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1. Introduction.

Definitions. By D we mean the open unit disc which is centered at the origin in the
complex plane and by T we mean its boundary, i.e., its circumference.

The question we will address here is to what extent does the limiting behavior of
a harmonic function on 7' determine its values on D. A simple result in this direction
follows from the maximum principle: If a harmonic function has limit 0 at each point
of T, then the function is 0 on D (see Thm. 1 in Section 2). Emboldened by this, one
might conjecture that if a harmonic function merely has radial limit 0 at each point of T'
then the function is 0 on D. Unfortunately, this is not so. In fact, consider the function

ui(r,8) == Im (ﬁ) = 3% | n sin(nd)r", which is harmonic on D. If e'? #£ 1,

i I et I 1,60,
Jim u(z) =Im (m) = m(Z cse 5) =0,
and lim,_;- u1(r,0) = lim, ;- >, 0=0.

Although u; is unpleasant, it is, in a strong sense, the worst that can happen. Given
a harmonic function u and a positive number r, let m(r) = m(r,u) = sup|,|<, [u(z)}.
The classical Theorem 3 of Section 2 asserts that if a harmonic function has radial limit
0 at each point of T and if m(r) = o((1 — r)~2), then the function is 0 on D. That
m(r,u1) is exactly O((1 — r)7?) is a reflection of the sharpness of this result.
Definition. For any 0 < a < 7 , let Cy be the circumference |2| = sin §. By Qp we
mean the closed region bounded between the two tangents from z = 1 to C, and by the
more distant arc of C, between the points of contact. Then Q4 := 24,\{1} and the Stolz
region 4(w) is the region Q, rotated through an angle arg(w) around z = 0. Note
that the angle between the two straight edges of Q, is . When there is no confusion,
we shall write Q(w) instead of Q,(w).

Definition. We say that the nontangential limit of v at w is s and write
im n.it.,opu(z)=s
if, for each choice of o, 0 < a < 7,
zh_r}}y u(z) = s.
zegu(w)

The function u; does not have a limit as z — 1 while staying within £4(1) no
matter how small & > 0 is chosen, so it seems reasonable to conjecture that if a harmonic
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function has nontangential limit 0 at every point of T, then the function is 0 on D. Even
this is not so. In section 3 we present two examples of nontrivial harmonic functions
on D which have nontangential limit 0 at each point of T. The first is somewhat
complicated, but has less rapid growth at the boundary. The second was communicated
to us by Walter Rudin.

The examples of Section 3 show that some growth condition is necessary. By
choosing modes of convergence intermediate between the unconditional limit of Theorem
1 and the radial limit of Theorem 3, and pairing them with corresponding growth rates
intermediate between the vacuous one of Theorem 1 and the very restrictive one of
Theorem 3, we will interpolate a scale of theorems indexed by a real parameter o
between Theorem 1 and Theorem 3. These theorems, Theorem 2a, Section 2, form a
more quantitative version of this corollary:

Corollary 1. If a harmonic function has nontangential limit 0 at each point of T and
if there is a real number N so that m(r) = o((1 —r)™") as r — 1, then the function is
0on D.

Neither this corollary nor Theorem 2 are as sharp as a result of F. Wolf (see [W],
page 65, last sentence and page 66, first sentence) which allows m(r) to be larger, but
our method of proof is different from Wolf’s.

Although the examples of Section 3 show that some growth condition is ncces-
sary for Theorem 2a, they are somewhat disappointing in that they do not give any
insight as to whether even the growth rate required by Wolf’s version of Theorem 2a
is really necessary. A second corollary, Corollary 2, Section 2, applies Theorem 2« to
trigonometric series.

2. Results

Theorem 1. Let u be harmonic on D. If

lim u(z) =0
1z]<1

for each w € T, then u(z) =0 for all z € D.

Proof. The maximum of a harmonic function which is continuous on the closure of D

is attained on T. QED
Theorem 2a. Let u be harmonic on D. Let o € [0, 7). If

lim  w(z)=0
2€2a(w)

1
0=(me)

for each w € T, and if

then u(z) =0 for all z € D.
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Corollary 2vy. Let %2 + ap cos nf + b, sin n@) be a trigonometric series satisfying
Y 2 g > ying
lan|+ |bn| = 0o(n?), as n — co. Assume that for each w € T, (writing z = re ) we have

lim {a2_0 + Z(an cos nf+ b, sin ne)r"} =0,

where a = 7 (g;—l) Then all a,, and all b, are 0.

Proof of Corollary 2y. The sum in curly brackets, call it u, is harmonic in D. It is easy

to see that m(r) = 322  o(n")r® = o ((T:FIW) (Use formulas II1.1.9 and II1.1.15 of
[Z] for this.) Note that if @ := =« (;‘1’;—}), then 2= = v+ 1 and apply Theorem 2a with
this & to get that u(r,8) = 0 on D. For any fixed r < 1, the series defining u(8) = u(r, )
converges uniformly to zero. By 1.4.10 of [Z], all of the a, and b, are 0. QED

Theorem 3. (F. Wolf [W], V. Shapiro [S], B. E. J. Dahlberg [D], compare S. Verblunsky
[Z], IX.8.1, [V]) Let u be harmonic on D. If lim,_,- u(rw) = 0 for each w € T, and if

m(r) =o ((1—_1;)—2), then u(z) =0 for all z € D.

Remark. The various proofs of Theorem 3 have different embellishments, such as al-
lowing small exceptional sets with additional hypotheses. Of course Theorem 2« also
admits some of these extensions without much additional effort, but we resist that
temptation here.

Remarks. Our proof of Theorem 2« follows Dahlberg's proof of Theorem 3. In fact,
if you set @ = 0 in the proof of Theorem 2a given below, you will have essentially
Dahlberg’s proof of Theorem 3. [D] Similarly, if you set v = 1 in Corollary 2, Verblun-
sky’s uniqueness theorem for Abel summable trigonometric series follows. [Z],1X.8.1,
[V] Finally, Theorem 1 may be thought of as Theorem 2« with a = .

Definition. To an arc I of T' associate the curvilinear triangle S(I):= {tw e D:w € [
and 0 <t < 1}. For future reference, we note that S(I) = S(J)U I.

Proof of Theorem 2a. Let v be harmonic on D and fix « in [0, 7). Assume that

lim wu(z)=0
2€0.(w)
for each w € T. Our goal is to show that u(z) = 0 for every z € D. Let O =
{we T : limsup,_,,u(z) < 0}. It suffices to show that @ = T. For by symmetry
it would then be immediate that {w € T : lim.—, u(z) > 0} = T also, so that {w €
T : lim,pu(z) = 0} = T. The goal would be reached, since this is exactly the
hypothesis of Theorem 1. Letting ut(z) := max{u(z), 0} as usual, it is clear that
O ={w e T:lim,_,ut(z) = 0}. Collecting the known properties of ut, we will
restate what must be done as Lemma 1. Thus, modulo the proof of Lemma 1 we arc
done. QED
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Lemma 1. Ifp(z) is

(1) subharmonic, continuous, and non-negative on D,
(2) lim  p(z) =0 foreachweT,
z2€Qa(w)

and if m(r) := sup{p(z) : |z| < r} satisfies

1
(3) m(r =(———>
M =o|

then @ := {w € T : lim, ., p(z) = 0} =T.

Proof of Lemma 1. We first show that O is open. Let w, = e’ be a point of @. Then
there is a neighborhood of w,, say of the form {(r,¢):1 -6 <r <1 and |[p — 8] < &}
for some § > 0, on which p is bounded. But p, being continuous on the compact sct
{(r,p):0< 7 <1—6and |p— 8] <6} is also bounded there. Hence p is bounded on
S(I) where I := {¢** € T': |p — 6] < 6}. To proceed with the proof of Lemma 1 we will
need:

Lemma 2. Let p satisfy (1) and be bounded on S(I) for some closed interval I C T'.
Suppose lim,_,,- p(rw) = 0 for each w € I, then lim,_.,, p(z) = 0 for each w interior to

L

Proof of Lemma 2. Let M := sup{p(z) : z € S(I)}. Let F be a conformal map of the
unit disc onto S(I) and let J be the closed interval of T satisfying F(J) = I. Definc a
function v on D by v(¢) = p(F(¢)). Then v still enjoys property (1) and 0 < v < M
on D. Then v has a least harmonic majorant k ([T], pp. 172-173). Since the constant
function M is itself a harmonic majorant of v, A < M. Since h is a bounded harmonic
function on D, h = PI(H) for some function H on T. We are using the notation PI{H )
to denote the Poisson integral of H:

1 [ 1— 2

_ i@
2n Jo H(e )1—27' cos(6 — ¢) +1?

de.

Also, lime_, n.t. h(¢) = H(n) almost everywhere [T}, pp. 172-173. Since £(w) contains
the radius terminating at w, it follows from (2) that

lim () =0

{€C(n)

for each 7 interior to J where for n = F(w), C(n) := F7!({rw:0 < r < 1}) is a curve
orthogonal to T at 7. It follows that H must be 0 almost everywhere on J. In particular,
H is essentially 0 on J and hence essentially continuous there, so that lim¢—., h({) = 0
at all points interior to J ([T], p. 130). But then v is squeezed between 0 and % so
lim¢_, v(¢) = 0 everywhere on the interior of J, which is to say that lim, .., p(z) = 0
everywhere on the interior of I. This proves Lemma 2. QED
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Returning to the proof of Lemma 1, note that since the radius terminating at w is
contained in Q(w) for all choices of €2, from Lemma 2 we can conclude that every point
of T within § of w, 1s in @. Thus each point of O is interior to O, so @ is an open
subset of T.

Let p*(w) := sup{p(z) : z € (w)}. Define F; := {w € T : p*(w) < j}. Then F} is
closed. For if {wi} is a sequence of points in F; tending to w, and if z € Q(w), then for
each k there is a point zx € Q(wy) with |z — 2| < |wg — w|. Since p(zx) < p*(wi) < Jj
and since p is continuous at z, p(z) < j. Since z was arbitrary, p*(w) < j, w € F}, so
F; is closed.

Our goal is to show O = T so, letting K := T\, we must show the closed set I
to be empty. Assume not. From (2) it follows that UF; = T, so that U(F; N K) = K.
By the Baire Category Theorem, there is an interval I C T and an integer j so that the
nonempty set K N[ is contained in K N Fj, i.e., K N F; contains a portion of K [Z],
[.12.1 If I = (a,b), let M = max{p*(a), p*(b), j}. To prove Lemma 1, we will show

(4) p(z) £ M for every z € S(I).

From Lemma 2 it will then follow that lim,_.,, p(z) = 0 for every w € I and hence for
at least one w € K, contrary to the definition of K. Thus Lemma. 1, and, consequently,
Theorem 2a will be proved. Write I\K as a countable union of open intervals and let
(¢, d) be one of these intervals.(If ¢ and d are points of T, by (c,d) we will mean the
shorter arc of T lying between ¢ and d. Note |c — d| = 2 sing when the arclength of
(c,d) is 6.) By Lemma 3a below it follows that p < M on T.4. Since S(I) is covered by
the union of these triangles together with a union of regions Q(w) where w € F}, (4)

follows. QED

Lemma 3a. Suppose p satisfies (1}, (3), p*(c) < M, p*(d) < M, and lim, ., p(z) = 0
for all w in the arc (¢,d). Then p(z) < M for all z € §([c,d)).

Proof. Let Tcq be the curvilinear triangle bounded by the arc (c, d) and the line segments
pe and pd where p is the point of intersection of the straight side of Q(¢) closest ta d
and the straight side of (d) closest to ¢. We need only show that p(z) < M for z € T,y.
Let F be a conformal mapping of T4 onto the unit disc D. Then the angle at ¢ of 772

is straightened out into an angle of # by F. In other words, neglecting a translation
i0

and a rotation, for z € T4 near ¢, F is asymptotically e (which maps € to ¢
and €*7%) to ¢'™). Hence if |¢ — F(c)| = §, then IF~1(¢) — | ~ 6% ; so letting
v(¢) := p(F~(()), it follows from (3) and Lemma 4 below that |v(¢)| = o(3). Similarly
if | — F(d)| = 6, then v(¢) = o(}). For 5 € (c,d), lim¢_, v(¢) =0, and for n € T\[c, d],
v(n) = u(F~Y(n)), where F~1(n) € Q(c) UQ(d), so v(n) < M. Thus we may apply the
Phragmén-Lindeléf Lemma 5 below to complete the proof of Lemma 3a. QED

Lemma 4. Let p(z) satisfy (1), m(r) = o((1 —r)~) for some positive real number N,
and lim,_,,, p(z) = 0 for all w in the arc (c1,c2). Then, for bothi =1 and i = 2, as 2
tends to ¢;, we have

(5) p(z) = of|z —ci| ™).
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Proof. We observe that if B is a disk centered at z and v a function harmonic in B and
continuous on B and if p € (0,1), then

(6) 1< (5 [, |v(m,y>|ﬂdxdy)%.

This result is stated and proved on pages 172-173 of [FS]. For our purposes we need to
lighten the hypothesis for inequality (6) from harmonic to subharmonic and nonnegative.

This is straightforward, so we will limit ourselves to a few remarks on p. 173 of
[FS]. In line 3, “ = r” should be “ = r?”; in line 6, append “provided p > 1— §”; and in
line 11, change the second upper limit of integration to 1. The only real change involves
establishing the estimate moo(p) < A(1 — pr~')"™m;(r) on line 8 for a nonnegative
subharmonic function p. The notation m, is from [FS]. To see this, introduce the
harmonic function » which agrees with p on the origin-centered spherical surface of
radius r and note (i) the estimate holds for &, (i) Mmeo(p, p) < Moo(p, h) by the maximun
principle, and (iii) my(r, h) = my(r, p) by the definition of h.

Let I := (c1, ¢cz) and define

[ p2), ifzesD
o(z) = {Io) if 2 ¢ S(I).

Then v(z) is actually subharmonic and nonnegative on the infinite wedge W := {rw:
w € I,0 <7 < oo}. This is easy to check: for example, if w € I and Bis a ball about w
small enough to be contained in W, then v(w) =0 < |B|™! [z ,p = |B|7! fgv . We
will deduce the required estimate (5) only at 1, since the argument at ¢z is symmetric.
Write z = ¢; — 6¢'®, so that the vector from ¢; to z makes an angle of , 0 < ¢ < 7,
with the vector from ¢; to the origin. If 0 < ¢ < %, then it is geometrically evident
that there is an absolute constant C such that |z — ¢1|™! < C(1 — |2])™", whence (5)
is immediate. So assume T < ¢ < § , which insures that B, a disc of radius §/8 (say)
about z is contained in W. Let A be the polar rectangle {(r,8) : 1 —26 < r < 1,
arg(z) — & < 0 < arg(z) + ¢}. Clearly BN D C A. Applying the inequality (6) we have,
for any ¢ > 0,

ooy < Oy [ [ oty dsdy = Cupgy [ ot andy
B | BnD
1
< Cye 7 dzdy.
<Cygr [ [ ooy dedy

Now set ¢ := 1/2N, change to polar coordinates, note |B| = 0(6?), note that the
hypothesis on m(r) can be rewritten as p(r, 8) = o((1—7)~"), and estimate the Jacobian
r by 1. All this substituted into inequality (7), raised to the 2N th power yields

(7

2 [ ) arg(:)+8/8 . —241/241\2N _N
v(z)=01]8 /1 o{(1—r) 2)dr/ dé = o(8 YN =0(677).

—26 arg(z)—6/8

QED
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Lemma 5. (Phragmén-Lindelsf Lemma) Let p(z) satisfy (1) and suppose that

limsupp(z) <M

Z—w

for all w € T\{ey, ..., ca}. Suppose also that for each j, 1 < j < n, we have

(8) Ip(2)l = o(]z — ¢;|™") as z € D tends to c;.

Then p(z) < M in D.

Proof. Let D(c,8) := {2 : |z—c| < 8}; I(c,8) := D(c,6)NT, so that I is the arc (e, e™)

of T where arg(ct) = arg(c) + arcsin(g); and w® be the harmonic measure for D so
that if E C T, then w?(E) is the Poisson integral of the characteristic function of E. If
e ¢ T, z=re' € D, and |2 — e*%| = §, we have the estimate

et

W (I(e,6)) = 51;/

1—r? d
1—-2r cos(f — ) +r2 4

5/4 1—r d
2c @
/5/4 (A=7r)+(0-6,—p)?
_ c{arctan (";M) _ arctan (w)} ,
1—7r 1—7r

Now 1—r < 6,501 § > 6,, the first arctan exceeds arctan(ééﬂ), while the second arctan
is negative, so that ¢ arctan(i-) is a lower bound. The case of 8 < 8, is symmetrical. In
other words, there is a positive absclute constant ¢, so that

9) wz(I(ew",&)) > cowhenever 2z € D and|z — ei9°| = 6.

Fix § > 0; for each j, 1 < j < n, let u;(z,6) := w*(I(cj,6))/co; and define the
domain Ds := D\(U;D(c;,4)). Using the estimate (9) and applying the maximum
principle for subharmonic functions in Dj , we have

(10) P(=) S M+ ujz,6)M;(6)

for z in Ds , where M;(6) := sup{p(z) : z € dD(c;,8) N D. Now let z = re'® € D and

estimate as above to get

uj(z,6) < C{arctan (9__%) — arctan (M) 1,

-7 1—7r

where §; is the argument of c;.

Finally, freeze z and let § — 0. We see that there is a constant C;(2), depending
only on j and z, so that u;(z,8) < Cj(z) -6 as § — 0. Thus, taking hypothesis (8) into
account, we see that u;(z, 6)M;(8) = O(8)o(}) = o(1) as § — 0. Substituting these
relations into inequality (10) and letting § — 0 establishes Lemma 5. QED
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3. Examples

Theorem 4. There is a function which is not identically 0, which is harmonic on D,
and which has non-tangential limit 0 at every point of T.

Proof. Let

zt

f(z) = /Ow %rdt

Then f satisfies

(11) there is a constant A so that |f(z)| < 4 if |Im(z)| > 7,

(12) f is entire and hence in particular continuous at each finite z, and

(13)  for z real, f(z) = v/Erele™ V1),

(See [BN], pp.140-143, for properties (11) and (12). See the estimate following this proof
for (13).) Let S(2) := mi(}£2) — 27i. Direct calculation shows that S((1~a)+ ae'?) =
—Zcot§ + (% — 3)mi. Setting @ = 1 shows that S maps T = 0D onto the line L :=
{z — 271 : —o0 < T < oo}. Similarly setting a = 3, 3, and 1 shows that S maps each
circle T; onto the line L;, i = 1,2, 3, as shown,

=27

r—

Also S maps the dotted disc A onto the dotted half plane A’ and the dark shaded region
B onto the similarly shaded strip B' as shown. Now let g(z) := (1 — 2)f(5(2)). From
(12) it follows that

(14) ¢ is continuous at every point of T except z = 1.
Since (11) holds and A" C {z : |Im 2| > 7}, it follows that
(15) g has non-tangential limit 0 as z tends to 1.
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Finally, let h(z) := g(2) — PI(g|r)(2), where (PI)(f) denotes the Poisson integral
of f. From (12) we see that gl is continuous on T\{1}. Motivated by (15), definc
(9l7)(1) := 0. From (11) and L N {|Im(2)| < =} = @, we have

}UléI% g(w)=0
so that g|r is continuous on all of T. Thus at every point w of T, the non-tangential
limit as z — w of PI(g|r)(2) is g(w).[Z], IIL.7.9 From (14) and (15) it follows that /
has non-tangential limit 0 everywhere on T.
Now the Poisson kernel is positive and has integral 1 so that sup,ep [PI{g|r)(z)] <
sup, e |9(w)], which is finite since g|r is a continuous function on a compact set. To
get h # 0 we will show g to be unbounded on D. On T we have the estimates for § > 0

small,
9 1 i 1 1 i /oo e(%cot%)t
S memy (2 2t —dt
9(3+3e)=(3-3¢7") ; m
o V2T o G eon gy
3
But if d := dist {2 + $7, T}, d =1 - 5VB +4cosf ~ (£)? so that § ~ 3v/d. Also,

ut i
Vor > % and %cotg =~ %, so for 4 small, %cotg -1 = ﬁ -1> ﬁ. Thus if
z=2+1te®andifd=1—|z|, Im g(z) > 3v/dele " +1/2vD), QED
Remarks. In particular, if a real valued harmonic example is desired, Im & will do. Note
that PI(g|r) cannot be analytic even though g is analytic on D, for then A would be

an analytic function with nontangential boundary values 0 on a set of positive measure,
contrary to a well known theorem of Privalov.[Z], XIV.1.9

Estimate. o 2t
/ et—tdt ~ Vorele  + =) as T — +oo.
0

Proof. Let t =: e*s. Then

° e” t T * 1 e®s z e e*(slog 1)
I:= (—)dt=ce¢ (=) °ds=¢e e 82)ds.
0 t 0o S 0

Let u := 3 — e~ 1. Then

o] e o]
I=¢* / eI+ gy = o7 . oo / e MM dy
—e—1 —e—1

where h(u) :== (u + e 1) In m — e~! is increasing on [—-e™!, 0], zero at u = 0, and

decreasing on [0, co). Also A"'(0) = —e, so using the estimate h(u) = —6“72 + o(u?) near
0 and the estimate e*h(u) < —(e* — 1)(—h(d))+ h(u) for |u| > d it is easy to show (See
[De], pp. 63-65) that

o0 o0 "
/ e« HW dy :/ () gy,
—e—1

— 00
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- e~ gy = 2
oo T\ ezttt
I~ e V2me 1571 = 2rel T 300 o Voger—TeTT
More precisely, ([De], pp. 66-69), I = \./27re{er_l+%(”"l)} +0 (e{ez—l”li”)) or even

Since

I=v2rx [e{‘:—l*'%(z‘l)} - %e{ez_i‘%x“%}} + O(e{ez_l_%x}).

QED

Second proof of Theorem 4.(W. Rudin) For a > 0, let T’y be the directed path in the
complex plane obtained by traveling leftward along the ray from (+o0, —i7) to (o, —i7),
then up the line segment from (e, —i7) to (@, +i7), and then rightward along the ray
from (a, +im) to (+oo,+ir). Let P, := {z: Re(z) < a}. For z € P, define

fuls) = —— [ dw.

2mi Jp, w—z

If @ < B, then, by Cauchy’s theorem, f, = fz in P, ; so there is an entire function f
such that f = f, in P,. This f appears in exercise 11, chapter 16 of [R] and has the
following properties:

(16) f(z) is real for —o00 < & < o0,
(17 f(re'®) — 0 as r — oo, uniformly in 0 < § < 8 < 27 — §, for all § > 0, and
(18) f # 0 (because f(z) = e + O(1) as ¢ — +o0).

Now define u(z)+1v(z) := f(:11%). Then v is harmonic at all z # 1. Relation (16)

implies that v(e'®) = 0 for all €' # 1, v has nontangential limit 0 at 1 (from inside D)
because of (17), but v # 0 because of (18). QED
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