\omega^z$  be the harmonic measure for D so that if  $E \subset T$ , then  $\omega^z(E)$  is the Poisson integral of the characteristic function of E. If  $e^{i\theta_0} \in T$ ,  $z = re^{i\theta} \in D$ , and  $|z - e^{i\theta_0}| = \delta$ , we have the estimate

$$\begin{split} \omega^z(I(e^{i\theta_0},\delta)) := \frac{1}{2\pi} \int_{c^-}^{c^+} \frac{1-r^2}{1-2r\ \cos(\theta-\varphi)+r^2} d\varphi \\ & \geq c \int_{\delta/4}^{\delta/4} \frac{1-r}{(1-r)^2+(\theta-\theta_o-\varphi)^2} d\varphi \\ & = c \left\{\arctan\left(\frac{\theta-\theta_0+\delta/4}{1-r}\right) -\arctan\left(\frac{\theta-\theta_0-\delta/4}{1-r}\right)\right\}. \end{split}$$

Now  $1-r \leq \delta$ , so if  $\theta \geq \theta_o$ , the first arctan exceeds  $\arctan(\frac{\delta/4}{\delta})$ , while the second arctan is negative, so that  $c \arctan(\frac{1}{4})$  is a lower bound. The case of  $\theta \leq \theta_o$  is symmetrical. In other words, there is a positive absolute constant  $c_o$  so that

(9) 
$$\omega^{z}(I(e^{i\theta_{0}}, \delta)) \geq c_{o} \text{ whenever } z \in D \text{ and } |z - e^{i\theta_{0}}| = \delta.$$

Fix  $\delta>0$ ; for each j,  $1\leq j\leq n$ , let  $u_j(z,\delta):=\omega^z(I(c_j,\delta))/c_o$ ; and define the domain  $D_\delta:=D\setminus (\cup_j D(c_j,\delta))$ . Using the estimate (9) and applying the maximum principle for subharmonic functions in  $D_\delta$ , we have

(10) 
$$p(z) \le M + \sum_{j=1}^{n} u_j(z, \delta) M_j(\delta)$$

for z in  $D_{\delta}$ , where  $M_j(\delta) := \sup\{p(z) : z \in \partial D(c_j, \delta) \cap D$ . Now let  $z = re^{i\theta} \in D$  and estimate as above to get

$$u_j(z,\delta) \leq C\{\arctan\left(\frac{\theta-\theta_j+\delta/4}{1-r}\right) - \arctan\left(\frac{\theta-\theta_j-\delta/4}{1-r}\right)\},$$

where  $\theta_j$  is the argument of  $c_j$ .

Finally, freeze z and let  $\delta \to 0$ . We see that there is a constant  $C_j(z)$ , depending only on j and z, so that  $u_j(z,\delta) \leq C_j(z) \cdot \delta$  as  $\delta \to 0$ . Thus, taking hypothesis (8) into account, we see that  $u_j(z,\delta)M_j(\delta) = O(\delta)o(\frac{1}{\delta}) = o(1)$  as  $\delta \to 0$ . Substituting these n relations into inequality (10) and letting  $\delta \to 0$  establishes Lemma 5.

## 3. Examples

Theorem 4. There is a function which is not identically 0, which is harmonic on D, and which has non-tangential limit 0 at every point of T.

Proof. Let

$$f(z) := \int_0^\infty \frac{e^{zt}}{t^t} dt$$

Then f satisfies

(11) there is a constant A so that  $|f(z)| \le A$  if  $|Im(z)| \ge \pi$ ,

(12) f is entire and hence in particular continuous at each finite z, and

(13) for x real,  $f(x) \simeq \sqrt{2\pi}e^{\left(e^{(x-1)} + \frac{1}{2}(x-1)\right)}$ .

(See [BN], pp.140-143, for properties (11) and (12). See the estimate following this proof for (13).) Let  $S(z) := \pi i (\frac{1+z}{1-z}) - 2\pi i$ . Direct calculation shows that  $S((1-a) + ae^{i\theta}) = -\frac{\pi}{a}\cot\frac{\theta}{2} + (\frac{1}{a} - 3)\pi i$ . Setting a = 1 shows that S maps  $T = \partial D$  onto the line  $L := \{x - 2\pi i : -\infty < x < \infty\}$ . Similarly setting  $a = \frac{1}{2}, \frac{1}{3}$ , and  $\frac{1}{4}$  shows that S maps each circle  $T_i$  onto the line  $L_i$ , i = 1, 2, 3, as shown,



Also S maps the dotted disc A onto the dotted half plane A' and the dark shaded region B onto the similarly shaded strip B' as shown. Now let g(z) := (1-z)f(S(z)). From (12) it follows that

(14) g is continuous at every point of T except z = 1.

Since (11) holds and  $A' \subset \{z : |Im \ z| \ge \pi\}$ , it follows that

(15) g has non-tangential limit 0 as z tends to 1.

Finally, let  $h(z) := g(z) - PI(g|_T)(z)$ , where (PI)(f) denotes the Poisson integral of f. From (12) we see that  $g|_T$  is continuous on  $T\setminus\{1\}$ . Motivated by (15), define  $(g|_T)(1) := 0$ . From (11) and  $L \cap \{|Im(z)| < \pi\} = \emptyset$ , we have

$$\lim_{\substack{w \in T \\ w \to 1}} g(w) = 0$$

so that  $g|_T$  is continuous on all of T. Thus at every point w of T, the non-tangential limit as  $z \to w$  of  $PI(g|_T)(z)$  is g(w).[Z], III.7.9 From (14) and (15) it follows that h has non-tangential limit 0 everywhere on T.

Now the Poisson kernel is positive and has integral 1 so that  $\sup_{z \in D} |PI(g|_T)(z)| \le \sup_{w \in T} |g(w)|$ , which is finite since  $g|_T$  is a continuous function on a compact set. To get  $h \neq 0$  we will show g to be unbounded on D. On  $T_2$  we have the estimates for  $\theta > 0$  small,

$$\begin{split} g(\frac{2}{3} + \frac{1}{3}e^{-i\theta}) &= (\frac{1}{3} - \frac{1}{3}e^{-i\theta}) \int_0^\infty \frac{e^{(\frac{\pi}{2}\cot\frac{\theta}{2})t}}{t^t} dt \\ &\simeq \frac{\sqrt{2\pi}}{3} i\theta e^{e^{(\frac{\pi}{2}\cot\frac{\theta}{2}-1} + \frac{1}{2}(\frac{\pi}{2}\cot\frac{\theta}{2}-1)}\} \end{split}$$

But if  $d := \text{dist } \{\frac{2}{3} + \frac{1}{3}e^{-i\theta}, T\}, \ d = 1 - \frac{1}{3}\sqrt{5 + 4\cos\theta} \simeq (\frac{\theta}{3})^2 \text{ so that } \theta \simeq 3\sqrt{d}. \text{ Also, } \sqrt{2\pi} > \frac{5}{2} \text{ and } \frac{\pi}{2}\cot\frac{\theta}{2} \simeq \frac{\pi}{\theta}, \text{ so for } \theta \text{ small, } \frac{\pi}{2}\cot\frac{\theta}{2} - 1 \approx \frac{\pi}{3\sqrt{d}} - 1 > \frac{1}{\sqrt{d}}. \text{ Thus if } z = \frac{2}{3} + \frac{1}{3}e^{-i\theta} \text{ and if } d = 1 - |z|, \text{ Im } g(z) > \frac{5}{2}\sqrt{d}e^{\{e^{1/\sqrt{d}} + 1/(2\sqrt{d})\}}.$  QED

Remarks. In particular, if a real valued harmonic example is desired, Im h will do. Note that  $PI(g|_T)$  cannot be analytic even though g is analytic on D, for then h would be an analytic function with nontangential boundary values 0 on a set of positive measure, contrary to a well known theorem of Privalov.[Z], XIV.1.9

Estimate.

$$\int_0^\infty \frac{e^{xt}}{t^t} dt \simeq \sqrt{2\pi} e^{\{e^{x-1} + \frac{(x-1)}{2}\}} \quad \text{as } x \to +\infty.$$

*Proof.* Let  $t =: e^x s$ . Then

$$I:=\int_0^\infty (\frac{e^x}{t})^t dt=e^x\int_0^\infty (\frac{1}{s})^{e^xs} ds=e^x\int_0^\infty e^{e^x(s\log\frac{1}{s})} ds.$$

Let  $u := s - e^{-1}$ . Then

$$I = e^x \int_{-e^{-1}}^{\infty} e^{e^x [\ln(u) + e^{-1}]} du = e^x \cdot e^{e^{x-1}} \int_{-e^{-1}}^{\infty} e^{e^x h(u)} du$$

where  $h(u) := (u + e^{-1}) \ln \frac{1}{(u + e^{-1})} - e^{-1}$  is increasing on  $[-e^{-1}, 0]$ , zero at u = 0, and decreasing on  $[0, \infty)$ . Also h''(0) = -e, so using the estimate  $h(u) = -e \frac{u^2}{2} + o(u^2)$  near 0 and the estimate  $e^x h(u) < -(e^x - 1)(-h(d)) + h(u)$  for |u| > d it is easy to show (See [De], pp. 63-65) that

$$\int_{-e^{-1}}^{\infty} e^{e^x h(u)} du \simeq \int_{-\infty}^{\infty} e^{(e^x) \frac{h''(0)}{2} u^2} du.$$

Since

$$\int_{-\infty}^{\infty} e^{-(e^{x+1})\frac{u^2}{2}} du = \sqrt{\frac{2\pi}{e^{x+1}}},$$

$$I \simeq e^x e^{e^{x-1}} \sqrt{2\pi} e^{-\frac{1}{2}x - \frac{1}{2}} = \sqrt{2\pi} e^{\{e^{x-1} + \frac{1}{2}(x-1)\}} = \sqrt{2\pi} e^{x-1} e^{e^{x-1}}$$

More precisely, ([De], pp. 66-69),  $I = \sqrt{2\pi}e^{\{e^{x-1} + \frac{1}{2}(x-1)\}} + O\left(e^{\{e^{x-1} - \frac{1}{2}x\}}\right)$  or even

$$I = \sqrt{2\pi} \left[ e^{\{e^{x-1} + \frac{1}{2}(x-1)\}} - \frac{1}{24} e^{\{e^{x-1} - \frac{1}{2}x - \frac{3}{2}\}} \right] + O(e^{\{e^{x-1} - \frac{3}{2}x\}}).$$

QED

Second proof of Theorem 4.(W. Rudin) For  $\alpha > 0$ , let  $\Gamma_{\alpha}$  be the directed path in the complex plane obtained by traveling leftward along the ray from  $(+\infty, -i\pi)$  to  $(\alpha, -i\pi)$ , then up the line segment from  $(\alpha, -i\pi)$  to  $(\alpha, +i\pi)$ , and then rightward along the ray from  $(\alpha, +i\pi)$  to  $(+\infty, +i\pi)$ . Let  $P_{\alpha} := \{z : Re(z) < \alpha\}$ . For  $z \in P_{\alpha}$  define

$$f_{lpha}(z) := rac{1}{2\pi i} \int_{\Gamma_{lpha}} rac{e^{e^w}}{w-z} dw.$$

If  $\alpha < \beta$ , then, by Cauchy's theorem,  $f_{\alpha} = f_{\beta}$  in  $P_{\alpha}$ ; so there is an entire function f such that  $f = f_{\alpha}$  in  $P_{\alpha}$ . This f appears in exercise 11, chapter 16 of [R] and has the following properties:

- (16) f(x) is real for  $-\infty < x < \infty$ ,
- (17)  $f(re^{i\theta}) \to 0$  as  $r \to \infty$ , uniformly in  $0 < \delta \le \theta \le 2\pi \delta$ , for all  $\delta > 0$ , and
- (18)  $f \not\equiv 0 \text{ (because } f(x) = e^{e^x} + O(1) \text{ as } x \to +\infty).$

Now define  $u(z) + iv(z) := f(i\frac{1+z}{1-z})$ . Then v is harmonic at all  $z \neq 1$ . Relation (16) implies that  $v(e^{i\theta}) = 0$  for all  $e^{i\theta} \neq 1$ , v has nontangential limit 0 at 1 (from inside D) because of (17), but  $v \not\equiv 0$  because of (18).

### References.

- [BN] J. Bak and D.J. Newman, Complex Analysis, Springer, New York, 1982.
- [D] B. E. J. Dahlberg, On the radial boundary values of subharmonic functions, *Math. Scand.* 40 (1977), 301-317.
  - [De] N.G. DeBruijn, Asymptotic Methods in Analysis, Dover, New York, 1981.
- [FS] C. Fefferman and E. M. Stein,  $H^p$  spaces of several variables,  $Acta\ Math.\ 129$  (1972), 137-192.
  - [R] W. Rudin, Real and Complex Analysis, McGraw-Hill, New York, 1987.
- [S] V. Shapiro, The uniqueness of functions harmonic in the interior of the unit disk, *Proc. Lond. Math. Soc.* 13 (1963), 639-652.
  - [T] M. Tsuji, Potential Theory in Modern Function Theory, Maruzen, Tokyo, 1959.
- [V] S. Verblunsky, On the theory of trigonometric series, (I) Proc. Lond. Math. Soc. 34 (1932), 441-456; (II) ibid.457-491.

[W] F. Wolf, The Poisson integral. A study in the uniqueness of harmonic functions, Acta Math. 74 (1941), 65-100.

[Z] A. Zygmund, *Trigonometric Series*, Vols.I, II, Cambridge Univ. Press, Cambridge, 1959.