A NEW PROOF OF THE GGR CONJECTURE

J. M. ASH, S. CATOIU, AND H. FEJZIĆ

Arguably, the most important application of higher order derivatives is Taylor's theorem, asserting that an n times differentiable function f at a point c is approximated near c by a polynomial p with error $f(c+h)-p(c+h)=o(h^n)$ as $h\to 0$. It is also well known that Taylor's theorem provides only a sufficient condition for this approximation to happen, and all functions f with this property are said to be n times Peano differentiable at c.

In 1998, Ginchev, Guerragio, and Rocca (GGR) conjectured the following result:

GGR Conjecture. When n > 2, the following two conditions,

(i) f is n-1 times Peano differentiable at c and

(ii)
$$\lim_{h \to 0} \frac{1}{h^n} \sum_{j=0}^{n} (-1)^{n-j} \binom{n}{j} f(c+(j-k)h)$$
 exists for all k with $0 \le k \le n-1$,

are sufficient to make f an n times differentiable function at c.

They proved the theorem by hand for n=2,3,4 in [8], and with the use of a computer they proved it for n=5,6,7,8 in [9], leaving the rest as a conjecture. The GGR conjecture was recently proved in [2] and is now a theorem. The result proved in [2] is slightly stronger for n odd, by eliminating the second condition for k=0. A variant of the conjecture, where the bounds for k are replaced by $-(n-2) \le k \le 0$, is proved in [3].

The original statement of the GGR conjecture is actually an equivalent version of the above, by the principle of mathematical induction: If $D_{n,k}$ denote the above limits, they conjectured that the $\binom{n+1}{2}$ limits $D_{m,k}$ for $0 \le k < m \le n$ will be enough for f to be n times Peano differentiable at c.

The purpose of this note is to provide a new, simple proof to both the GGR conjecture and its variant.

Let $R_n(h)$ be the difference defined recursively by $R_1(h) = f(c+h) - f(c)$, and $R_n(h) = R_{n-1}(2h) - 2^{n-1}R_{n-1}(h)$ for $n \ge 2$.

We will use the following 1936 result of Marcinkiewicz and Zygmund in [10].

Theorem 1. Suppose f is n-1 times Peano differentiable at c. If $\lim_{h\to 0} R_n(h)/h^n$ exists, then f is n times Peano differentiable at c.

If we denote $\Delta_k(h)$ as the difference $\sum_{j=0}^n (-1)^{n-j} \binom{n}{j} f(c+(j-k)h)$ in the GGR limit condition, then this condition can be concisely written as $\lim_{h\to 0} \Delta_k(h)/h^n$ exists. It is also obvious that if all GGR limit conditions are met then the following linear combination

$$\lim_{h\to 0}\frac{\sum_k c_k \Delta_k(s_k h)}{h^n} \text{ exists, where } c_k, s_k \text{ are arbitrary real constants.}$$

Date: June 10, 2021.

²⁰¹⁰ Mathematics Subject Classification. Primary 26A24; Secondary 13F20; 15A03; 26A27.

Key words and phrases. GGR Conjecture; Laurent polynomial; Peano derivative; vector spaces and spans.

This paper is in final form and no version of it will be submitted for publication elsewhere.

Hence, if we can show that R(h) is a linear combination $\sum_k c_k \Delta_k(s_k h)$, then the GGR conjecture follows from Theorem 1.

That this is indeed the case will follow from the analogous result for polynomials, via the linear isomorphism, $\Delta(h):=\sum c_jf(c+b_jh)\mapsto d(t):=\sum c_jt^{b_j}$, from the \mathbb{R} -space of all differences of f at c and h with integer nodes (the b_j), to the \mathbb{R} -space $\mathbb{R}[t,t^{-1}]$ of all Laurent polynomials in indeterminate t with real coefficients. In this way, (1) if $\Delta_k(h)=\sum_{j=0}^n(-1)^{n-j}\binom{n}{j}f(c+(j-k)h)$, then $d_k(t)=\sum_{j=0}^n(-1)^{n-j}\binom{n}{j}t^{j-k}=t^{-k}(t-1)^n$; (2) the polynomial corresponding to $\Delta_k(sh)$ is $d_k(t^s)$; and (3) if $r_n(t)$ is the polynomial that corresponds to $R_n(h)$ under this linear isomorphism, then its recursive definition is $r_1(t)=t-1$, and $r_n(t)=r_{n-1}(t^2)-2^{n-1}r_{n-1}(t)$ for $n\geq 2$.

Based on these properties of the above linear isomorphism, we will be done by showing that the following result is true.

Theorem 2. There are constants
$$c_k$$
 and s_k such that $r_n(t) = \sum c_k d_k(t^{s_k})$.

Before proceeding with the proof of Theorem 2, we need to make a clarification. Our solution to the theorem has the numbers s_k non-negative integers instead of real numbers, so we can think of s_k as s, with $s \ge 0$. Then the c_k are viewed as $c_{k,s}$, for a more precisely indexed sum $\sum c_k d_k(t^{s_k}) = \sum_{s=0}^{\infty} \sum_k c_{k,s} d_k(t^s) = \sum_{s=0}^{\infty} \sum_k c_{k,s} t^{-sk} (t^s - 1)^n$, where the ranges for k will be clarified later, since these are different for different cases in the proof of the theorem. Summarizing, in order to prove Theorem 2, it suffices to show that

$$r_n(t) \in V_n := \operatorname{span}\{t^{-sk}(t^s - 1)^n \mid k = \dots, s = 0, 1, \dots\}.$$

The proof of Theorem 2 is much shorter for the variant of the GGR conjecture than it is for the conjecture itself. For this reason, we deal with the variant first.

Proof of Theorem 2 (Variant Case). In this case, by replacing the index of summation k with -k, the range $-(n-2) \le k \le 0$ becomes $0 \le k \le n-2$. In this way, V_n becomes

$$V_n = \text{span}\{t^{sk}(t^s-1)^n \mid k=0,\ldots,n-2;\ s=1,2,\ldots\}.$$

The following lemma provides a new set of generators for the space V_n .

Lemma 3.
$$V_n = \text{span}\{(t^s - 1)^{n+k} \mid k = 0, 1, \dots, n-2, s = 1, 2, \dots\}.$$

Proof. It suffices to show the following equality of subspaces:

$$\operatorname{span}\{t^k(t-1)^n \mid k=0,1,\ldots,n-2\} = \operatorname{span}\{(t-1)^{n+k} \mid k=0,1,\ldots,n-2\}.$$

Indeed, this is the result of multiplying by $(t-1)^n$ both sides of the obvious equation $\operatorname{span}\{1,t,t^2,\ldots,t^{n-2}\}=\operatorname{span}\{1,t-1,(t-1)^2,\ldots,(t-1)^{n-2}\}.$

We are now ready to proceed with the proof of Theorem 2 in its variant case.

Proof of Theorem 2 (Variant Case). Induct on n. When n=2, $r_2=(t-1)^2$ is clearly in V_2 . Suppose $r_n \in V_n$, for some $n, n \geq 2$, and prove the same property for n+1. By Lemma 3, r_n is a linear combination of polynomials of the form $(t^s-1)^{n+k}$, where s is a positive integer and $k=0,1,\ldots,n-2$. By the recursion, $r_{n+1}(t)=r_n(t^2)-2^nr_n(t)$ will be a linear combination of polynomials

$$(t^{2s}-1)^{n+k}-2^n(t^s-1)^{n+k}$$
, for various k and s.

By Lemma 3, these polynomials belong to V_{n+1} in all cases, except for k=0, when

$$(t^{2s}-1)^n-2^n(t^s-1)^n=(t^s-1)^n((t^s+1)^n-2^n)=(t^s-1)^{n+1}p(t^s),$$

where p is a polynomial in t of degree n-1, so that $(t^s-1)^{n+1}p(t^s)$ belongs to the subspace span $\{(t^s-1)^{n+1},(t^s-1)^{n+2},\ldots,(t^s-1)^{2n}\}$ of V_{n+1} .

Proof of Theorem 2 (GGR Case). The GGR case in the proof of Theorem 2 is similar to the variant case. The proof of the inductive step is now split further into two subcases, n odd and n even. In both cases, following the refined result of the GGR Theorem from [2],

$$V_n = \operatorname{span}\{t^{-sk}(t^s - 1)^n \mid k = (0), 1, \dots, n - 1; \ s = 1, 2, \dots\},\$$

where (0) means that 0 is taken for n even, and not taken for n odd. More explicitly, this is

$$V_n = \begin{cases} \operatorname{span}\{(t-1)^n, t^{-1}(t-1)^n, \dots, t^{-(n-1)}(t-1)^n, \dots\}, & n \text{ even,} \\ \operatorname{span}\{t^{-1}(t-1)^n, t^{-2}(t-1)^n, \dots, t^{-(n-1)}(t-1)^n, \dots\}, & n \text{ odd,} \end{cases}$$

where the last dots in both cases mean that the generating set also includes the previously listed generators evaluated at t^s , for all s at least 2. Let W_n be the subspace of V_n spanned by all generators with s=1. Then W_n has the expression

$$W_n = \begin{cases} \operatorname{span}\{(t-1)^n, t^{-1}(t-1)^n, \dots, t^{-(n-1)}(t-1)^n\}, & n \text{ even} \\ \operatorname{span}\{t^{-1}(t-1)^n, t^{-2}(t-1)^n, \dots, t^{-(n-1)}(t-1)^n\}, & n \text{ odd.} \end{cases}$$

The following lemma provides new sets of generators for W_n in both parity cases.

Lemma 4. With the above notation,

$$W_n = \begin{cases} \operatorname{span}\{t^{-n/2}(t-1)^n, t^{-1}(t-1)^{n+1}, \dots, t^{-(n-1)}(t-1)^{n+1}\}, & n \text{ even,} \\ \operatorname{span}\{t^{-(n-1)/2}(t-1)^n, t^{-2}(t-1)^{n+1}, \dots, t^{-(n-1)}(t-1)^{n+1}\}, & n \text{ odd.} \end{cases}$$

Proof. When n is even, the result follows from $t^{-n/2}(t-1)^n$ being one of the generators in the definition of W_n , and $t^{-k}(t-1)^{n+1} = t^{-(k-1)}(t-1)^n - t^{-k}(t-1)^n$, for each $k = 1, \ldots, n-1$. The case when n is odd has a similar proof.

We are now ready to prove Theorem 2 in the GGR case.

Proof of Theorem 2 (Case GGR). Induct on n. When $n=1, r_1=t-1 \in V_1$. We assume that $r_n \in V_n$ and prove that $r_{n+1} \in V_{n+1}$ in two possible cases:

Case 1. When n is even,

$$V_{n+1} = \operatorname{span}\{t^{-1}(t-1)^{n+1}, t^{-2}(t-1)^{n+1}, \dots, t^{-n}(t-1)^{n+1}, \dots\}.$$

The inductive hypothesis and Lemma 4 imply that $r_n(x)$ is a linear combination of

$$t^{-n/2}(t-1)^n$$
 and $t^{-k}(t-1)^{n+1}$, for $k=1,\ldots,n-1$,

and their evaluations at t^s , for s at least 2. Then $r_{n+1}(t) = r_n(t^2) - 2^n r_n(t)$ is a linear combination of two kinds of polynomials and their evaluations at t^s , for $s \ge 2$. The first kind of polynomial has the form $t^{-n}(t^2-1)^n-2^nt^{-n/2}(t-1)^n$

$$= t^{-n}(t-1)^n((t+1)^n - 2^nt^{n/2}) = t^{-n}(t-1)^{n+1}p(t),$$

where p(t) is a polynomial degree n-1, hence the whole expression lives inside of

$$(t-1)^{n+1}$$
span $\{t^{-1}, t^{-2}, \dots, t^{-n}\},\$

a subspace of V_{n+1} . The polynomials of the second kind are polynomials of the form

$$t^{-2k}(t^2-1)^{n+1}-2^nt^{-k}(t-1)^{n+1}$$
, for $k=1,\ldots,n-1$.

Their second term is a scalar multiple of a generator of V_{n+1} , while their first term is an (s=2)-dilation of the same generator, so all polynomials of the second kind also belong to V_{n+1} . We conclude that $r_{n+1} \in V_{n+1}$, as needed.

Case 2. When n is odd,

$$V_{n+1} = \operatorname{span}\{(t-1)^{n+1}, t^{-1}(t-1)^{n+1}, \dots, t^{-n}(t-1)^{n+1}, \dots\}.$$

The inductive hypothesis and Lemma 4 imply that $r_n(x)$ is a linear combination of

$$t^{-(n-1)/2}(t-1)^n$$
 and $t^{-k}(t-1)^{n+1}$, for $k=2,\ldots,n-1$,

and their evaluations at t^s , for s at least 2. Then $r_{n+1}(t) = r_n(t^2) - 2^n r_n(t)$ is a linear combination of two kinds of polynomials and their evaluations at t^s , for $s \ge 2$. The first kind of polynomial is of the form $t^{-(n-1)}(t^2-1)^n - 2^n t^{-(n-1)/2}(t-1)^n$

$$= t^{-(n-1)}(t-1)^n((t+1)^n - 2^n t^{(n-1)/2}) = t^{-(n-1)}(t-1)^{n+1}p(t),$$

where p(t) is a polynomial degree n-1, hence the above expression lives inside of

$$(t-1)^{n+1}$$
span $\{1, t^{-1}, t^{-2}, \dots, t^{-(n-1)}\},\$

a subspace of V_{n+1} . The polynomials of the second kind are polynomials of the form

$$t^{-2k}(t^2-1)^{n+1}-2^nt^{-k}(t-1)^{n+1}$$
, for $k=2,\ldots,n-1$.

Their second term is a scalar multiple of a generator of V_{n+1} , while their first term is an (s=2)-dilation of the same generator, so all polynomials of the second kind also belong to V_{n+1} . We conclude that $r_{n+1} \in V_{n+1}$ in this case as well. \square

The limit $D_{n,0}=D_{n,0}f(c)$ we had at the beginning is called the n-th Riemann derivative of f at c, and $D_{n,n/2}f(c)$ is the n-th symmetric Riemann derivative. Both of these derivatives were invented by Riemann in the mid 1800s, see [12]. The Peano derivatives were invented by Peano in [11] in 1892, and then developed greatly by de la Vallée Poussin in [7]. For this reason, they are often referred to as de la Vallée Poussin derivatives. Closed form formulas for the differences $R_n(h)$ are deduced in [4]; they involve the Gaussian or q-binomial coefficients, so they are q-analogues of the Riemann differences. Other q-analogues of Riemann differences are found in [1] and [5]. Article [6] sheds some light towards extending the GGR conjecture for n=1.

REFERENCES

- 1. J. M. Ash and S. Catoiu, Quantum symmetric L^p derivatives, Trans. Amer. Math. Soc. 360 (2008), 959–987.
- J. M. Ash and S. Catoiu, Characterizing Peano and symmetric derivatives and the GGR conjecture's solution, Int. Math. Res. Notices (IMRN), to appear. (29 pp.). https://doi.org/10.1093/imrn/rnaa364
- 3. J. M. Ash, S. Catoiu and H. Fejzić, Two pointwise characterizations of the Peano derivative, preprint.
- 4. J. M. Ash, S. Catoiu and H. Fejzić, Gaussian Riemann derivatives, preprint.
- J. M. Ash, S. Catoiu, and R. Ríos-Collantes-de-Terán, On the nth quantum derivative, J. London Math. Soc. 66 (2002), 114–130.
- S. Catoiu, A differentiability criterion for continuous functions, Monatsh. Math., to appear. https://doi.org/10.1007/s00605-021-01574-0
- Ch. J. de la Vallée Poussin, Sur l'approximation des fonctions d'une variable réelle et de leurs dérivées par les pôlynomes et les suites limitées de Fourier, Bull. Acad. Royale Belgique (1908), 193–254.
- I. Ginchev, A. Guerraggio, and M. Rocca, Equivalence of Peano and Riemann derivatives. Generalized convexity and optimization for economic and financial decisions (Verona, 1998), 169–178, Pitagora, Bologna, 1999.
- I. Ginchev, M. Rocca, On Peano and Riemann derivatives, Rend. Circ. Mat. Palermo (2) 49 (2000), no. 3, 463–480.
- J. Marcinkiewicz and A. Zygmund, On the differentiability of functions and summability of trigonometric series, Fund. Math. 26 (1936), 1–43.
- 11. G. Peano, Sulla formula di Taylor, Atti Acad. Sci. Torino 27 (1891-92), 40-46.
- 12. B. Riemann, *Ubër die Darstellbarkeit einer Funktion durch eine trigonometrische Reihe*, Ges. Werke, 2. Aufl., pp. 227–271. Leipzig, 1892.

Department of Mathematics, DePaul University, Chicago, IL 60614

Email address: mash@depaul.edu

DEPARTMENT OF MATHEMATICS, DEPAUL UNIVERSITY, CHICAGO, IL 60614

Email address: scatoiu@depaul.edu

Department of Mathematics, California State University, San Bernardino, CA 92407

Email address: hfejzic@csusb.edu