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ABSTRACT. In 1936, J. Marcinkiewicz and A. Zygmund showed that the existence of the
nth Peano derivative f(n)(x) of a function f at x is equivalent to the existence of both
f(n−1)(x) and the nth generalized Riemann derivative D̃nf(x), based at x, x + h, x +

2h, x+ 22h, . . . , x+ 2n−1h.
Let Dsh

n f(x) be the set of the first n− 1 forward shifts of the nth forward Riemann
derivative Dnf(x) of a function f at x. We provide a second characterization of the nth
Peano derivative f(n)(x) in terms of these sets: The existence of f(n)(x) is equivalent
to the existence of f(n−1)(x) as well as the existence of each of the n − 1 elements of
Dsh

n f(x). The proof of this result involves an interesting combinatorial algorithm.

Compare three second derivatives:
1. The Schwarz derivative:

Sf(x) := lim
h→0

f (x+ h) + f (x− h)− 2f (x)

h2
,

2. The second Peano derivative, the number f(2) (x) making valid the relation:

f (x+ h) = f(0) (x) + f(1) (x)h+
f(2) (x)

2
h2 + o

(
h2
)

,

3. The ordinary second derivative:

f ′′ (x) .

First, it is well known that if f ′′ (x) exists, then f(2) (x) exists and is equal to f ′′ (x);
and if f(2) (x) exists, then Sf (x) exists and is equal to f(2) (x). Both these generalizations
are strict, since the function g (x) which is x3 sin

(
x−1

)
when x 6= 0 and 0 when x = 0

has g(2) (0) = 0, but g′′ (0) nonexistent, while the function sgn (x) has Schwarz derivative
0 at the origin but not a second (nor first nor zeroth) Peano derivative at the origin.

Second, the process of computing Sf(x) at a fixed point x is direct, just take a sin-
gle limit. The other two second derivatives cannot be computed so quickly. To compute
f(2) (x) one must first compute f(0) (x) and f(1) (x). To compute f ′′ (x) one must first
compute f ′ (x+ h) at every h in some neighborhood of 0 and finally compute the limit
limh→0 {f ′ (x+ h)− f ′ (x)} /h.

Suppose we know that a function f has a first derivative at x, and we would like to
fulfill the fantasy of finding its 2nd Peano derivative at x by computing a single limit. Based
on the above discussion, an obvious theorem that does this could be stated as follows: if
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both f(1)(x) and Sf(x) exist, then so does f(2)(x). This would be lovely, but unfortunately
is not true, because any odd function, such as f(x) = x

√
|x|, which is differentiable at 0,

but not twice Peano differentiable at 0, would have Sf(0) existing (and equal to zero).
The goal of this paper is to find a substitute for S that would produce the fulfillment

of the fantasy, here and for general n.

Generalized Riemann derivatives, or A-derivatives, of order n are given by limits of
the form

DAf(x) = lim
h→0

h−n
m∑
i=0

Aif (x+ aih) ,

where the data vectorA = {A1, . . . , Am; a1, . . . , am} satisfies the nth Vandermonde con-
ditions

∑
iAia

j
i = n!δjn, for j = 0, 1, . . . , n. For example, the generalized Riemann

derivative of order n = 1 and with data vector A = {−1, 1; 0, 1} is just ordinary differ-
entiation, while the Schwarz derivative S given above is the A-derivative of order n = 2
with A = {1,−2, 1;−1, 0, 1}. The nth forward Riemann derivative Dnf(x) is the nth
generalized Riemann derivative with

A =

{
Ai = (−1)i

(
n

i

)
; ai = n− i | i = 0, . . . , n

}
.

The nth Peano derivative of f at x is the number f(n)(x) that satisfies the relation

f(x+ h) = f(0)(x) + f(1)(x)h+
f(2)(x)

2!
h2 + · · ·+

f(n)(x)

n!
hn + o(hn).

Notice that the existence of the nth Peano derivative of f at x assumes the existence of
every lower order Peano derivative of f at x. Moreover, it is well known that, by Taylor
expansion about x, the existence of the nth Peano derivative f(n)(x) forces every general-
ized Riemann derivative of order n to exist and to be equal to f(n) (x).

Riemann derivatives were introduced by Riemann in [R] (1892). Peano derivatives
are due to Peano in [P] (1892), and were further developed by De la Vallée Poussin in
[VP] (1908). Surveys on Peano derivatives are found in [EW, O]. Generalized Riemann
derivatives were introduced by Denjoy in [D] (1935); they have many applications in the
theory of trigonometric series [Z]. Generalized Riemann derivatives have been shown to
satisfy basic properties of ordinary derivatives, such as monotonicity, convexity, or the
mean value theorem. [AJ, FFR, HL, HL1, T, W] Multidimensional Riemann derivatives
were studied in [AC1], and quantum Riemann derivatives appeared in [AC, ACR]. A
survey on generalized Riemann derivatives is given in [As2].

Every generalized Riemann derivative of order n ≥ 1 shares with S the virtue of
being immediately computable as a limit. But every generalized Riemann derivative of
order n ≥ 2 also shares with S the defect of being a strict generalization of the nth Peano
derivative. This means that no single generalized Riemann derivative of order greater than
or equal to 2 can have it’s existence at x to be sufficient to force the existence of the Peano
derivative of the same order.

We prove this by assuming to the contrary that a certain nth (n ≥ 2) generalized
Riemann derivative A has the property that, for each function f and real number x, the
existence of the derivative DAf(x) implies the existence of f(n)(x), since the existence of
the nth Peano derivative assumes the existence of every lower order Peano derivative, by
transitivity, the existence of DAf(x) implies the existence of f(1)(x) = f ′(x).

On the other hand, there is a non-trivial analogue of the result for the ordinary deriv-
ative f (n)(x) instead of the Peano derivative f(n)(x), given in [ACCs, Theorem 1]. This
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result asserts that when n ≥ 2, the existence of no single generalized Riemann derivative
DAf(x) can imply the existence of the ordinary derivative f (n)(x); and for n = 1, exactly
the cases of

lim
h→0

Af(x+ rh) +Af(x− rh) + f(x+ h)− f(x− h)− 2Af(x)

2h
, where Ar 6= 0,

imply (hence are equivalent to) the first order ordinary derivative.
This proves that the original generalized Riemann derivative has order n = 1, a con-

tradiction with the assumption that the same order is n ≥ 2.
By taking B = {−1, 1; 0, 1} to be the data vector for ordinary first order differentia-

tion, the above result in [ACCs] can be viewed as the classification of all pairs (A,B) of
data vectors of generalized Riemann differentiations, subject to the condition that, for each
function f and point x, the existence of the derivative DAf(x) either implies or is equiv-
alent to the existence of the derivative DBf(x). This classification for general B is given
in [ACCh], and we will refer to it as the classification of generalized Riemann derivatives.
The classification of complex generalized Riemann derivatives is given in [ACCH].

As we have just mentioned above, the problem of finding an nth generalized Riemann
derivative whose existence at a point implies the existence of the nth Peano derivative at
that point has no solution for n ≥ 2. Thus the problem of characterizing the nth Peano
derivative f(n)(x) by a single nth generalized Riemann derivative DAf(x) is not well
posed. The next question that one can ask is the one of characterizing the Peano derivative
by a class C of several generalized Riemann derivatives of orders ≤ n, meaning that, for
each function f and real number x, the existence of DAf(x), for all A in C, implies the
existence of f(n)(x). WritingC as the disjoint unionC = C1∪. . .∪Cn, whereCk consists
of all elements of C of order k, and noticing that the existence of f(n−1)(x) implies the
existence of the derivative of f at x in the sense of each element of C1 ∪ . . . ∪ Cn−1, the
natural simpler question to ask is the one of characterizing the nth Peano derivative modulo
the n − 1st Peano derivative by a class Cn of nth generalized Riemann derivatives. This
is the problem of finding a class Cn of nth generalized Riemann derivatives such that the
existence of f(n−1)(x) as well as the existence of the derivatives of f at x in the sense of
all elements of Cn implies the existence of f(n)(x).

The first class Cn that characterizes f(n)(x) modulo f(n−1)(x) was found in 1936
by Marcinkiewicz and Zygmund. It is a single element class Cn = {D̃n}, where D̃n

is a special nth generalized Riemann derivative which we will describe next. This is the
first pointwise characterization of the Peano derivative by generalized Riemann derivatives.
Our main result, Theorem 2, provides a second characterization of the nth Peano derivative
modulo the n − 1st Peano derivative by the class Cn consisting of the first n − 1 forward
shifts of the nth forward Riemann derivative, which we will also describe in detail in the
next part of the Introduction.

Marcinkiewicz and Zygmund in [MZ] introduced a special sequence of generalized
Riemann derivatives, one for each n. They showed that the difference ∆̃n (x, h; f), defined
recursively by

(1)
∆̃1 (x, h; f) = f (x+ h)− f (x) ,

∆̃n (x, h; f) = ∆̃n−1 (x, 2h; f)− 2n−1∆̃n−1 (x, h; f) (n = 2, 3, . . . ),
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when multiplied by a scalar λn, is an nth generalized Riemann difference. For simplicity,
whenever possible, write ∆(h) for the difference ∆(x, h; f). In this way,

∆̃2(h) = f(x+ 2h)− 2f(x+ h) + f(x)

∆̃3(h) = f(x+ 4h)− 6f(x+ 2h) + 8f(x+ h)− 3f(x),

∆̃4(h) = f(x+ 8h)− 14f(x+ 4h) + 56f(x+ 2h)− 64f(x+ h) + 21f(x),

∆̃5(h) = f(x+ 16h)− 30f(x+ 8h) + 280f(x+ 4h)− 960f(x+ 2h)

+ 1024f(x+ h)− 315f(x),

with λ2 = 1, λ3 = 1/4, λ4 = 1/56, and λ5 = 1/2688.
By taking D̃nf(x) to be the nth generalized Riemann derivative of f at x,

D̃nf(x) = lim
h→0

λn∆̃n (x, h; f)/hn,

corresponding to the generalized Riemann difference λn∆̃n (x, h; f), they proved the strong
implication in the following theorem, which characterizes the nth Peano derivative f(n)(x)

in terms of the special nth generalized Riemann derivative D̃nf(x):

THEOREM MZ. For each function f and real number x,

f(n−1)(x) exists and D̃nf(x) exists ⇐⇒ f(n)(x) exists.

This can also be read as D̃nf(x) is equivalent to f(n)(x), for n − 1 times Peano dif-
ferentiable functions f at x. The direct implication is explicitly proved in [MZ], Collected
Papers, Page 134.

As we have mentioned earlier, by Taylor expansion, the nth Peano derivative f(n)(x)
implies any nth generalized Riemann derivative. And since the definition of the nth Peano
derivative f(n)(x) assumes the existence of any lower order Peano derivative of f at x, the
reverse implication in Theorem MZ is always true.

In 1936, Marcinkiewicz and Zygmund created D̃nf(x) to establish one step of a very
long and beautiful inductive proof. The question of finding a characterization of Peano dif-
ferentiation was looked at explicitly in 1970 in [As1] and in 1998-2000 in [GGR, GGR1,
GR]. While writing this paper, we realized that although D̃nf(x) has provided a working
tool in real analysis for a long time [As, AC, ACR], to the best of our knowledge, no one
has ever referred to it as giving a characterization of nth order Peano differentiation.

With the exception of the Gaussian Riemann derivatives qD̃nf(x), for real q, with q >
1, which are introduced and studied in [AC2], there are no known nth generalized Riemann
derivatives that are essentially different from D̃nf(x) = 2D̃nf(x) and characterize the
Peano derivative f(n)(x) in the same way as the derivative D̃nf(x) does in Theorem MZ;
see also Theorem 1 below. For this reason, the derivatives D̃nf(x) are really special within
the class of nth generalized Riemann derivatives.

We add that an iteration of the equivalence in Theorem MZ, for n, n− 1, . . . , 1, leads
to another characterization of the nth Peano derivative f(n)(x) in terms of the special gen-
eralized Riemann derivatives D̃nf(x):

COROLLARY MZ. For each function f and real number x,

D̃1f(x), D̃2f(x), . . . , D̃nf(x) exist ⇐⇒ f(n)(x) exists.
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One can easily see that Corollary MZ is not only a consequence of Theorem MZ, but
also an equivalent result. Based on this, both Theorem MZ and Corollary MZ provide the
first pointwise characterization of the Peano derivative.

Also note that, by our earlier comments, the equivalence in Corollary MZ does not
hold true if its left side is replaced by any single generalized Riemann derivative of any
order.

Results. Our first result shows that, for n ≥ 3, the two most widely known nth gen-
eralized Riemann derivatives, the nth symmetric Riemann derivative Ds

nf(x) and the nth
forward Riemann derivative Dnf(x), fail to characterize the nth Peano derivative f(n)(x)

at x = 0 in the same way as D̃nf(x) does in Theorem MZ.

THEOREM 1. Suppose n ≥ 3. Then, for all functions f and real numbers x,
(i) both f(n−1)(x) and Ds

nf(x) exist 6=⇒ f(n)(x) exists.
(ii) both f(2)(x) and D3f(x) exist 6=⇒ f(3)(x) exists.

PROOF. (i) Consider the functions g : [0,∞) → R, defined by g(x) = xn−1/2, and
f : R→ R, defined by

f(x) =

{
g(x) , if x ≥ 0,

(−1)n−1g(−x) , if x < 0.

Clearly, g(h) = o(hn−1) implies f(h) = o(hn−1), so f is n − 1 times Peano differen-
tiable at 0 and f(0)(0) = f(1)(0) = · · · = f(n−1)(0) = 0, while limh→0+ g(h)/hn =

limh→0+ 1/
√
h = ∞ implies that f(n)(0) does not exist. On the other hand, since f is of

opposite parity as n is, the nth symmetric derivative Ds
nf(0) exists and is equal to zero.

(ii) Let G = 〈2, 3〉 be the multiplicative subgroup of the rationals generated by the
integers 2 and 3. Then G = {2m3n|m,n integers}, so that if h ∈ G, then 2h, 3h ∈ G and
if h /∈ G then 2h, 3h /∈ G. Define f : R→ R by

f(x) =

{
(−1)m+nx3 , if x = 2m3n ∈ G,
0 , if x /∈ G.

Since 0 ≤ |f(x)| ≤ x3, f is continuous at 0, has two Peano derivatives at 0, and
f(0)(0) = f(1)(0) = f(2)(0) = 0. The third Peano derivative f(3)(0) does not exist, since
the ratio f(h)/h3 has three distinct limit points, 0, 1 and -1, as h→ 0.

Let h = 2m3n. Then ∆3(0, h; f) = f(3h)− 3f(2h) + 3f(h)− f(0)

= (−1)m+n+133h3 − 3(−1)m+n+123h3 + 3(−1)m+nh3 − 0

= (−1)m+nh3(−27 + 24 + 3)

= 0,

so f is three times forward Riemann differentiable at 0 and D3f(0) = 0. �

We suspect the result in Part (ii) of Theorem 1 to hold for a general n in place of
n = 3. Since the example we use here does not seem to extend to higher n, and such
an extension does not seem to be of as much interest as the remainder of this paper, we
leave this extension as an open question. However, Theorem 1 as stated fulfills its principal
goal of motivating the main theorem of the paper, Theorem 2, as much as its most general
version would; see the first paragraph of the preamble to Theorem 2.
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By linear algebra, the nth Vandermonde conditions holding for a difference ∆A(x, h; f)
=
∑
iAif(x+ aih) imply that the same conditions hold for its r-translate (or r-shift)

∆A,r(x, h; f) =
∑
i

Aif(x+ (ai + r)h).

In particular, the nth generalized Riemann differences

∆n,j(x, h; f) =

n∑
i=0

(−1)i
(
n

i

)
f(x+ (n− i+ j)h),

for j = 0, 1, . . . , k − 1, are the first k forward translates of the nth forward Riemann
difference ∆n(x, h; f) = ∆n,0(x, h; f), and the limits

Dn,jf(x) = lim
h→0

∆n,j(x, h; f)/hn,

for j = 0, 1, . . . , k − 1, are the first k forward translates (or shifts) of the nth forward
Riemann derivative Dnf(x) = Dn,0f(x).

Theorem 1 provides very good evidence that, once n ≥ 3 and the Peano derivative
f(n−1)(x) exists, neither the symmetric Riemann derivative Ds

nf(x) nor the forward Rie-
mann derivative Dnf(x) are enough to force the existence of the Peano derivative f(n)(x).
The next option available that might do the job would be to use sets of consecutive for-
ward shifts of the nth forward Riemann derivative instead of just the nth forward Riemann
derivative, and the smallest number of shifts needed when n = 3 is n− 1.

The second pointwise characterization of the nth Peano derivative is the main theorem
of this paper. Let Dsh

n f(x) be the set of all shifts Dn,jf(x) , for j = 0, 1, . . . , n−2, of the
nth forward Riemann derivative Dnf(x) of f at x. The result says that the set Dsh

n f(x) is
equivalent to the nth Peano derivative f(n)(x), for each n − 1 times Peano differentiable
function f at x, thereby providing an analogue of the equivalence in Theorem MZ, where
the special derivative D̃nf(x) is replaced by a set of consecutive shifts of the Riemann
derivative. The main result reads as follows:

THEOREM 2. For each measurable function f and real number x,

both f(n−1)(x) and Dsh
n f(x) exist ⇐⇒ f(n)(x) exists.

Notice that when n = 2, Dsh
n f(x) is a set consisting of a single element D2,0f(x) =

D2f(x) = D̃2f(x), so Theorem 2 is the same as Theorem MZ. Thus the goal of replacing
S in order to fulfill the fantasy stated at the beginning has succeeded.

The motivation for Theorem 2 is due to an earlier result and conjecture of Ginchev,
Guerragio and Rocca in [GGR, GR]. They made the following conjecture: if we replace
Dsh
n f(x) by a set consisting of the first n backward shifts instead of n−1 forward shifts of

the nth forward Riemann derivative of f at x, they conjectured the result of Theorem 2 with
this new hypothesis and proved it by hand for n = 1, 2, 3, 4 and with computer assistance
for n ≤ 8, leaving the cases n > 8 as a conjecture. Their approach is different from ours.

The next corollary is the analogue of the equivalence in Corollary MZ, where each
special derivative D̃nf(x) is replaced by the set Dsh

n f(x) of the first n − 1 forward shifts
of the nth forward Riemann derivative Dnf(x). In essence, this result says that the nth
Peano derivative f(n)(x) is equivalent to a triangular set of consecutive forward shifts of
all forward Riemann derivatives of orders up to n.

COROLLARY 3. Let n ≥ 2. Then for each measurable function f and real number x,

D1f(x) and Dsh
k f(x), for k = 2, . . . , n, exist⇐⇒ f(n)(x) exists.
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Corollary 3 is deduced from Theorem 2 in the same way as the equivalence in Corol-
lary MZ was deduced from the equivalence in Theorem MZ, so its formal proof is omitted.
In this way, the entire article is devoted to the proof of Theorem 2. And as it was the case
with Corollary MZ, the result of Corollary 3 is not only a consequence of Theorem 2, but
an equivalent result. They both provide the second pointwise characterization of the Peano
derivative.

Section 1 contains the statement of the characterization theorem of the Peano deriva-
tive, the combined result of Theorem MZ, Corollary MZ, Theorem 1 and Corollary 3, and
an update of the status of its proof, based on some of the proofs being already addressed in
the Introduction.

In Section 2, the proof of Theorem 2 is reduced to showing in Lemma 4 that the set
Dsh
n f(x) implies the nth special generalized Riemann derivative D̃nf(x) directly, without

the hypothesis on f(n−1)(x). The most natural proof of this would require the use of
linear algebra, namely a Gaussian elimination algorithm that inputs the first n− 1 forward
shifts of the nth Riemann difference, and outputs the unique nth generalized Riemann
difference based at x, x+ h, x+ 2h, x+ 4h, . . . , x+ 2n−1h. This linear algebra problem
is reduced in Lemma 5 to the recursive set theory problem of finding a combinatorial
(Gaussian) elimination algorithm that inputs the first n − 1 forward shifts of the ordered
set {0, 1, 2, . . . , n}, and outputs the ordered set {0, 1, 2, 4, . . . , 2n−1}, using just two well-
defined operations with ordered sets that correspond to two well-defined operations with
differences, dilation by 2 and elimination. These will be explained in detail in Section 2.

Section 3 contains the proof of Lemma 5, or the above mentioned combinatorial elim-
ination algorithm. The first half of the section will provide the proof of the result for
n = 3, 4, 7, 10. In this way, all ideas behind the general algorithm are introduced in a grad-
ual manner. The case n = 10 should suffice to understanding the general case. By now
the reader is familiarized with the terminology, and especially with the more complicated
operations with sets that are built as compounds of the two basic operations. These helped
with the writing of the general algorithm in lowest terms. The general algorithm, given in
the second half of the section, has four steps, and the repeat of the last step provides the
result. A few comments are added to each step for a more convincing argument that the
algorithm works.

In addition to simplifying the proof of Lemma 4, we found Lemma 5 and its proof to
be interesting stand-alone results of combinatorics and recursive set theory.

1. The two characterizations of the Peano derivative

Recall that for each function f at x, f(n)(x) is the nth Peano derivative, D̃nf(x) is
the unique nth generalized Riemann derivative based at x, x+h, x+ 2h, x+ 22h, . . . , x+
2n−1h, and Dsh

n f(x) is the set Dsh
n f(x) = {Dn,jf(x) | j = 0, 1, . . . , n − 2} of the first

n− 1 forward shifts of the nth forward Riemann derivative Dnf(x).
The following result provides the characterization of the Peano derivative f(n)(x), by

combining in a single theorem the four results on two pointwise characterizations of the
Peano derivative, that were outlined in the Introduction.

THEOREM (Pointwise characterization of the Peano derivative). Suppose n ≥ 2. Then
for each function f and real number x,
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(i) both f(n−1)(x) and D̃nf(x) exist ⇐⇒ f(n)(x) exists;
(ii) all D̃1f(x), D̃2f(x), . . . , D̃nf(x) exist ⇐⇒ f(n)(x) exists;
(iii) both f(n−1)(x) and Dsh

n f(x) exist ⇐⇒ f(n)(x) exists;
(iv) D1f(x) and all Dsh

2 f(x), . . . , Dsh
n f(x) exist ⇐⇒ f(n)(x) exists.

Parts (i) and (ii) are easily equivalent to each other; they represent the first pointwise
characterization of the Peano derivative. Part (i) is the result of Theorem MZ, due to
Marcinkiewicz and Zygmund in [MZ]. Part (ii) is our result of Corollary MZ, whose easy
proof appeared in the Introduction.

Similarly, Parts (iii) and (iv) are also equivalent to each other; they represent the sec-
ond pointwise characterization of the Peano derivative. Part (iii) is the result of Theorem 2,
the main result of the paper. Its proof is reduced to a result on recursive sets, Lemma 5,
in Section 2, which is proved in Section 3 using an interesting combinatorial algorithm.
Part (iv) is the result in Corollary 3, whose proof is discussed in the Introduction.

The two characterizations are different when viewed from a numerical analysis per-
spective. To illustrate this, suppose that the 10th Peano derivative exists at x = 0 and
we want to check the existence of and find the value of the 11th Peano derivative, using
only values of the original function. The first method computes a single limit involving the
12 base points 0h, 1h, 2h, 4h, . . . , 512h, 1024h. The other method involves the 21 base
points 0h, 1h, 2h, 3h, . . . , 18h, 19h, 20h. Ten different limits, each using 12 consecutive
base points from the given 21, are calculated. They must be equal (nearly equal in a nu-
merical situation); the common value is the 11th Peano derivative.

At first blush, the second method seems much more complicated than the first. How-
ever, it is easy to imagine situations where it is far easier and more accurate to evaluate a
function on the second set of 21 regularly spaced points, than on the first set of 12 wildly
unbalanced points. We will not pursue this line of thought further here.

2. Main theorem reduced to a combinatorial problem

The reverse implication in Theorem 2 is easily argued in the same way as we did for
the reverse implication in Theorem MZ. For the direct implication, based on the direct
implication in Theorem MZ, it suffices to show that

LEMMA 4. For each measurable function f and real number x,

Dsh
n f(x) exists =⇒ D̃nf(x) exists.

Note that, unlike Theorem 2, the above lemma relates only nth generalized Riemann
derivatives, without involving any Peano derivative. When the left side of the implication in
Lemma 4 is a set consisting of a single generalized Riemann derivative, then one available
method of proof for the result would be by reference to the classification of generalized
Riemann derivatives in [ACCh] that we mentioned in the Introduction. Unfortunately, this
option is available only in the case n = 2, when both sides of the implication represent the
same derivative D2f(x) = D̃2f(x), or when the implication is a triviality. All remaining
cases (n > 2) fall outside the classification of generalized Riemann derivatives, so the
proof will be based on new techniques.

An important property of all derivatives in Lemma 4, which turned out crucial to the
combinatorial method of proof we chose from here on to the end of the paper, is that
these are nth generalized Riemann derivatives based at n+ 1 points. By the Vandermonde
conditions, these derivatives are uniquely determined by their base points.
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Before proceeding with the proof of Lemma 4, it is important to lay down a few ideas
about generating new generalized Riemann derivatives from old, which we will refer to as
operations with generalized Riemann derivatives. Specifically, we will concentrate on two
basic operations with nth generalized Riemann derivatives based at n+ 1 points:

1. Dilation. The dilation by a real number r of an nth generalized Riemann difference
∆A(x, h; f) =

∑n
i=0Aif(x + aih) corresponding to the data vector A = {Ai; ai | i =

0, . . . , n} is the nth generalized Riemann difference

∆Ar (x, h; f) =

n∑
i=0

r−nAif(x+ airh)

corresponding to vector Ar = {r−nAi; rai | i = 0, . . . , n}. Moreover, a function f is
A-differentiable at x if and only if is Ar-differentiable at x and DAf(x) = DArf(x).

To simplify the language, for fixed f and x, we say that an ordered set A of 2n + 2
elements satisfying the nth Vandermonde conditions is good if f is A-differentiable at
x. Then A is good if and only if Ar is good. And since each nth generalized Rie-
mann derivative based at n + 1 points is uniquely determined by its base points, A is
uniquely determined by {a0, . . . , an}, while A0, . . . , An are just place holders. In this
way, a plain set {a0, . . . , an} is good if and only if, for each non-zero real number r, its
r-dilate {ra0, . . . , ran} is good.

2. Elimination. By the nth Vandermonde conditions, only a unique non-zero scalar
multiple of each non-zero linear combination of two nth generalized Riemann differences
is a generalized Riemann difference. The set of base points of such a non-zero linear com-
bination is the union of the base points of the terms, minus the base points corresponding
to the terms that got eliminated by the linear combination. Focusing only on pairs of nth
generalized Riemann differences based at n+ 1 points and having the additional property
that they share n base points, observe that by taking non-zero linear combinations of the
differences corresponding to such pairs, one arrives at one of the following three possibili-
ties:

• No common terms of the two differences were eliminated by the linear com-
bination. Then the resulting nth difference has n + 2 base points, a discarded
case.
• At least two common terms were eliminated by the linear combination. Then the

resulting nth difference has ≤ n base points, an impossibility.
• Only one common term of the two differences got eliminated by the linear com-

bination. Then the resulting nth difference has n + 1 base points, hence it is of
the desired kind. And since linear combinations of nth generalized differences
are scalar multiples of nth generalized differences, if S = {a0, . . . , an} and
T = {b0, . . . , bn} are good sets such that |S ∩ T | = n then, for each a ∈ S ∩ T ,
the set S ∪ T \ {a} is also a good set.

As an example highlighting the third bullet situation, consider the two shifts,

∆3,0(h) = f(x+ 3h)− 3f(x+ 2h) + 3f(x+ h)− f(x) and

∆3,1(h) = f(x+ 4h)− 3f(x+ 3h) + 3f(x+ 2h)− f(x+ h),

of the third Riemann difference ∆3(h) of f at x, so that the sets {0, 1, 2, 3} and {1, 2, 3, 4}
representing their base points are good. The linear combination 3∆3,0(h) + ∆3,1(h) that
eliminates the term in f(x + 3h) is the difference ∆̃3(h) that we have seen earlier. This
is a scalar multiple (λ3 = 1/4) of a third generalized Riemann difference. The same third
generalized Riemann difference can be obtained in a different way, from the Vandermonde
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system, as the unique third generalized Riemann difference whose base points set is the
(new good) set {0, 1, 2, 4} obtained by eliminating 3 between the other two known good
sets.

Back to Lemma 4, its statement in language of good sets goes as follows: If the sets
{0, 1, 2, . . . , n}, {1, 2, 3, . . . , n+ 1}, . . . , {n− 2, n− 1, n, . . . , 2n− 2} are good, then so
is the set {0, 1, 2, 4, . . . , 2n−1}.

As for its proof, since we already know two operations that produce new good sets
from old, dilation and elimination, to prove the lemma, it suffices to provide an algorithm
that inputs the given sets in the above hypothesis and outputs the set in the conclusion,
by only using dilations of given or previously deduced sets, and elimination of a common
element between of a pair of given or deduced sets that have n common elements.

Summarizing, we have reduced the proof of Lemma 4, and implicitly the one of The-
orem 2, to the following result of recursive set theory.

LEMMA 5. Suppose a collection S of sets, each consisting of n + 1 non-negative
integers, is defined by the following properties:

(i) {0, 1, 2, . . . , n}, {1, 2, 3, . . . , n+ 1}, . . . , {n− 2, n− 1, n, . . . , 2n− 2} ∈ S;
(ii) if S ∈ S, then 2S := {2s | s ∈ S} ∈ S;

(iii) if S, T ∈ S have |S ∩ T | = n, then for each a ∈ S ∩ T , S ∪ T \ {a} ∈ S.

Then {0, 1, 2, 4, . . . , 2n−1} ∈ S.

3. Proof of the combinatorial problem

The general proof of Lemma 5 relies on a combinatorial elimination algorithm de-
scribed in Section 3.2. All ideas behind the algorithm are brought up in Section 3.1, where
several smaller cases are investigated.

As a simplifying terminology for the proof, we convene, in all displayed equations, to
write each ordered set as a row-vector, that is, without braces and commas. The hypothesis
(i) means input the given sets (vectors) of S into the algorithm, (ii) is dilation of a set by 2,
and (iii) is elimination of a common element between two sets that share n elements. And
two elements S, T of S, with |S ∩ T | = n, are said to be set for elimination.

3.1. Smaller cases. In this subsection we prove Lemma 5, for n = 3, 4, 7, 10. Each of
these cases contains an extra idea for the general proof that was not shown in the previous
cases, so that the case n = 10 has all ideas needed for the general proof.

The proof of the n = 3 case of Lemma 5 was accomplished at the end of the previous
section by displaying ∆̃3(h) = 3∆3,0(h) + ∆3,1(h). As a first example, we rewrite the
n = 3 case here to begin illustrating the notation and language we’ll use in giving the
general proof of Lemma 5: Input the two given elements {0, 1, 2, 3}, {1, 2, 3, 4} ∈ S as
row vectors, with their common elements listed under each other, and highlight the number
3 as the only non-zero entry which is not a power of 2, which we will refer to as an intruder.

0 1 2 3
1 2 3 4

Eliminate 3 between the two given sets to deduce that {0, 1, 2, 4} ∈ S, as needed.
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Case n = 4. Write the three given sets as row-vectors in a parallelogram array, with
the common elements written in the same column, and mark all intruders.

0 1 2 3 4
1 2 3 4 5

2 3 4 5 6

Note that consecutive rows are set for elimination. This property will stay in place on all
arrays till the end of the algorithm.

Consider the following chain of eliminations. Replace the third row with the result of
eliminating 5 between itself and the second row, to deduce that {1, 2, 3, 4, 6} ∈ S . Then
replace this new third row with the result of eliminating 3 between itself and the first row,
to deduce that {0, 1, 2, 4, 6} ∈ S . The compound of these two eliminations is read as
follows: on the row ending in 6 (even number), we eliminated as many odd numbers (two,
namely 5 and 3, in this order) as there are rows above it, at the price of adding 0 and 1 at
the beginning of the row.

Our first processing of the above parallelogram array is the set of all possible elimina-
tion compounds described above. Starting at the bottom and going up, on each row ending
with an even entry (first and third), eliminate as many odd entries (high to low) as there are
rows above it. Then delete the remaining (second) row(s), as shown on the left chart. Then
double the first row and move it to the bottom,

0 1 2 3 4
0 1 2 4 6

0 1 2 4 6
0 2 4 6 8

as shown on the right chart. Finally, eliminate 6 between the two rows to deduce that
{0, 1, 2, 4, 8} ∈ S, as needed.

As a shortcut for the compound of the last two operations, we say that the same con-
clusion was obtained directly from the earlier array by eliminating 6 between the second
row and twice the first row. In this way, for a general n, from this stage on to the end of the
algorithm, all arrays will have the addtional property that twice the top row and the bottom
row are set for elimination.

Case n = 7. Input the given vectors in a, by now familiar, parallelogram array.

0 1 2 3 4 5 6 7
1 2 3 4 5 6 7 8

2 3 4 5 6 7 8 9
3 4 5 6 7 8 9 10

4 5 6 7 8 9 10 11
5 6 7 8 9 10 11 12

Eliminate as many odd entries, high to low, from the rows ending in even entries as there
are rows above them, and ignore the remaining rows.

0 1 2 3 4 5 6 8
0 1 2 3 4 6 8 10
0 1 2 4 6 8 10 12

Note that all rows have the same number of intruders: three. Replace the third row with the
result of the elimination of 12 between itself and the double of the first row. Replace the
second row with the result of the elimination of 10 between itself and the newly established
third row. Replace the first row with the result of the elimination of 6 between itself and
the new second row. The effect of this process is to replace the largest intruder in each row
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with 16, the next power of 2. We refer to the compound process as “cutting off the largest
intruders” in each row.

0 1 2 3 4 5 8 16
0 1 2 3 4 6 8 16
0 1 2 4 6 8 10 16

Repeat cutting off intruders from all rows, except for the first one, which is deleted. The
difference between this cut off that deletes the first row and the preceding one that retained
it is marked by the last intruder on the first row now being odd 5, instead of last time being
even 6.

0 1 2 3 4 8 16 32
0 1 2 4 6 8 16 32

Finally, since the last intruder in the first row is the odd number 3, we delete the first row
and cut off the last intruder in the second row to get {0, 1, 2, 4, 8, 16, 32, 64} ∈ S .

Case n = 10. Start with the parallelogram made with the row-vectors corresponding
to the given sets {0, 1, . . . , 10}, {1, 2, . . . , 11}, . . . , {8, 9, . . . , 18} of S, where each col-
umn has equal entries, and from the bottom to the top, in each row ending with an even
entry, eliminate as many of the largest odd intruders as there are rows above it. Moreover,
eliminate the rows ending in odd entries.

0 1 2 3 4 5 6 7 8 9 10
0 1 2 3 4 5 6 7 8 10 12
0 1 2 3 4 5 6 8 10 12 14
0 1 2 3 4 6 8 10 12 14 16∗

0 1 2 4 6 8 10 12 14 16 18

The largest numbers in each row are the even numbers between n = 10 and 2n− 2 = 18.
There is a single power of 2 among them, namely 16, which we mark by an asterisk. Note
that the number of intruders in each of the rows above the asterisk is six, while the rows
with asterisk or below it have only five intruders. Using the asterisk row as a base, cut off
the largest intruders in all rows above it.

0 1 2 3 4 5 6 7 8 9 16
0 1 2 3 4 5 6 7 8 10 16
0 1 2 3 4 5 6 8 10 12 16
0 1 2 3 4 6 8 10 12 14 16∗

0 1 2 4 6 8 10 12 14 16 18

Now there are five intruders in each row. As long as the last entry in the first row is odd,
delete it and (using its double, which we do not write down, as a base) eliminate the highest
intruders in the remaining rows. We deduce

0 1 2 3 4 5 6 7 8 16 32
0 1 2 3 4 5 6 8 10 16∗ 32
0 1 2 3 4 6 8 10 12 16 32
0 1 2 4 6 8 10 12 14 16 32

and
0 1 2 3 4 5 6 8 16∗ 32 64
0 1 2 3 4 6 8 10 16 32 64
0 1 2 4 6 8 10 12 16 32 64
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When the last intruder in the first row is even, we keep the first row and cut off the largest
intruders from all rows.

0 1 2 3 4 5 8 16∗ 32 64 128
0 1 2 3 4 6 8 16 32 64 128
0 1 2 4 6 8 10 16 32 64 128

Repeat the process until all intruders are eliminated. We get

0 1 2 3 4 8 16 32 64 128 256
0 1 2 4 6 8 16 32 64 128 256

and, finally, deduce that {0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512} ∈ S, as desired.

3.2. The general case. The proof of the general case in Lemma 5 follows ideas from
the proofs of the smaller cases described in the first half of the section. The general proof
is based on the following combinatorial (Gaussian) elimination algorithm:

STEP 1. Arrange (input) the given sets

{0, 1, . . . , n}, {1, 2, . . . , n+ 1}, . . . , {n− 2, n− 1, . . . , 2n− 2}
in order, one under the other, as row vectors in a parallelogram array so that each next
vector is shifted one position to the right of the previous vector, so that all equal entries are
a part of the same column. Highlight all intruders.

STEP 2. Replace each row ending in an even entry with the one obtained from it by
deleting as many of its largest odd entries as there are rows above it and adding all non-
negative integers smaller than its smallest entry. Delete the remaining rows.

In this way, the new kth row from the bottom, for k = 1, 2, . . . , b(n−1)/2c, is coming
from the old row {n − 2k, n − 2k + 1, n − 2k + 2, . . . , 2(n − k)} by inserting all non-
negative integers, 0, 1, . . . , n − 2k − 1, that can fit in front of it, and deleting its largest
n− 2k odd entries 2(n− k)− 1, 2(n− k)− 3, . . . , 2(n− k)− 2(n− 2k) + 1 = 2k + 1.
The new kth row (set) from the bottom has the expression:

(2) {0, 1, . . . , 2k − 1, 2k, 2(k + 1), 2(k + 2), . . . , 2(n− k − 1), 2(n− k)}.
Then the top row is either {0, 1, . . . , n}, for even n, or {0, 1, . . . , n− 2, n− 1, n+ 1}, for
odd n, and the bottom row is {0, 1, 2, 4, 6, 8, . . . , 2(n−1)}. Note that all consecutive rows
are set for elimination. This will continue to the end of the algorithm.

STEP 3. Mark with an asterisk the unique power of 2 among the last entries in all
rows. Note that every row strictly above this unique row has the same number of intruders,
and the rest of the rows all have one fewer than this common number. Cut off the largest
intruders in the rows above the asterisk. The effect is that these will be replaced by the
power of 2 marked with asterisk, and all rows will then have the same number of intruders.

Suppose the asterisk entry 2η occurs in the `th row. Then after Step 3, the kth row
from the bottom, for k ≤ `, is as in (2), while the one for k > ` is

(3) {0, 1, . . . , 2k − 1, 2k, 2(k + 1), 2(k + 2), . . . , 2(n− k − 1), 2η}.
The top row is {0, 1, . . . , n − 1, 2η}, regardless of the parity of n, and the bottom row is
{0, 1, 2, 4, 6, 8, . . . , 2(n− 1)}. So the top and bottom rows are set for elimination, and the
next step is granted.

STEP 4. If the last intruder in the top row is even, cut off the largest intruders in all
rows. Otherwise, delete the first row and cut off the largest intruders in the remaining rows.

Repeat Step 4 until all intruders are eliminated and the array has shrunk to a single
row, the desired {0, 1, 2, 4, 8, . . . , 2n−1}.
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Remarks. We close the section with a few more details on how each application of
either of the last two steps is granted by the conclusion of the previous step.

After Step 2, the odd intruders in the kth row from the bottom are 3, 5, . . . , 2k − 1.
Their number is α(k) = k − 1. The even intruders in the same row are all positive even
entries, minus all powers of 2. Their count is β(k) = n − k − η(k), where η(k) =
blog2 2(n − k)c. Then η(k) = η, when k ≤ `, and η(k) = η + 1, when k > `. The total
number of rows is ν = bn/2c, and the total number of intruders in row k, denoted as γ(k),
is n− η, when k > `, and n− η − 1, when k ≤ `. Thus all actions in Step 3 are granted.

At the end of Step 3, or before each application of Step 4, if the last intruder in the
top row is even, then Step 4 removes it together with its double in the bottom row, so
that the new top and bottom rows are set for elimination, based on the same property for
the old rows. If the last intruder in the first row is odd, say 2s + 1, then the top row is
0, 1, . . . , 2s+ 1 followed by 2-powers, the row below it is 0, 1, . . . , 2s, and one more even
intruder followed by 2-powers, and the bottom row is 0, 1, 2, 4, 6, . . . , 4s, 4s+ 2 followed
by 2-powers. After Step 4, the top row will be 0, 1, . . . , 2s followed by 2-powers, and
the bottom row will be 0, 1, 2, 4, 6, . . . , 4s followed by 2-powers, making them set for
elimination. Thus the next application of Step 4 is granted in all cases.

This completes the proof of Lemma 5 and implicitly the one of Theorem 2.
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