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Abstract. Georg Cantor�s pointwise uniqueness theorem for one dimensional

trigonometric series says that if, for each x in [0; 2�),
P
cneinx = 0, then all

cn = 0. In dimension d, d � 2, we begin by assuming that for each x in

[0; 2�)d,
P
cneinx = 0 where n = (n1; : : : ; nd) and nx = n1x1+ � � �+ndxd. It

is quite natural to group together all terms whose indices di¤er only by signs.

But here there are still several di¤erent natural interpretations of the in�nite

multiple sum, and, correspondingly, several di¤erent potential generalizations

of Cantor�s Theorem. For example, in two dimensions, two natural methods

of convergence are circular convergence and square convergence. In the former

case, the generalization is true, and this has been known since 1971. In the

latter case, this is still an open question. In this historical survey, I will dis-

cuss these two cases as well as the cases of iterated convergence, unrestricted

rectangular convergence, restricted rectangular convergence, and simplex con-

vergence.

1. Introduction

The idea of this paper is to provide an overview and an organization of other

surveys I have authored or coauthored on uniqueness for multiple trigonometric

series.
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Let fdng�1<n<1 be a sequence of complex numbers and let x 2 T1 = [0; 2�).

Suppose a function has a representation of the form

X
dne

inx = lim
N!1

d0 +
NX
n=1

�
d�ne

�inx + dne
inx
�
:

To see why it is natural to combine the nth and �nth terms, suppose that an and bn

are real, and that dn = (an + ibn) =2 and d�n are complex conjugates. Since ei� =

cos �+i sin �; dne
inx+d�ne

�inx is immediately computed to be an cosnx+bn sinnx,

the �natural�nth term of a real valued trigonometric series. Is this representation

unique? In other words, if
P
dne

inx =
P
d0ne

inx for every x, does it necessarily

follow that dn = d0n for every n? Subtract and set cn = dn � d0n to get a cleaner

formulation.

(U) Let
P
cne

inx = 0 for every x 2 T1. Does this imply that cn = 0 for every

n?

In 1870, Georg Cantor showed that the answer to question (U) is �yes.�

Theorem C. Let
P
cne

inx = 0 for every x 2 T1. Then cn = 0 for every n.

In all dimensions we will always combine terms whose indices di¤er only by

signs. This reduction in dimension 1 leads to the de�nite meaning of
P
dne

inx

given above. When d � 2, the meaning of
P
dne

inx is not yet de�nite, so there are

many variants of question (U).

First, for each n 2 Z+d = f0; 1; 2; : : : gd, we write
P

n2Zd Cn =
P

n2Z+d Tn,

where Tn =
P

f�:each �i=ni or �nig C� . For example, when d = 2, T3;4 = C3;4 +

C�3;4 + C3;�4 + C�3;�4 and T5;0 = C5;0 + C�5;0. This reduction still leaves many

possible ways of interpreting the multiple sum. Here are six very natural ones. For

simplicity, each will only be described in dimension 2 and we will write (n1; n2) as

(`;m) to avoid indices.
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Square convergence:

Sq
X

n2Z+2
Tn = lim

N!1

 
NX
`=0

NX
m=0

T(`;m)

!
:

The Nth partial sum contains all terms with indices in the square with lower left

corner (0; 0) and upper right corner (N;N).

Spherical convergence:

Sp
X

n2Z+2
Tn = lim

N!1

NX
k=0

0@ X
f(`;m):`2+m2�kg

T(`;m)

1A :
The Nth partial sum contains all terms with indices in the intersection of the disk

of radius
p
N and the �rst quadrant.

One way iterated convergence:

It
X

n2Z+2
Tn = lim

N!1

NX
k=0

0@ lim
J!1

JX
j=0

T(j;k)

1A :
The terms with indices of height 0 are summed yielding a �rst intermediate number,

then the terms with indices of height 1 are summed yielding a second intermediate

number, and so on, producing a one dimensional one way sequence of intermediate

numbers. Finally all the numbers of that sequence are added together. In dimension

d, there are d! distinct versions of one way iterated convergence, but they are all

very similar and it will be enough for us to pick any one of them.

Unrestricted rectangular convergence:

UR
X

n2Z+2
Tn = lim

min fM;Ng ! 1

MX
j=0

NX
k=0

T(j;k):

Restricted rectangular convergence:

RR
X

n2Z+2
Tn = t if for every E � 1, no matter how large,

lim

min fM;Ng ! 1

1=E �M=N � E

MX
j=0

NX
k=0

T(j;k) = t:
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Simplex convergence:

Sm
X

n2Z+2
Tn = lim

N!1

NX
k=0

 
kX

m=0

T(m;k�m)

!
:

We discuss 6 generalizations of Cantor�s Theorem (U).They are

Theorem 1 (Iterated). Fix any d � 2. Let It
P
cne

inx = 0 for every x 2 Td.

Then cn = 0 for every n 2 Zd.

Theorem 2 (Unrestricted Rectangular). Fix any d � 2. Let UR
P
cne

inx = 0

for every x 2 Td. Then cn = 0 for every n 2 Zd.

Theorem 3 (Spherical). Fix any d � 2. Let Sp
P
cne

inx = 0 for every x 2 Td.

Then cn = 0 for every n 2 Zd.

Question 4 (Restricted Rectangular). Let RR
P
cne

inx = 0 for every x 2 T2.

Does this imply that cn = 0 for every n 2 Z2?

Question 5 (Square). Let Sq
P
cne

inx = 0 for every x 2 T2. Does this imply

that cn = 0 for every n 2 Z2?

Question 6 (Simplex). Let Si
P
cne

inx = 0 for every x 2 T2. Does this imply

that cn = 0 for every n 2 Z2?

Many additional questions can be asked. For a lot of one dimensional gen-

eralizations of Theorem 1 see chapter 9 of [Z]. We will later need to mention

one higher dimensional extension of Theorem 3 which involves replacing the con-

dition of spherical convergence: Sp
P
cne

inx exists, by the weaker condition of

spherical Abel summability: Sp
P
cne

inxrknk exists for all positive r < 1, where

knk =
p
n21 + � � �+ n2d, and limr!1� Sp

P
cne

inxrknk exists.
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2. History of the three theorems

Our discussion here will be informed by drawing comparisons with the steps of

Cantor�s original proof. Here are the four major steps of his proof.

(1) Establish the Cantor-Lebesgue Theorem, that jcnj+ jc�nj ! 0;

(2) show that the Riemann function F (x) = c0 x
2

2 +
P

n 6=0
cn
(in)2

einx is contin-

uous,

(3) establish the consistency of Riemann summability, that the Schwarz sec-

ond derivative D2 de�ned by

(2.1) D2F (x) = lim
h!0

F (x+ h)� 2F (x) + F (x� h)
h2

satis�es

D2F (x) = lim
h!0

c0 +
X
n 6=0

cne
inx

 
sinnh2
nh2

!2
= 0; and

(4) prove Schwarz�s Theorem, that continuous functions with identically zero

Schwarz second derivative are of the form ax+ b.

The theorem about iterated convergence has a direct simple inductive proof,

the starting point being Cantor�s Theorem.

The unrestricted rectangular theorem was given an erroneous proof in 1919.

The false proof was given for d = 2. The idea was to copy the steps of Cantor�s proof

very directly. There was de�ned the natural analogue of the Riemann function,

namely the following termwise fourth integral of the original series,

F (x; y) := c00
x2y2

4
+

X
n2Z;n 6=0

c0n
x2

2

einy

(in)
2 +

X
m2Z;m6=0

cm0
eimx

(im)
2

y2

2
+

X
m2Z;n2Z;mn 6=0

cmn
eimx

(im)
2

einy

(in)
2 :

Di¤erentiating formally (but without any justi�cation) shows that

@4F

@2x@2y
�= �

X
cmne

imxeiny = 0:
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Next the author showed that F is continuous and does have generalized fourth

derivative DxxyyF (x; y) = 0 for every point (x; y), where

Dxxyy := lim

h; k ! 0

hk 6= 0

+1F (x� h; y + k) �2F (x; y + k) +1F (x+ h; y + k)

�2F (x� h; y) +4F (x; y) �2F (x+ h; y)

+1F (x� h; y � k) �2F (x; y � k) +1F (x+ h:y � k)
h2k2 :

Finally the truth of the following �analog� of Schwarz�s Theorem was assumed

without proof.

Conjecture 1. If F (x; y) is continuous and if for all (x; y)

DxxyyF (x; y) = 0;

then F behaves as if F were C4 and satis�ed @4F
@2x@2y = 0.

This was assumed to be correct and easily extendable to all dimensions.

Since it appeared that the unrestricted rectangular case had been resolved,

nothing happened in that area for over 50 years. But when we looked at this

around 1970, we could �nd no proof for the conjecture and felt strongly that one

was needed.

The next area to receive attention was that of circular uniqueness. In 1957

Victor Shapiro proved a powerful d dimensional theorem. Shapiro worked in a

somewhat more general context, also considering questions of summability. He

did not prove Theorem 3 because his proof required an extra assumption on the

coe¢ cient size.[S] For m 2 Zd, let jmj denote
p
m2
1 + � � �+m2

d. A corollary of one

of Shapiro�s results was this.

Corollary 4. If Cr
P
cne

inx = 0 for all x 2 Td, and if

(2.2) lim
r!1

1

r

X
r�1<jmj�r

jcmj = 0;
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then all cn = 0:

The coe¢ cient size assumption 2.2 is natural in dimension 2: since there are

O (r) lattice points being summed over in condition 2.2, this assumption asserts that

the cm tend to zero �on the average�as jmj ! 1. But the assumption becomes

much stronger as the dimension increases; speci�cally in dimension d there are

O
�
rd�1

�
terms in the sum, so that the coe¢ cients are required to be decaying like

o
�
r2�d

�
on the average. Fourteen years later, in 1971, Roger Cooke found this

generalization to the Cantor-Lebesgue Theorem for dimension d = 2:[Coo]

Theorem 5 (Cooke). Let d = 2: If fcmg is a doubly indexed set of complex

numbers such that X
jmj=r

cme
imx

tends to zero for almost all x, then

(2.3)
s X
jmj=r

jcmj2 tends to 0 as r !1:

From the de�nition of spherical convergence it is clear that spherical conver-

gence at x to 0 (or to any other �nite value for that matter) implies that the hy-

pothesis of Cooke�s theorem holds at x: Now it is a very easy calculation that when

d = 2; the conclusion of Cooke�s Theorem implies the validity of condition (2.2) and

thus the unconditional spherical uniqueness theorem in dimension d = 2:[AWa1],

page 42 But an unconditional proof of Theorem 3 seemed well out of reach.

In the early 1970s, the pendulum swung back to the unrestricted rectangular

convergence uniqueness question. Just at the time of Cooke�s work, Grant Welland

and I looked at the 1919 paper with the gap mentioned above.[AWe] We were

unable to �ll the gap, but we did discover that when a series converges UR almost

everywhere, �most� coe¢ cients tend to zero, while all coe¢ cients are bounded.

The �rst fact is easy, but the second required a clever idea that we found in the

unpublished thesis of Paul Cohen.[Coh] From this control of the coe¢ cient size, it

follows that Shapiro�s condition 2.2 holds in dimension 2. So the UR uniqueness
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theorem for two dimensions would follow immediately from corollary 4 if everywhere

UR convergence implies everywhere Sp convergence. It does not. However, by a

lucky stroke of fate, everywhere UR convergence does imply everywhere spherical

Abel summability and it turns out that the hypotheses of the quite general theorem

of Victor Shapiro which yielded Corollary 4 above are satis�ed. Thus Theorem 2

was proved in two dimensions.

The �rst precursor to a higher dimensional theory came in 1976, when Connes

extended the Cantor Lebesgue result of Cooke, whose proof was exceedingly two

dimensional, to all dimensions.[Con] At this point, we knew that if we wanted to

prove Theorem 3, we could use the fact that

lim
k!1

X
fn:n21+���+n2d=kg

jcnj2 = 0

without having to add any further hypothesis.

From the middle seventies until the early nineties was a period of hibernation.

In the early 1990s, attention turned to Theorem 2. First of all, Cris Freiling

and Dan Rinne showed me the function

F (x; y) := (x+ y) jx+ yj

which satis�es the hypothesis of Conjecture 1 above. This analogue of Schwarz�s

Theorem had been stated as fact in 1919. But F does not have the expected form

of

a (y)x+ b (y) + c (x) y + d (x) ;

with a (y) and c (x) being C4. So the proposed analogue of Schwarz�s Theorem is

false! We went on to give a proof for all dimensions of Theorem 2.[AFR] The proof

involved replacing the simple but false Conjecture 1 by adding more hypotheses.
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Rename Dxxyy as S(1;1). Further de�ne

S(1;0) := lim

h; k ! 0

hk 6= 0

+1F (x� h; y + 2k) �2F (x; y + 2k) +1F (x+ h; y + 2k)

�2F (x� h; y + k) +4F (x; y + k) �2F (x+ h; y + k)

+1F (x� h; y) �2F (x; y) +1F (x+ h:y)

h2 ;

S(0;1) := lim

h; k ! 0

hk 6= 0

+1F (x; y + k) �2F (x+ h; y + k) +1F (x+ 2h; y + k)

�2F (x; y) +4F (x+ h; y) �2F (x+ 2h; y)

+1F (x; y � k) �2F (x+ h; y � k) +1F (x+ 2h:y � k)
k2 ;

S(0;0) := lim

h; k ! 0

hk 6= 0

+1F (x; y + 2k) �2F (x+ h; y + 2k) +1F (x+ 2h; y + 2k)

�2F (x; y + k) +4F (x+ h; y + k) �2F (x+ 2h; y + k)

+1F (x; y) �2F (x+ h; y) +1F (x+ 2h:y)

1

What is true is that all four of these are zero everywhere. Notice that the square of

the step size of the second di¤erence appears in the denominator exactly when the

di¤erence is symmetric in that direction. To motivate these de�nitions, note that

the 1-dimensional function A (x) = ceinx + de�inx has a second symmetric di¤er-

ence �4A (x) sin2 mh2 , whereas its second forward di¤erence is �4A (x+ h) sin
2 mh

2 .

The symmetric di¤erences are so nice that they can overcome the damage done to

the quotient by the step size squared term in the denominator; the forward dif-

ferences are not as nice, but they do not have corresponding denominator terms

�ghting against their movement toward zero. However, the proof of the corollary

still remained quite di¢ cult. We developed a complicated covering technique to get

the job done. Probably the best way to understand the technique of the proof, is
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to see it applied to the much, much simpler one dimensional case. There it gives a

proof by means of covering of Schwarz�s original theorem. This proof is much longer

and more involved than Schwarz�s original, short, and beautiful proof. It has the

virtue of extending to our higher dimensional situation and also it avoids using the

maximum principle.[As1] I will only give a small one dimensional analogue of how

a covering might come into play here. Suppose you want to prove that if a function

is unifomly di¤erentiable to zero on the interval [a; b] , then f (a) = f (b). One way

would be to let fxig be a very �ne partition of [a; b] and to begin by writing

F (b)� F (a) =
X
i

f (xi+1)� f (xi)
xi+1 � xi

(xi+1 � xi) :

This proof can even be �ddled with to prove that having a zero derivative implies

being constant. See [As1] for how to deal with second di¤erences in a similar way.

By one of those historical coincidences that happen in mathematics from time

to time, even though there had been a 15 year period of complete inactivity, just

as we were proving Theorem 2, Shakro Tetunashvili was also proving it in Tiblisi,

Georgia.[Tet] He saw our article and sent me a copy of his proof. It is important

to note that his proof was published �rst. His proof is completely di¤erent. It is

very easy to give an example of a function which converges UR while diverging

iteratively. Let

amn =

8>>>><>>>>:
(�1)m+n if m 2 f0; 1g or n 2 f0:1g

0 otherwise

Here is a representation of this series where the value of amn is attached to the

point (m;n).
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1 �1 1 �1 1

1 �1 1 �1
�1

1

�1

1

�1

1

�1

m

n

The UR limit is 0 since the rectangular partial sums Smn are all 0 as soon

as min fm;ng � 1. Iterated convergence fails since neither limm!1 Sm0 nor

limn!1 S0n exist.

Nevertheless, Tetunashvili was able to prove a lemma: UR convergence to zero

everywhere implies one way iterated convergence everywhere. Applying Theorem

2 completes the proof of Theorem 2, UR uniqueness is true. Tetunashvili�s Lemma

uses a result from [AWe] that everywhere UR convergence implies that all partial

sums are bounded which requires the aforementioned lemma from Paul Cohen�s

thesis. His proof also uses that Paul Cohen�s lemma directly. It is much shorter

than the proof of Ash, Freiling,and Rinne. A simple description of his proof can

be found in [As2]. An irony in this tale of two proofs is that the �rst, �wrong�

covering proof probably would not have happened if the second �right�proof had

come to our attention earlier. Only time will tell if the covering techniques we

developed will eventually have useful applications elsewhere.

The last positive result is Theorem 2. This was proved in 1996 by Jean

Bourgain.[B] The basic approach was already outlined in Shapiro�s 1957 paper.

The idea there is to follow Cantor�s original proof. The analogue of the Riemann
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function is the formal antiLaplacian of
P
cne

inx, namely

F (x) = �
X cn

knk2
einx:

Note that �einx =
Pd

j=1
@2

@x2j
einx = �

Pd
j=1 (inj)

2
einx = �knk2 einx. The ana-

logue of the one dimensional Schwarz derivative here is this generalized Laplacian

of F :

lim
�!1

cd
�n

 
1

m (B (x; �))

Z
B(x;�)

F (t) dt� F (x)
!
;

where B (x; �) is an x-centered solid d-dimensional ball of radius �, and m denotes

Lebesgue measure. A calculation involving Bessel functions shows that this limit

is �F (x) when F is C2; and a theorem of Rado asserts that if F is continuous

and this generalized Laplacian is identically 0, then F is harmonic. But harmonic

functions are C1 and hence the coe¢ cients of F decay very rapidly. In particular,

the cn decay rapidly enough so that Shapiro�s condition (2.2) is satis�ed. Since

Shapiro had shown that the assumption was enough to guarantee that the gener-

alized Laplacian of F is 0, the proof would be complete if F could be shown to be

continuous. In the one dimensional case thcontinuity of the Riemann function fol-

lowed very quickly from the WeierstrassM -test. Because of Conne�s 1976 result we

do know that
P

fknk=kg jcnj
2 tends to zero, but this is not enough to allow applying

the M -test to F . Showing F to be continuous is very di¢ cult. What Bourgain did

was show F to be continuous.[B]

Bourgain�s proof requires numerous ideas as well as strong technique. The �ow

of his argument is given in [As2]. The proof itself appears in at least three places.

There is Bourgain�s precisely but concisely written original 15 page article[B], there

is a somewhat expanded 22 page version in [AWa1], and there is a 42 page version

of the proof specialized down to dimension 2 in [As3].

3. The questions

Since all three questions are completely unsolved, we will restrict our discussion

to the two dimensional situation. A square can be rotated into a 2-simplex and a
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simple rotation argument shows the equivalence of the square uniqueness question

and the simplex uniqueness question in two dimensions, but this equivalence is

not clear in higher dimensions, since, in particular, a cube has six edges while a

3-simplex has eight edges. Since we are going to stay in two dimensions, we will

naturally consider only the RR and square uniqueness question.

There are two obvious inclusions. If a multiple numerical series converges Un-

restricted Rectangularly, then it converges Restricted Rectangularly. If a multiple

numerical series converges Restricted Rectangularly, then it converges Square. So

Hypothesis of UR theorem =) Hypothesis of RR question

and

Hypothesis of RR question =) Hypothesis of Square question.

This explains how it can be that UR uniqueness can be known while RR uniqueness

remains an open question. This also suggests that in attacking the questions hoping

to �nd a¢ rming proofs one should try to prove the validity of RR uniqueness, while

if one is thinking about a counterexample, one should try to �nd a counterexample

to square uniqueness.

There is not much evidence either way for these questions. One reason to lean

in the negative direction is the spectacular failure of the Cantor Lebesgue Theorem

in this setting.

The weakest version of the one dimensional Cantor Lebesgue theorem says that

if the sequence
�
c�ne

�inx + cne
inx
	
converges to zero for every x as n!1, then

(3.1) the sequence fjc�nj+ jcnjg ! 0 as n!1:

The natural analogue of this for two dimensional square convergence is to start

with the assumption that the sequence with Nth term

(3.2)
X

f(m;n):maxfjmj;jnjg=Ng

cmne
i(mx+ny)
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converges to zero for every (x; y) as N !1. The conclusion should be something

about the decay of the moduli of the coe¢ cients. For N � 2, consider the sequence

with Nth term

AN (x; y) = e
N

log logN cos2
x

2
sin2N�2

x

2
cosNy:

At each point (x; y) this sequence tends to zero rapidly as N !1, for if x = ��,

every term is identically zero, while if jxj < � and a = sin2 x2 , jAN (x; y)j �

e
N

log logN aN�1, which tends very rapidly to zero since a < 1. Using the Euler iden-

tities to write sin � and cos � in terms of ei� and e�i� and then expanding by the

binomial theorem we see that A has the form (3.2) and a calculation shows that

c0N =
1

4N

�
2N

N

�
1

2N � 1e
N

log logN

which, by Stirling�s Formula, is on the order of N�3=2e
N

log logN and hence enormously

divergent. This is an equally strong counterexample for restricted rectangular con-

vergence, but the details are slightly messy.[AWa2] (Because of the example I have

just shown you, a Cantor-Lebesgue analogue for Square and RR convergence would

have to be very, very weak. Actually, the Cantor-Lebesgue analogue here is this:

if (3.2) tends to zero for every (x; y), the growth of the fcmng must be less than

exponential. The above example can be slightly modi�ed to show that this is sharp.)

The example that is mentioned here also occurs in the study of spherical har-

monics. The question of uniqueness is essentially open for spherical harmonics also.

There is a uniqueness result that appeared 60 years ago in the PhD thesis of Walter

Rudin.[R] Rudin constructs an analogue of the Riemann function, and the crux of

the matter then comes down to showing that his Riemann function is continuous.

He does not prove continuity, but rather restricts his result to the set of all series

for which his associated Riemann function is continuous. This is a very strong aux-

illiary condition, but Rudin�s result has never been improved. I feel that the fact

that this counterexample �ts both situations makes it very likely that progress on

the open trigonometric questions will be strongly correlated with progress on the

uniqueness question for spherical harmonics.
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The �rst step of the one dimensional Cantor program, namely the application

of a Cantor Lebesgue theorem to gain knowledge of some decay of the coe¢ cients,

seems out of reach because of the counterexample. However this is not the end of

the di¢ culties. Even the following two questions are beyond what I know how to

do.

Question 40 (Restricted Rectangular). Let d = 2, RR
P
cne

inx = 0 for every

x 2 T2, and further assume that jcmnj = o
�

1p
m2+n2

�
. Does this imply that cn = 0

for every n 2 Z2?

Question 50 (Square). Let d = 2, Sq
P
cne

inx = 0 for every x 2 T2, and

further assume that
P

f(m;n):maxfjmj;jnjg=kg jcmnj
2
= o

�
1

k ln k

�
. Does this imply

that cn = 0 for every n 2 Z2?

I picked the auxilliary hypotheses here pretty much at random. The idea is to

keep the set of series for which the proof is valid broader than L2. In other words,

is anything at all is true about uniqueness for either of these two methods as soon

as one moves out into the realm of trigonometric series that may not be Fourier

series?

Here are two approaches that I have recently thought of, but haven�t yet tried

out.

1. Try to reverse a normally irreversible hypothesis using the facts that the

assumed convergence is both everywhere and to zero. For example, try to move from

the RR hypothesis to the UR hypothesis, thereby using the UR uniqueness theorem

as a lemma for proving RR uniqueness; or try to move from the Sq hypothesis to

the RR hypothesis to prove equivalence of Questions 4 and 5. Examples of this

sort of procedure can be found directly in Tetunashvili�s proof of Theorem 2 and

indirectly in the result of Ash and Welland that while UR convergence at a point

trivially implies the �niteness of lim supminfm;ng!1 jSmnj at the same point, UR
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convergence everywhere unexpectedly implies the boundedness of all partial sums

at each point.

2. The Laplacian seems to be a better derivative than @4

@x2@y2 . But the spher-

ical generalized Laplacian used by Shapiro and Bourgain doesn�t seem to �t the

rectangular methods very well. Perhaps a generalized Laplacian formed by integral

averaging a function over the boundary of a small square and subtracting the func-

tion value at the center might work better. Another possiblility is a generalized

Laplacian formed by averaging a sum of function values spaced around the edge of

a small square and subtracting the function value at the center.

The �rst seven references below can be found using links from

http://condor.depaul.edu/mash/realvita.html.
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