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The harmonicseries is an exampleof a divergentserieswith

positivetermswherethegeneraltermtendsto zeroas tendsto infinty. For
any integer number , the harmonicnumber , is defined by

. Then the termsof grow much more slowly than

those of  since . However, 
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Theorem 1:  is divergent.∑
∞

n = 2

1
nHn − 1

Proof: Here we present in Figure 1 a visual proof of this fact, following [1].

Raisingthe second factorof eachsummandto the power ‘only
slightly’ shrinksthesizeof eachsummand,especiallyif is very small.But
this modification is enough to transform divergence into convergence.
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FIGURE 1

Theorem 2: Let . Then  converges.ε > 0 ∑
∞

n = 2
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Proof: The proof follows from considering Figure 2 below.
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FIGURE 2

Remark: Eachterm of the seriesof Theorem1 is a rationalnumber.If is
chosento bea positivewholenumber,thenthis is alsotruefor theseriesof
Theorem 2.
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