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Iterated harmonic numbers
J Marshall Ash, Michael A O Ash, Rafael Ash, and Ángel Plaza

Summary The harmonic numbers are the sequence 1, 1 + 1/2, 1 + 1/2 + 1/3, · · · . Their asymptotic differ-
ence from the sequence of the natural logarithm of the positive integers is Euler’s constant gamma. We define a
family of natural generalizations of the harmonic numbers. The jth iterated harmonic numbers are a sequence of
rational numbers that nests the previous sequences and relates in a similar way to the sequence of the jth iterate of
the natural logarithm of positive integers. The analogues of several well-known properties of the harmonic num-
bers also hold for the iterated harmonic numbers, including a generalization of Euler’s constant. We reproduce
the pretty proof that only the first harmonic number is an integer and, providing some numeric evidence for the
cases j = 2 and j = 3, conjecture that the same result holds for all iterated harmonic numbers.

Introduction: definitions and properties

The harmonic numbers are the sequence
{
1, 1 + 1

2 , 1 +
1
2 + 1

3 , · · ·
}

; we denote them as
h1 (n) :=

∑n
k=1

1
k

. Some of their properties are:

1. They are positive rational numbers, starting at 1 and monotonically increasing,
2. They are the partial sums of the divergent infinite series

∑∞
k=1

1
k

,
3. They have a direct connection with the natural logarithm, in particular there is a

constant γ so that as n→∞, h1 (n)− lnn→ γ,
4. They are “close” to very similar, but convergent, sequences;

∑∞
k=1

1
k diverges, but,

for any fixed small positive number ε,
∑∞
k=1

1
k1+ε

converges,
5. The only harmonic number that is an integer is 1.

We define the iterated harmonic numbers of order j, hj(n), for j = 2, 3, · · · . First
define h2 (n) :=

∑n
k=1

1
kh1(k)

, then h3 (n) :=
∑n

k=1
1

kh1(k)h2(k)
, and so on. Thus, for

every integer j ≥ 2,

hj (n) :=
n∑
k=1

1

kh1 (k)h2 (k) · · ·hj−1 (k)
.

To motivate these definitions, start with lnx =
∫ x
1
dt
t
. Second, let u = ln t, du =

dt
t

to see that
∫ x
e

1
t ln t

dt =
∫ ln x

1
du
u

= ln lnx− 0, so that ln2 x := ln lnx =
∫ x
e

dt
t ln t

.*

Third, let u = ln2 t, du = dt
t ln t

,so that
∫ x
ee

dt
t ln t ln2 t

=
∫ ln2 x

1
du
u

= ln (ln2 x) =:

ln3 x. By now it is clear that each hj is like the corresponding iterated logarithm lnj
in the sense that given appropriate conditions on the function f , the sum

∑n
k=1 f (k)

is like the integral
∫ n
a
f (x) dx.

We define p-adic valuations. We use 2-adic valuations to prove Property 5.
Then we study empirically the conjecture that Property 5 extends to hj for every

j. At this point we will have seen from the previously presented proof of Property
5 that for all n ≥ 2, h1(n) has an even denominator, so that it cannot be an integer.
We only present numerical data for the cases of j = 3 and j = 2. Our computations
indicate that this even denominator property essentially holds for h3. The case of h2

*This notation for the second iteration of the natural logarithm should not be confused with log2 x, the base
2 logarithm of x. Only natural logarithms will be iterated in this work.
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is different, but our evidence, presented in Table 1, suggests a different argument can
be found here also.

Now we define for each positive integer j two analogues of Euler’s constant γ. We
define γ′j to be a constant satisfying

∑
a<k≤n

1

k ln k ln2 k · · · lnj−1 k
− lnj n = γ′j + o (1) . (1)

Here lnj x denotes the jth iterated logarithm: ln1 x = lnx, and lnj x = ln(lnj−1 x)
for j = 2, 3, . . . . (Pick a = a (j) so large that lnj−1 (a) ≥ 0; for example, if
j ≥ 3, one may choose a to be j−2e, where the constants je are defined recur-
sively by 0e := 1 and j+1e := e(e

j) for j = 1, 2, . . . . This choice is natural, since∫ x
j−2e

dt
t ln t··· lnj−1 t

= lnj x.) The sum on the left side of equation (1) will be called
lj (n) and is an analogue of hj (n). Note that l1 (n) = h1 (n).

We also define γj to be a constant satisfying

hj (n)− lnj n =
n∑
k=1

1

kh1 (k)h2 (k) · · ·hj−1 (k)
− lnj n = γj + o (1) . (2)

Also observe that γ′1 = γ1 = γ. Estimates like equation (1) for iterated logarithms are
already known, with much better estimates for the error term than o (1). After Table 1
this fact will be used as a lemma assisting the proof of a sharper version of equation (2)
which will prove the existence of γj for all j ≥ 2.

The motivation for Property 4 and its generalization is explained in [3]. The infinite
series

∑
a<k<∞

1
k ln k ln2 k··· lnj−1 k

is divergent since by relation (1) its partial sums
increase boundlessly. However, for each ε > 0, the series∑

a<k<∞

1

k ln k ln2 k · · · lnj−2 k (lnj−1 k)
1+ε

converges. Similar results also hold for iterated harmonic numbers. The infinite series
∞∑
k=1

1

kh1 (k)h2 (k) · · ·hj−1 (k)

is divergent by relation (2). The integral test shows that for each ε > 0, the series
∞∑
k=1

1

kh1 (k)h2 (k) · · ·hj−2 (k) (hj−1 (k))
1+ε

converges. These pairs of infinite series are “closer” to each other as j increases in the
sense that the divergent one diverges more slowly while the other one converges more
slowly. The logarithmic examples do not have rational partial sums, but the divergent
harmonic sums do. If we set ε = 1, then the convergent harmonic series also have
rational partial sums.

The case j = 2, where
∑∞
k=1

1
kh1(k)

being divergent is contrasted with
∑∞
k=1

1
k(h1(k))

1+ε

being convergent appears in [4]. (What we denote as h1 (n) is written as hn in [4].)
Working with

∑ 1
k(h1(k))

led us to the idea of defining jth iterated harmonic numbers.
As our last topic, we compare our iterated harmonic numbers to the hyperharmonic

numbers of JH Conway and R Guy, a different set of sequence generalizing the har-
monic numbers.
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The p-adic valuation and a proof of Property 5

Fix a prime number p. We define the p-adic valuation νp on the field of rational num-
bers by νp(0) = −∞ and for all other rationals a/b we define νp to be r where
a/b = pr · a′/b′ with a′, b′ coprime to p.* Examples:

ν2(8) = 3, ν2(1/8) = ν2(−5/8) = ν2(−5/56) = ν2(10/112) = −3.

Notice in particular that the p-valuation of a fraction remains the same whether or
not that fraction is reduced. We will make use of an important equality satisfied by
every νp. It asserts that

νp(x+ y) = min {νp(x), νp(y)} when νp(x) 6= νp(y). (3)

We generalize this to

νp(x1 + x2 + · · ·+ xn) = min {νp(x1), · · · , νp(xn)}
when the minimum occurs exactly once. (4)

To see why this is true, we write out the n = 3 case. Without loss of generality, suppose
xi = pri ai

bi
, i = 1, 2, 3 with all ai, bi coprime with p, r2 > r1, and r3 > r1. Compute

x1 + x2 + x3 = pr1
a1
b1

+ pr2
a2
b2

+ pr3
a3
b3

=

pr1
a1b2b3 + pr2−r1a2b1b3 + pr3−r1a3b1b2

b1b2b3

The denominator is coprime to p. The numerator is congruent mod p to a1b2b3 and
hence is also coprime with p. So νp(x1 + x2 + x3) = r1.

Property 5 was proved by Theisinger in 1915 [11]. Conway and Guy present his
proof thus: Look at the term [of h1(n)] with the highest power of 2 in it. It has
nothing with which to pair. So h1(2), h1(3), h1(4), · · · have odd numerator and even
denominator. This proof is correct but insufficiently explicit. We now give our
version using the language of valuations.

Note that a rational number with a negative 2-valuation cannot be an integer. More
precisely, if a rational number a/b is such that ν2(a/b) = −r < 0 then b is divisible
by the even integer 2r. Thus the absolute value of the denominator remains at least 2,
even after writing a/b in reduced form, and a/b is not an integer. So to prove Property
5, we need only show ν2(h1(n)) < 0 for all n ≥ 2.

Fix n ≥ 2. Choose r maximal so that 2r ≤ n. We note that ν2( 1
2r

) = −r. Also by
equation (4),

ν2(h1(n)) = ν2(1 +
1

2
+

1

3
+ · · ·+ 1

2r
+ · · ·+ 1

n
) = −r.

This holds since for each positive integer k = 2ρσ with ρ an integer and σ an odd
integer such that k ∈ [1, n] and k 6= 2r, the definition of r forces ρ to be less than r.
So ν2( 1

k
) = −ρ > −r; the unique term where the minimum −r occurs is 1

2r
.

*The literature splits on defining valuation either: as the p-adic norm, |pr · a′/b′|p = p−r except |0|p = 0;
or as the convention we follow, νp(pr · a′/b′) = r except νp(0) = −∞. The norm definition satisfies the
triangle inequality, |x+ y|p ≤ |x|p + |y|p, and the strong triangle inequality, |x+ y|p ≤ max(|x|p , |y|p).
The equality case of the strong triangle inequality is equivalent to equation (3).
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We also provide Kürschák’s simple and elegant proof that invokes a number theory
result.[8] Bertrand’s Postulate, i.e., there is always a prime p in (bn/2c, n], implies
that h1(n) =

∑n
1

1
k

= 1 + 1
2

+ · · ·+ 1
bn/2c + · · ·+ 1

p
+ · · ·+ 1

n
= 1

p
+ a

b
(with a, b

both integers) is never an integer. Every denominator in the sum, except p itself, is
relatively prime to p. (Other than p, the smallest number not relatively prime to p is
2p, which is too large to be among the denominators ending at n.) The denominator
b of the sum of fractions with denominators relatively prime to p is also relatively
prime to p. Thus h1(n) = 1

p
+ a

b
is not an integer, since marching from 1/p in a steps

of length 1/b cannot reach an integer. To formalize this, change scale by multiplying
everything by b. We are now marching from b/p to bh1(n) in a steps of length 1. Since
b and p are relatively prime, b/p is not an integer, so neither is its translation bh1(n),
so neither is h1(n).

[1] provides a proof of Bertrand’s Postulate. The Theisinger proof of property 5
requires only arithmetic and does not rely on Bertrand’s Postulate.

A conjecture for j-times iterated harmonic numbers

From the definitions, it is immediate that for each j ≥ 1, there holds the identity

hj (1) = 1.

Conjecture 1. For each integer j ≥ 2, the only jth iterated harmonic number that is
an integer is hj (1) .

Recall that when j = 1, the statement of the conjecture becomes Property 5 that
was mentioned and proved in the introduction.

In computing numerical evidence, we restrict interest to the cases of j = 2
and j = 3. Write every rational number hj (n), j = 2, 3; n = 2, 3, . . . as a reduced
ratio of positive integers, nj(n)

dj(n)
. It suffices to prove that each such denominator d =

dj (n) is at least 2. All the evidence we have accumulated points to the conjecture’s
truth. The rough argument is that the denominators of both h2 (n) and h3 (n) seem
to grow steadily larger as n increases, whereas the failure of the conjecture would
have a denominator of 1 occurring. The proof for the h1 case involved showing that all
denominators were even and hence not equal to 1. The evidence for h3 does not rule out
such a proof. The evidence for h2 rules out an even denominator proof. Nevertheless it
suggests many other possible proofs. If positive integer d is divisible by prime p then
the p-valuation of d is max {ν : pν |d}. The p-valuation of d is zero when p does not
divide d. Notice that the proof of Property 5. given above shows that the 2-valuation
of the denominator of h1 (n) is blog2 nc.

Numerical evidence when j = 3 : We computed the 2-valuation of the (reduced)
denominator of h3 (n) for n = 1 to 2, 000. For n = 1, the 2-valuation is, of course, 0.
For n = 2 to n = 11 the 2-valuation is 2. For n = 12, the 2-valuation is, shock-
ingly, 0. (Nonetheless, h3(12) is not an integer.) From n = 13 through n = 31 the
2-valuation is 3. From n = 32 to n = 2, 000, the 2-valuation is always equal to 6.

Numerical evidence when j = 2 : We attempted to calculate the p-valuation for
the denominator of h2 (n) for n = 1 to n = 40, 000 for all 46 primes less than 200.
We ceased computation when we hit computer system limits at n = 27, 477. The
2-valuation is always 0. The 3-valuation is 1 from n = 2 to n = 53. The 3-valuation
then alternates irregularly between 0 and 1. The left panel of Table shows the variation
in the 3-valuation of h2 (n) up to n = 27, 477.
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3-valuation of denom(h2 (n)) 97-valuation of denom(h2 (n))

n 3-valuation n 97-valuation
1 0 1–10 0

2–53 1 11–95 1
54–62 0 96–9,322 2
63–65 1 9,323–9,407 1

66–161 0 9,408–27,477 0
162–188 1
189–197 0

198–1,457 1
1,458–1,700 0
1,701–1,781 1
1,782–4,373 0
4,372–5,102 1
5,103–5,345 0

5,346–27,477 1
TABLE 1: Selected p-valuations of the denominator of h2 (n). These data were calcu-
lated using PARI/GP [10].

The 5-valuation is 2 from n = 4 to n = 2, 499. The 5-valuation is then 0 from
n = 2, 500 to n = 2, 999. The 5-valuation is then 1 from n = 3, 000 to n = 12, 499,
and then the 5-valuation remains at 2 through the end of the run (at n = 27, 477).

Of the 43 remaining primes less than 200, all of them enter with non-zero p-
valuations as n grows. For some primes the first non-zero valuation is 1 and in other
cases the first non-zero p-valuation is 2. For example, up to n = 6, the 7-valuation
is 0; beginning with n = 6, the 7-valuation is 2 through the end of the run. Only the
11-valuation exceeds 2 in the run; at n = 848, the 11-valuation of h2 (n) becomes 3
and remains 3 through the end of the run.

With a single exception among the primes between 7 and 200, once the prime ac-
quires a non-zero p-valuation, the p-valuation does not decline. At n = 9, 323, the
97-valuation returns to 1 (from 2), and beginning at n = 9, 408, the 97-valuation
falls to 0 where it remains through the remainder of the run. Thus, from n = 9, 408
through the end of the run (n = 27, 477), 2 and 97 are the only primes less than 200
for which in the denominator of h2 (n) has a p-valuation of zero. The behavior of the
97-valuation is tabulated in right panel of Table .

Our best guess is that all the odd hj have similar behavior so that the conjecture will
be true for the jth iterated harmonic numbers and provable by showing the 2-valuation
of the denominators to be positive. We also guess that the conjecture will hold for all
the even hj , but that the proof will be quite difficult.

Asymptotic estimates for iterated harmonic numbers

Recall lj (n) was defined just after equation (1) to be equal to
∑
a<k≤n

1
k ln k ln2 k··· lnj−1 k

for an appropriate constant a.

Theorem 2. Notice that l1 (n) = h1 (n) for n ≥ 1. For each integer j ≥ 2, there is
a constant γ′j such that

lj(n)− lnj (n) = γ′j +
1

2n lnn ln2 n · · · lnj−1 n
+O

(
1

n2 lnn ln2 n · · · lnj−1 n

)
. (5)

Proof. The function f (x) = 1
x ln x ln2 x··· lnj−1 x

has antiderivative lnj (x) and satisfies
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f ′′ (n) = O
(

1
n3 lnn ln2 n··· lnj−1 n

)
. Apply the Euler summation formula to f . See exer-

cises 2 and 6 of section 15.23 of [2].

The finding in Theorem 2 that the error in relation (1) is smaller thanO( 1
n2

) implies
that the left side of relation (1) well approximates the γ′j . We now show that there are
much larger errors when approximating the γj from relation (2), so large that the γj
cannot be effectively calculated nor can the approximation be improved. We write
f (n) � g (n) to mean that there are two positive constants a and b so that af (n) <
g (n) < bf (n); in words, f is of the same order as g [7, page 7].

Theorem 3. It is well known that

h1 (n)− lnn− γ � 1

n
(6)

where γ = .577 . . . is Euler’s constant. For each integer j ≥ 2, hj (n) tends to ∞
at the same rate as the jth iterated logarithm. More quantitatively, for every j =
2, 3, . . . , there are constant γj such that

hj (n)− lnj n− γj �
1

lnj−1 n
. (7)

On the positive side, this theorem establishes the existence of the γj for all j =
2, 3, · · · . But on the negative side, this theorem proves that the natural extension of
Property 4 converges so slowly that it can not provide an efficient way to compute the
numerical value of γj when j ≥ 2.

We defer its proof to an appendix to improve the flow of of the paper.

The hyperharmonic numbers of Conway and Guy

In The Book of Numbers, Conway and Guy generalize the harmonic numbers to the
hyperharmonic numbers [5]. In their notation, the sequence of harmonic numbers are
designated as H(1)

n , the sequence of second harmonics is defined by H(2)
n = H

(1)
1 +

H
(1)
2 + · · · + H(1)

n , the sequence of third harmonics is defined by H(3)
n = H

(2)
1 +

H
(2)
2 + · · ·+H(2)

n , and so on.
The Book of Numbers just displays the hyperharmonic numbers without motivating

their existence. A natural motivation comes from summability of infinite series. We
look at Ernest Cesàro’s sequence of summation methods (C, k), k = 0, 1, 2, . . . . (See
section 5.4 of [6].) Let Σ =

∑∞
i=1 ai be an infinite series. Let A(1)

n be the sequence of
partial sums of the series, let A(2)

n = A
(1)
1 + A

(1)
2 + · · · + A(1)

n , and A(3)
n = A

(2)
1 +

A
(2)
2 + · · ·+A(2)

n , and so on.
Obviously the hyperharmonic number H(k)

n is exactly the number A(k)
n for the spe-

cial case where the original series is specialized to ai = 1
i

for all i. However it seems
like the motivation goes no deeper. The next paragraph sketches how the A(k)

n fit into
summability theory.

When limn→∞A
(1)
n = A(1), say that Σ is (C, 0) summable to A(1), so (C, 0)

summability is ordinary convergence. When limn→∞
A

(2)
n
n

= A(2), say that Σ is (C, 1)

summable to A(2). When limn→∞
A

(3)
n

(n+1
2 )

= A(3), say that Σ is (C, 2) summable

to A(3). For i < j,A(i) exists implies A(j) exists and A(j) = A(i). The series 1 −
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1 + 1 − 1 + · · · is not (C, 0) summable, but is (C, 1) summable to 1
2
. The series

1− 2 + 3− 4 + · · · is not (C, 1) summable, but is (C, 2) summable to 1
4
.

During the twenty year period after the creation of the hyperharmonic numbers, a
lot of evidence, both numerical and theoretical, was piling up in support of the con-
jecture that 1 was the only hyperharmonic integer. However, in 2020, some very large
hyperharmonic integers were revealed, the smallest of which is H(64(22659−1)+32)

33 [9].

Musings. For each j = 2, 3, · · · , our iterated harmonic numbers hj(·) and the
Conway–Guy hyperharmonic numbers H(j)

· are sequences of rational numbers tend-
ing to infinity. When j = 1, both generalizations coincide with the harmonic numbers
and hence contain no integers larger than 1. The most naive perspective suggests that
the very slowly increasing sequences hj are more likely to intersect the integers than
are the much more rapidly increasing H(j); and that this effect increases with increas-
ing j. Both our computations and Sertbas’ example indicate that this perspective is far
too simplistic.

It is easy to see that for each j, the sequence {hj(n)} is increasing. It might be fun
to prove that each sequences is also convex, i.e., hj(n)− 2hj(n+ 1) + hj(n+ 2) >
0 for n = 1, 2, · · · . This is easy for the harmonic numbers, and we also confirmed the
j = 2 case.

Comparing Theorems 2 and 3 shows that the γ′j can easily be estimated to several
decimal places, while the γj cannot. That is, although hj − γj is indeed an estimator
for the jth iterated logarithm, it is not nearly as good as lj − γ′j. The hj are rational,
but they do not give practical rational approximations for iterated logarithms. Even for
just γ2 and γ3, it would probably require a new idea to find numerical values to two
significant figures.

With respect to the main conjecture, we have a feeling that the odd iteration cases
all involve the 2-valuations and may be more like the j = 1 classical case and the even
iteration cases may all be similar to the j = 2 case. In particular, j = 3 may be the
easiest of all the open cases.

Here is an infinite list of very difficult open questions: are all the γj and γ′j tran-
scendental, or at least irrational? This is a very well known open question when j = 1.
In this case γ1 = γ′1 = γ, where γ = .577 . . . is Euler’s constant.

We have not found any direct generalizations of the harmonic numbers other than
the Conway-Guy hyperharmonic numbers and our own iterated harmonic numbers. It
would be interesting to see if there have been other generalizations. One place to look
could be among various generalizations of Euler’s constant γ associated with Stieltjes.

Appendix. The proof of Theorem 3.

Proof. We illustrate an inductive proof by working out the j = 4 step. It might be a
nice exercise for the reader to do the next step, j = 5, or even to write out the general
inductive step. This proof contains all the ideas necessary for the general inductive
step. We assume that relation (5) holds for j = 2 and j = 3. We estimate

h4 (n)− l4 (n) =
n∑
k=a

1

kh1 (k)h2 (k)h3 (k)
− 1

k ln k ln2 k ln3 k
,

where a = deee = 16 is the smallest positive integer for which ln3 is positive. We
subtract and add successively 1

kh1(k)h2(k) ln3 k
and 1

kh1(k) ln2 k ln3 k
to the kth summand,
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getting

n∑
k=a


1

kh1 (k)h2 (k)h3 (k)
− 1

kh1 (k)h2 (k) ln3 k︸ ︷︷ ︸
I

+
1

kh1 (k)h2 (k) ln3 k
− 1

kh1 (k) ln2 k ln3 k︸ ︷︷ ︸
II

+
1

kh1 (k) ln2 k ln3 k
− 1

k ln k ln2 k ln3 k︸ ︷︷ ︸
III


Use relation (7) with j = 3 to decompose I into IA and IB ,

I =
n∑
k=a

ln3 k − h3 (k)

kh (k)h2 (k)h3 (k) ln3 k

=
n∑
k=a

γ3
kh (k)h2 (k)h3 (k) ln3 k︸ ︷︷ ︸

IA

+
n∑
k=a

O

(
1

kh (k)h2 (k)h3 (k) ln3 k ln2 k

)
︸ ︷︷ ︸

IB

.

It follows from relation (6) that h1 (k) � ln k. It also holds that h2 (k) � ln2 k,
and h3 (k) � ln3 k, so that from

∫∞
x

dt
t ln t ln2 t ln

2
3 t

= 1
ln3 x

and the integral test we
may write IA as CA − RA,where CA is the value of the entire infinite sum from a
to ∞ and RA =

∑∞
k=n+1

1
k ln k ln2 k ln23 k

� 1
ln3(n+1)

� 1
ln3 n

. The argument for IB
is the same, but now the relevant integral is

∫∞
x

dt

(ln2 t)(t ln t ln2 t ln23 t)
< 1

ln2 x ln3 x
, so

IB = CB − RB where RB = O
(

1
ln2 n ln3 n

)
is of smaller order than RA. Thus I −

(CA + CB) � 1
ln3 n

.

Similar calculations show that there are constants CII and CIII and so that II =
CII −RII and III = CIII −RIII with both remainders of smaller order than 1

ln3 n
.

We have shown that h4 (n) − l4 (n) − (CA + CB + CII + CIII) � 1
ln3 n

. By The-

orem 2, l4(n)− ln4 (n) = γ′4 +O
(

1
n lnn ln2 n ln3 n

)
. So defining γ4 = CA + CB +

CII + CIII , we have shown that h4 (n)− ln4 n− γ4 � 1
ln3 n

.
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