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ABSTRACT. For a real parameter q, q 6= 0,±1, we introduce: two q-analogues of the nth
Riemann derivative Dnf(x) of f at x, the nth Gaussian Riemann derivatives qDnf(x)

and qD̄nf(x) are the nth generalized Riemann derivatives based at x, x+h, x+ qh, x+
q2h, . . . , x+qn−1h and x+h, x+qh, x+q2h, . . . , x+qnh; and one analog of the nth
symmetric Riemann derivative Ds

nf(x), the nth Gaussian symmetric Riemann derivative
qDs

nf(x) is the nth generalized Riemann derivative based at (x), x ± h, x ± qh, x ±
q2h, . . . , x ± qm−1h, where m = b(n + 1)/2c and (x) means that x is taken only
for n even. We provide the exact expressions for their associated differences in terms of
Gaussian binomial coefficients; we show that f has n Peano derivatives at x if and only if
it has n Gaussian Riemann derivatives at x, and f has n symmetric Peano derivatives at
x if and only if it has n Gaussian symmetric Riemann derivatives at x; and we conjecture
that these two results are false for every larger classes of generalized Riemann derivatives,
thereby extending two recent conjectures by Ash and Catoiu, the second of which we
update by answering it in a few cases.

The first family of generalized derivatives was invented by Riemann in [R] (1892). For
a positive integer n, the nth Riemann derivative of a function f at x is defined by the limit

Dnf(x) = lim
h→0

1

hn

n∑
k=0

(−1)k
(
n

k

)
f(x+ (n− k)h).

The above sum is denoted by ∆n(x, h; f) and called the nth Riemann difference of f at x
and h. The sequence of Riemann differences satisfies the recursive relations:

∆1(x, h; f) = f(x+ h)− f(x),

∆n(x, h; f) = ∆n−1(x+ h, h; f)−∆n−1(x, h; f), (n ≥ 2).

The Riemann derivatives were generalized by Denjoy in [D] (1935). An nth general-
ized Riemann derivative of a function f at x is defined by the following limit:

DAf(x) = lim
h→0

1

hn

∑̀
k=0

Akf(x+ akh).

The above sum is denoted by ∆A(x, h; f) and called an nth generalized Riemann differ-
ence. Its data vector A = {A0, . . . , A`; a0, . . . , a`} for which the Ak are non-zero and the
ak are distinct is required to satisfy the nth Vandermonde relations

∑`
k=0 Aka

j
k = δj,n · n!,

for j = 0, 1, . . . , n. The points x + a0h, . . . , x + a`h are called base points of either the
derivative or the difference. The Vandermonde linear system is consistent precisely when
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` ≥ n, and has a unique solution (A0, . . . , A`) precisely when ` = n. In this case, the gen-
eralized Riemann derivative is considered to be without excess. Unless otherwise stated,
all generalized Riemann derivatives in this paper will be without excess.

More examples of generalized Riemann derivatives include the nth symmetric Rie-
mann derivative Ds

nf(x) whose associated nth symmetric Riemann difference,

∆s
n(x, h; f) =

n∑
k=0

(−1)k
(
n

k

)
f
(
x+

(n
2
− k
)
h
)
,

satisfies the recursive relations:
∆s

1(x, h; f) = f(x+ h/2)− f(x− h/2),

∆s
n(x, h; f) = ∆s

n−1(x+ h/2, h; f)−∆s
n−1(x− h/2, h; f), (n ≥ 2).

In general, an nth generalized Riemann difference ∆A(x, h; f) is symmetric if it satisfies
∆A(x,−h; f) = (−1)n∆A(x, h; f), and is even or odd if it is symmetric of even or odd or-
der n. The symmetry of a nth generalized Riemann derivative without excess is equivalent
to the symmetry of the set {a0, . . . , an} relative to the origin.

More generalized Riemann differences are obtained by scaling. A scale by r of an nth
generalized Riemann difference ∆A(x, h; f), whereA = {Ak; ak}, is the nth generalized
Riemann difference ∆B(x, h; f), where B = {Bk = r−nAk; bk = rak}. Moreover, f is
A-differentiable at x if and only if f is B-differentiable at x and DAf(x) = DBf(x).

The results in this paper come in two different flavors. One flavor comes from results
that are more algebraic and combinatorial:

We introduce three new kinds of nth generalized Riemann derivatives, all depending
on a real parameter q, with q 6= 0,±1. The first two kinds are q-analogues of the nth
Riemann derivativeDnf(x) and we call them together nth Gaussian Riemann derivatives.
These are the nth derivatives qDnf(x) based at x, x+h, x+qh, x+q2h, . . . , x+qn−1h and
qD̄nf(x) based at x+ h, x+ qh, . . . , x+ qnh. The third, or the nth Gaussian symmetric
Riemann derivative qD

s
nf(x), is a q-analogue of the nth symmetric Riemann derivative

Ds
nf(x) and is based at (x), x ± h, x ± qh, x ± q2h, . . . , x ± qm−1h, where m = b(n +

1)/2c and (x) means that x is taken only for n even. In section 1 we provide the explicit
expressions for their associated differences in terms of the Gaussian binomial coefficients
and determine the recursive relations for each of these three classes of differences.

The other flavor comes from results, which are included in sections 2 and 3, and are
more like classical analysis. These are about equivalences and implications between gen-
eralized Riemann derivatives and Peano derivatives. We describe them next.

The second family of generalized derivatives was introduced by Peano in [P] (1892)
and further developed by de la Vallée Poussin in [dlVP] (1908). A function f has n Peano
derivatives at x if there exist numbers f(0)(x), f(1)(x), . . . f(n)(x) such that

f(x+ h) = f(0)(x) + f(1)(x)h+ f(2)(x)
h2

2!
+ · · ·+ f(n)(x)

hn

n!
+ o(hn),

as h approaches zero. The number f(n)(x) is the nth Peano derivative of f at x. Its
existence assumes the existence of every lower order Peano derivative of f at x.

A function f is said to have n symmetric Peano derivatives at x if there exist numbers
fs(0)(x), fs(1)(x), . . . , fs(n)(x) such that

1

2
{f(x+ h) + (−1)nf(x− h)} = fs(0)(x) + fs(1)(x)h+ · · ·+ fs(n)(x)

hn

n!
+ o(hn),

as h approaches zero. The number fs(n)(x) is the nth symmetric Peano derivative of f
at x. Replacing h with −h in the above displayed equation yields fs(n−1)(x) = fs(n−3)(x) =
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fs(n−5)(x) = · · · = 0. In this way, if f has n symmetric Peano derivatives at x, then f has
symmetric Peano derivatives at x of orders n− 2, n− 4, and so on.

The following three additional simple facts about Peano and generalized Riemann
derivatives are a motivation for the definitions below:

• The existence of the nth Peano derivative f(n)(x) implies the existence of every
nth generalized Riemann derivative DAf(x) and f(n)(x) = DAf(x).
• The existence of an nth generalized Riemann derivative does not enjoy the nice

property of forcing the existence of lower order derivatives.
• A chain of generalized Riemann derivatives, one for each order i, i ≤ n, existing

is not enough to force the nth Peano derivative to exist.

We illustrate the last bullet property by looking at the simple example of the func-
tion g(x) = xn sgnx at x = 0. Every chain DA0

, DA1
, DA2

, . . . , DAn−1
, Ds

n where
DA0

f(x) = f(0)(x), each DAi
is an arbitrary ith generalized Riemann derivative, for

1 ≤ i ≤ n − 1, and Ds
n is the nth symmetric Riemann derivative, exists for g at 0, but g

does not have an nth Peano derivative at 0. Proof: Since g(h) = o(hn−1), DA0g(0) = 0,
and for 1 ≤ i ≤ n − 1, g(i)(0) = 0 and hence DAig(0) = 0 also. Since the parity of
g is opposite to the parity of n, Ds

ng(0) = 0. Finally, g(n)(0) = limh→0R(h), where
R(h) = n!g(h)/hn, does not exist since limh→0+ R(h) = n! but limh→0− R(h) = −n!.

To make the statement of the last bullet item more precise, we start with a definition.

DEFINITION. (i) A chain of DA0 , . . . , DAn of generalized Riemann differentiations,
with each DAi of order i, is a Peano-chain for f at x, if

all DA0
f(x), . . . , DAn

f(x) exist⇐⇒ f(n)(x) exists.

Fix n and let Γ be a class of generalized Riemann differentiations of orders up to n.

(ii) A function f has n derivatives in Γ at x, if there exist DA0 , . . . , DAn ∈ Γ, with
each DAi of order i, such that DAif(x) exists for each i.

(iii) Γ is a Peano-class at x if, for all f , f has n derivatives in Γ at x⇐⇒ f(n)(x) ex-
ists. This means that each chain of n derivatives f has in Γ at x is a Peano-chain.

The above example implies that the class of all generalized Riemann derivatives of
orders up to n is not a Peano-class. Is there any class of generalized Riemann derivatives
that is a Peano-class? The answer is: Yes, up till now there has been only one known
Peano-class, namely the single Peano-chain Γ2 = {2Dk | k = 0, . . . , n} highlighted in
[ACF, Corollary MZ]. If Γ′ and Γ′′ are two Peano-classes, then Γ′ ∪ Γ′′ is such a class.
As a consequence, the union Γ of all Peano-classes of generalized Riemann derivatives
of orders up to n is the largest such class. This class is maximal in the sense that every
other Peano-class is contained in it or, equivalently, any strictly larger class of generalized
Riemann derivatives is not a Peano-class.

The same implications, discussion, definitions and results apply to the symmetric case.
In particular, there is only one known symmetric Peano-class of symmetric generalized
Riemann derivatives, namely the class Γs

2 = {2Ds
k | k = n, n− 2, . . .} obtained in [AC2,

Corollary 2.3], and there is the largest symmetric Peano-class Γs of symmetric generalized
Riemann derivatives of orders up to n.

Let ΓG = {qDk, qD̄k | q 6= 0,±1, k = 0, . . . , n} be the class of all Gaussian
Riemann derivatives of orders up to n, and let Γs

G = {qDs
k, | q 6= 0,±1, k = 0, . . . , n} be

the class of all Gaussian symmetric Riemann derivatives of orders up to n, where qD0 =

qD̄0 = f(0), qD1 = D1, qDs
0 = fs(0), qD

s
1 = Ds

1, qDs
2 = Ds

2, for all q, q 6= 0,±1.
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The (second) analysis-flavored goal of the paper is to prove that ΓG = Γ and Γs
G =

Γs. We prove the direct inclusion in both of this equalities, and leave the reverse inclusions
as a conjecture. We prove and conjecture the following:

THEOREM A. Fix a non-negative integer n. Then:
(i) The class ΓG of all Gaussian Riemann derivatives of orders up to n is a Peano-

class;
(ii) The class Γs

G of all Gaussian symmetric Riemann derivatives of orders up to n
is a symmetric Peano-class.

CONJECTURE A. Fix a positive integer n. Let Γ, with Γ ) ΓG, be a class of gener-
alized Riemann derivatives and let Γs, with Γs ) Γs

G, be a class of symmetric generalized
Riemann derivatives. Then:

(i) There is a function f such that f has n derivatives in Γ at x, and f has no n
Peano derivatives at x.

(ii) There is a function f such that f has n derivatives in Γs at x, and f has no n
symmetric Peano derivatives at x.

When Conjecture A will be proved, its result combined with the one of Theorem A
will replace the old vague perception that “generalized Rieman derivatives are just more
general than Peano derivatives” with a more exact perception, that “there is a concrete
class of generalized Riemann derivatives whose differentiation is equivalent to the Peano
differentiation, and the differentiation in any larger class is strictly more general than the
Peano differentiation.”

Details. The remaining part of the introduction gives more details on the specific
results in each section.

Section 1. The first section computes explicitly the nth forward and the nth sym-
metric Gaussian Riemann differences in terms of the Gaussian or q-binomial coefficients.
Moreover, we provide recursive algorithms for generating these two kinds of differences.

Let q be a real number, with q 6= 0, ±1, and let n be a positive integer. The quantum
integer n, the quantum n factorial, and the quantum n-choose-k are

[n]q = 1 + q + · · ·+ qn−1, [n]q! = [1]q[2]q · · · [n]q , and
[
n
k

]
q

=
[n]q!

[n− k]q! · [k]q!
,

for k = 0, 1, . . . , n, where [0]q! = 1 and
[
n
k

]
q
= 0 for k > n. Taking the limit as q → 1

in [n]q , [n]q! and
[
n
k

]
q
, respectively leads to n, n! and

(
n
k

)
. The Gaussian or q-binomial

coefficients
[
n
k

]
q

are related to the Gaussian or q-binomial formula,

(1) (a− b)(a− bq)(a− bq2) . . . (a− bqn−1) =

n∑
k=0

(−1)kq(
k
2)
[
n
k

]
q

an−kbk,

whose limit as q → 1 is the classical (Newton’s) binomial formula.

n q∆̃n(x, h; f) λn

1. f(x + h)− f(x) 1
2. f(x + qh)− qf(x + h) + (q − 1)f(x) 2

q2−q

3. f(x + q2h)− q(q + 1)f(x + qh) + q3f(x + h)− (q2 − 1)(q − 1)f(x) 6
(q3−q)(q3−q2)

n q
˜̄∆n(x, h; f) λ̄n

1. f(x + qh)− f(x + h) 1
q−1

2. f(x + q2h)− (q + 1)f(x + qh) + qf(x + h) 2
(q2−1)(q2−q)

3. f(x + q3h)− (q2 + q + 1)f(x + q2h) + (q3 + q2 + q)f(x + qh)− q3f(x + h) 6
(q3−1)(q3−q)(q3−q2)
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n q∆̃s
n(x, h; f) λs

n

1. f(x + h)− f(x− h) 1/2

3. f(x + qh)− qf(x + h) + qf(x− h)− f(x− qh) 3
q3−q

5. f(x + q2h)− q(q2 + 1)f(x + qh) + q4f(x + h)− q4f(x− h)

+q(q2 + 1)f(x− qh)− f(x− q2h)
60

(q5−q)(q5−q3)

2. f(x + h)− 2f(x) + f(x− h) 1

4. f(x + qh)− q2f(x + h) + (q2 − 1)f(x)− q2f(x− h) + f(x− qh) 12
q4−q2

6. f(x + q2h)− q2(q2 + 1)f(x + qh) + q6f(x + h)− 2(q2 − 1)(q4 − 1)f(x)

+q6f(x− h)− q2(q2 + 1)f(x− qh) + f(x− q2h)
360

(q6−q2)(q6−q4)

To get an idea on how quantum integers and Gaussian binomial coefficients are in-
volved in the expression of the nth forward Gaussian Riemann differences q∆n(x, h; f),
based at x, x + h, x + qh, a + q2h, . . . , x + qn−1h, we list the first couple of these differ-
ences. For simplicity, we write q∆n(x, h; f) = λn · q∆̃n(x, h; f), where λn is the dominant
coefficient and q∆̃n(x, h; f) is a monic difference, or the coefficient of the highest term
f(x + qn−1h) is 1, and list only q∆̃n(x, h; f) and λn. A similar list is compiled for the
other (forward) Gaussian Riemann differences q∆̄n(x, h; f) = λ̄n · q ˜̄∆n(x, h; f) with base
points x+ h, x+ qh, a+ q2h, . . . , x+ qnh. A new list consists of the symmetric Gauss-
ian Riemann differences q∆

s
n(x, h; f) = λsn · q∆̃s

n(x, h; f), based at x, x ± h, x ± qh, x ±
q2h, . . . , x ± qm−1h, m = b(n + 1)/2c, which is divided into two halves: one for the odd
differences, and one for the even differences. All these formulas were obtained by solving
the Vandermonde system of linear equations for each difference. The exact expressions for
q∆n(x, h; f), q∆̄n(x, h; f), and q∆s

n(x, h; f), which involve q-binomial coefficients, are
given in Lemmas 1.1-1.4. Recursive formulas for these differences are given in (7), (9),
and (13). All these and more make the subject of section 1.

Before describing the next section’s results, note that the formulas in the first half of
Table 1 resemble the formulas in the first half of Table 2, and the formulas in the second
half of Table 1 resemble the formulas in the second half of Table 2. In this way, it makes
sense to have two q-analogues of the nth forward Riemann difference for each n, so that
the Gaussian symmetric case is a symmetric analogue of the (forward) Gaussian case.

Section 2. We prove the following Theorem B, an equivalent simplified version of
Theorem A. In the same way, Conjecture A simplifies as the following Conjecture B:

THEOREM B. Let q be a real number with q 6= 0,±1, and let n be a positive integer.
Then for each function f and point x,

(i) both f(n−1)(x) and one of qDnf(x) or qD̄nf(x) exist ⇐⇒ f(n)(x) exists.
(ii) both fs(n−2)(x) and qD

s
nf(x) exists ⇐⇒ fs(n)(x) exists.

CONJECTURE B. Fix a positive integer n and let DA be an nth generalized Riemann
differentiation without excess. Then:

(i) If DA is not Gaussian, then for all f and x,

both f(n−1)(x) and DAf(x) exist 6=⇒ f(n)(x) exists.

(ii) If n ≥ 3 and DA is symmetric but not Gaussian symmetric, then for all f and x,

both fs(n−2)(x) and DAf(x) exists 6=⇒ fs(n)(x) exists.

When n = 1, part (ii) of Theorem B is still valid by ignoring the term fs(n−2)(x) that
does not make sense. Part (i) of Conjecture B is shown to be true in Proposition 2.5 for n =
1, and in Proposition 2.6 for n = 2, leaving it open for n ≥ 3. Part (ii) is easily proved
false for n = 1 and 2, and is proved true for n = 3 and 4 in Proposition 2.7, leav-
ing it open for n ≥ 5.
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Section 3. Conjecture B is more general than the following conjecture on Peano and
Riemann derivatives, the two oldest and most important generalized derivatives:

CONJECTURE C ([AC2]). For all functions f and points x,
(i) When n ≥ 3, f(n−1)(x) and Dnf(x) exist 6=⇒ f(n)(x) exists.
(ii) When n ≥ 5, fs(n−2)(x) and Ds

nf(x) exist 6=⇒ fs(n)(x) exists.

Both parts of this conjecture were first formally stated for n ≥ 3 in [AC2] as Conjec-
tures 4.2 and 4.1. Part (i) of Conjecture C was proved for n = 3 in [ACF, Theorem 1(ii)]
via a clever example that does not extend to higher n; we will not be able to add anything
more to it here. In section 3 we are updating part (ii) of Conjecture C to n ≥ 5, based
on us proving the asserted result false for n = 3 and 4 in Theorem 3.1(i). In addition,
Theorem 3.1(ii) proves Conjecture C(ii) for n = 5, 6, 7, 8, leaving it open for n ≥ 9.

The equivalence between generalized derivatives is an almost a century old problem.
It was initiated by Kintchine in [Ki] (1927), who proved that the first symmetric derivative
is a.e. equivalent to the first Peano derivative. This was greatly extended by Marcinkiewicz
and Zygmund in [MZ] (1936) to the a.e. equivalence between the nth Peano and the nth
symmetric Riemann derivatives, and further by Ash in [As] (1967) who showed that any
nth generalized Riemann derivative of a function f is a.e. equivalent to the nth Peano
derivative on a measurable set. In particular, any two generalized Riemann derivatives of f
of the same order are a.e. equivalent on a measurable set. The pointwise equivalence be-
tween Peano and generalized Riemann differentiation is studied in [ACCs]; an application
of this to continuity is found in [AAC]. Pointwise equivalences and pointwise implications
between any two generalized Riemann derivatives of a real or complex function f are in-
vestigated in [ACCh] and [ACCh1]. In particular, the above mentioned single equivalent
class breaks up into numerous smaller equivalence classes, and these are described ex-
plicitly. Quantum Riemann derivatives were introduced in [AC, ACR]. Multidimensional
Riemann derivatives are explored in [AC1]. These recent articles have shown numerous
connections between generalized Riemann derivatives and linear and abstract algebra, re-
cursive set theory, symmetric functions, complex and numerical analysis. For more on
Peano and generalized Riemann differentiation, see [As1, F, F1, FR, GR, LPW, RAA].

Generalized Riemann derivatives have many applications in the theory of trigono-
metric series [SZ, Z]. They were shown to satisfy properties similar to those for ordinary
derivatives, such as convexity, monotonicity, and the mean value theorem [AJ, FFR, GGR,
HL, HL1, MM, T, W]. Surveys on generalized derivatives are found in [As2] and [EW].

1. Explicit formulas for Gaussian Riemann differences

In this section we both introduce and prove explicit formulas for the nth forward and
the nth symmetric Gaussian Riemann differences. These are respectively the nth general-
ized Riemann differences q∆n(x, h; f) based at x, x+h, x+qh, x+q2h, . . . , x+qn−1h and
q∆̄n(x, h; f) based at x+h, x+qh, x+q2h, . . . , x+qnh, and the nth symmetric general-
ized Riemann difference q∆s

n(x, h; f) based at (x), x±h, x±qh, x±q2h, . . . , x±qm−1h,
where m = b(n + 1)/2c and (x) means that x is taken only for n even. These formulas
are proved by reference to different versions of the Gaussian q-binomial formula.

1.1. Forward Gaussian Riemann differences. Taking n− 1 instead of n in (1) and
setting b = q leads to the Gaussian binomial formula

(2) (a− q)(a− q2) . . . (a− qn−1) =

n−1∑
k=0

(−1)kq(
k+1
2 )
[
n− 1
k

]
q

an−1−k.
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When a = 1, equation (2) is equivalent to

(3)
n−1∑
k=0

(−1)kq(
k+1
2 )
[
n− 1
k

]
q

− (1− q)(1− q2) . . . (1− qn−1) = 0;

when a = qj , for j = 1, . . . , n− 1, the same equation is

(4)
n−1∑
k=0

(−1)kq(
k+1
2 )
[
n− 1
k

]
q

(
qn−1−k

)j
= 0;

and when a = qn, the same equation becomes

(5)
n−1∑
k=0

(−1)kq(
k+1
2 )
[
n− 1
k

]
q

(
qn−1−k

)n
= (qn − q)(qn − q2) . . . (qn − qn−1).

The following lemma provides the expression of the nth Gaussian Riemann difference.

LEMMA 1.1. The nth forward Gaussian Riemann difference has the expression

q∆n(x, h; f) = λn · q∆̃n(x, h; f),

where

q∆̃n(x, h; f) =

n−1∑
k=0

(−1)kq(
k+1
2 )
[
n− 1
k

]
q

f(x+qn−1−kh)−(1−q)(1−q2) . . . (1−qn−1)f(x)

and λn = n!/
(
(qn − q)(qn − q2) . . . (qn − qn−1)

)
.

PROOF. By (3), (4), (5) the difference λn·q∆̃n(x, h; f) based at x, x+h, x+qh, . . . , x+
qn−1h satisfies the nth Vandermonde relations, so it must equal q∆n(x, h; f). �

Using the quantum Pascal triangle identity

(6)
[
n− 1
k

]
q

=

[
n− 2
k

]
q

+ qn−1−k
[
n− 2
k − 1

]
q

,

and the expressions for the differences ∆̃n(x, h; f) given in Lemma 1.1, one can easily
show that the same differences can also be computed recursively as

(7)
q∆̃1 (x, h; f) = f (x+ h)− f (x) ,

q∆̃n (x, h; f) = q∆̃n−1 (x, qh; f)− qn−1 · q∆̃n−1 (x, h; f) , (n ≥ 2).

Another recursive way to define the nth Gaussian Riemann difference is by using the
sequence of generalized Riemann difference quotients given by

qD̃n(x, h; f) = q∆n (x, h; f) /hn.

By (7) and the expression of λn in Lemma 1.1, one can prove by induction on n that this
sequence satisfies the following recursive relation:

(8)
qD̃1(x, h; f) =

f(x+ h)− f(x)

h
,

qD̃n(x, h; f) = n
qD̃n−1(x, qh; f)− qD̃n−1(x, h; f)

(qn−1 − 1)h
, (n ≥ 2).

As an nth generalized Riemann difference quotient, the same sequence enjoys the property
that for each n, qD̃n(x, h; f) = f (n)(x), for all polynomials f of degree ≤ n.

The nth Gaussian Riemann derivative of a function f at x is the nth generalized
Riemann derivative

qDnf(x) := lim
h→0

qD̃n(x, h; f) = lim
h→0

q∆n(x, h; f)

hn
= lim
h→0

λn · q∆̃n(x, h; f)

hn
.
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It is a q-analogue of the nth (forward) Riemann derivative, but not the only one. For
example, it is different from the nth quantum Riemann derivative defined in [ACR], which
satisfies q-Vandermonde relations instead of ordinary Vandermonde relations, hence is not
an nth generalized Riemann derivative.

Another q-analogue of the nth Riemann derivative which is an nth generalized Rie-
mann derivative is the unique nth generalized Riemann derivative based at x + h, x +
qh, . . . , x+ qnh whose expression is given explicitly in the following lemma:

LEMMA 1.2. The nth generalized Riemann difference based at x+h, x+qh, . . . , x+
qnh has the expression

q∆̄n(x, h; f) = λ̄n

n∑
k=0

(−1)kq(
k
2)
[
n
k

]
q

f(x+ qn−kh),

where λ̄n = n!/
(
(qn − 1)(qn − q) . . . (qn − qn−1)

)
.

PROOF. As in Lemma 1.1, the expression is implied by the q-binomial formula

(a− 1)(a− q)(a− q2) . . . (a− qn−1) =

n∑
k=0

(−1)kq(
k
2)
[
n
k

]
q

an−k

obtained from (1) by taking b = 1, since its Vandermonde relations are deduced from this
formula, by taking a = qj for j = 0, 1, . . . , n. �

The identity (6) for n instead of n− 1 and Lemma 1.2 can be employed to deduce the
recursive relations between the Gaussian differences q∆̄n(x, h; f). These are

(9)
q
˜̄∆1 (x, h; f) = f (x+ qh)− f (x+ h) ,

q
˜̄∆n (x, h; f) = q

˜̄∆n−1 (x, qh; f)− qn−1 · q ˜̄∆n−1 (x, h; f) , (n ≥ 2),

which in turn can be involved in deducing the following recursive relations satisfied by the
defining difference quotients q ˜̄Dn(x, h; f) := q∆̄n (x, h; f) /hn:

(10)
q
˜̄D1(x, h; f) =

f(x+ qh)− f(x+ h)

(q − 1)h
,

q
˜̄Dn(x, h; f) = n

q
˜̄Dn−1(x, qh; f)− q

˜̄Dn−1(x, h; f)

(qn − 1)h
, (n ≥ 2).

The nth (forward) Gaussian Riemann derivative qD̄nf(x) is defined by the limit:

qD̄nf(x) = lim
h→0

q
˜̄Dn(x, h; f) = lim

h→0
q∆̄n(x, h; f)/hn.

1.2. Symmetric Gaussian Riemann differences. Throughout this section, n will be
a fixed positive integer and m = b(n + 1)/2c. Recall from the introduction that the
expressions of the symmetric Gaussian Riemann differences depend on the parity of n.
Their exact formulas for general n will be deduced from two new q-binomial formulas in
a similar way as we did for the forward Gaussian Riemann derivatives. The first of these
two new q-binomial formulas,

(11) (a− q2)(a− q4) . . . (a− q2(m−1)) =

m−1∑
k=0

(−1)kqk(k+1)

[
m− 1
k

]
q2

am−1−k,

is easily obtained from (2) by replacing n with m and q with q2.
The following lemma provides the expression for the nth Gaussian symmetric Rie-

mann derivative in the case when n is even.
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LEMMA 1.3. When n = 2m, the nth symmetric Gaussian Riemann difference is the
nth generalized Riemann difference based at x, x± h, x± qh, x± q2h, . . . , x± qm−1h. This
has the expression q∆

s
n(x, h; f) = λsn · q∆̃s

n(x, h; f), where

q∆̃
s
n(x, h; f) =

m−1∑
k=0

(−1)kqk(k+1)

[
m− 1
k

]
q2

{
f(x+ qm−1−kh) + f(x− qm−1−k)

}
− 2(1− q2)(1− q4) . . . (1− q2(m−1))f(x)

and λsn = n!/
(
2(qn − q2)(qn − q4) . . . (qn − qn−2)

)
.

PROOF. The Vandermonde conditions for j even are verified in the same way as in the
proof of Lemma 1.1, this time using (3), (4) and (5) with n replaced bym and q replaced by
q2. For odd j and even difference, the Vandermonde conditions are trivially satisfied. �

The second q-binomial formula that will be needed in dealing with symmetric Gauss-
ian Riemann differences is

(12) (a− q)(a− q3) . . . (a− q2m−3) =

m−1∑
k=0

(−1)kqk
2
[
m− 1
k

]
q2

am−1−k.

The following lemma provides the expression for the nth Gaussian symmetric Rie-
mann derivative in the case when n is odd.

LEMMA 1.4. When n = 2m + 1, the nth symmetric Gaussian Riemann difference is
the nth generalized Riemann difference based at x±h, x±qh, x±q2h, . . . , x±qm−1h. This
has the expression q∆

s
n(x, h; f) = λsn · q∆̃s

n(x, h; f), where

∆̃s
n(x, h; f) =

m−1∑
k=0

(−1)kqk
2
[
m− 1
k

]
q2

{
f(x+ qm−1−kh)− f(x− qm−1−k)

}
and λsn = n!/

(
2(qn − q)(qn − q3) . . . (qn − qn−2)

)
.

PROOF. The Vandermonde conditions for j odd are verified in the same way as in
Lemma 1.1, this time using (3), (4), (5) with n replaced by m and q replaced by q2. The
Vandermonde conditions are trivially satisfied for even j and odd difference. �

Since both expressions in Lemmas 1.3 and 1.4 involve the same q-binomial coeffi-
cients, the Pascal triangle identity (6) with m instead of n and q2 instead of q can be used
to inductively deduce the following combined recursive relation for all symmetric Gaussian
Riemann differences:

(13)

q∆̃
s
1 (x, h; f) = f (x+ h)− f (x− h) ,

q∆̃
s
2 (x, h; f) = f (x+ h)− 2f(x) + f (x− h) ,

q∆̃
s
n (x, h; f) = q∆̃

s
n−1 (x, qh; f)− qn−2 · q∆̃s

n−2 (x, h; f) , (n ≥ 3).

Finally, we can use the recursive relations (13) and the expressions for λsn provided
by Lemmas 1.3 and 1.4 to inductively prove that the nth symmetric Gaussian Riemann
quotients

qD̃
s
n(x, h; f) := q∆

s
n (x, h; f) /hn = λsn · q∆̃s

n(x, h; f)/hn

satisfy the following recursive relations:

(14)
qD̃

s
1(x, h; f) =

f(x+ h)− f(x)

h
, qD̃

s
2(x, h; f) =

f (x+ h)− 2f(x) + f (x− h)

h2
,

qD̃
s
n(x, h; f) = n(n− 1)

qD̃
s
n−2(x, qh; f)− qD̃

s
n−2(x, h; f)

(qn−2+(n mod 2) − 1)h2
, (n ≥ 3).
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The nth symmetric Gaussian Riemann derivative of a function f at x is the nth generalized
Riemann derivative

qD
s
nf(x) := lim

h→0
qD̃

s
n(x, h; f).

It is a q-analogue of the nth symmetric Riemann derivative, and is different from the nth
quantum symmetric Riemann derivative defined in [AC].

2. Proof of Theorem B and Conjecture B

This section has three parts: the translation of Theorem/Conjecture A into Theo-
rem/Conjecture B; the proof of Theorem B; and the evidence for Conjecture B.

2.1. Translating A into B. The explicit statement of Theorem A reads as follows:

THEOREM 2.1. Fix a non-negative integer n. Then:
(i) For each function f and point x,

there exist real numbers q0, q1, . . . , qn 6= 0,±1 such that,
for each i = 0, . . . , n, either qiDif(x) or qiD̄if(x) exists ⇐⇒ f(n)(x) exists.

(ii) For each function f and point x,

there exist real numbers q0, q1, . . . , qn 6= 0,±1 such that,
for each i = 0, . . . , n, the derivative qiD

s
i f(x) exists ⇐⇒ fs(n)(x) exists.

And the following is the explicit working statement of Conjecture A:

CONJECTURE 2.2. Fix an integer n at least 2, and let DA0 , . . . , DAn be a sequence
of generalized Riemann differentiations, with each DAi of order i. Then:

(i) If not all of these differentiations are Gaussian, then for all f and x,

all DA0f(x), . . . , DAnf(x) exist 6=⇒ f(n)(x) exists.

(ii) If all of these differentiations are symmetric, but not all are Gaussian symmetric,
then for all f and x, all DAn

f(x), DAn−2
f(x), . . . exist 6=⇒ fs(n)(x) exists.

The next theorem translates Theorem A into Theorem B and Conjecture A into Con-
jecture B. For simplicity, during its proof, all references to Theorem A are meant to refer
to its equivalent version, Theorem 2.1.

THEOREM 2.3. The following equivalences of results are satisfied.
(i) Theorem A ⇐⇒ Theorem B;
(ii) Conjecture A⇐⇒ Conjecture B.

PROOF. We only prove the two equivalences in the Gaussian cases; the Gaussian
symmetric cases are similar.

(i) When n = 0, Theorem A is a tautology. We prove the equivalent statement “Theo-
rem A, for k = 0, . . . n⇐⇒ Theorem B, for k = 1, . . . , n” by induction upon n, for n ≥ 1.
When n = 1, Theorems A and B have the same statements. Assume the result for n − 1
and prove it for n.

“=⇒” It suffices to show that Theorem A is true for k = 1, . . . , n implies that Theo-
rem B is true for n. Indeed, by Theorem A for n − 1, we can substitute “there exist real
numbers q0, q1, . . . , qn−1 6= 0,±1 such that, for each i = 0, . . . , n − 1, the derivative
qiD

s
i f(x) exists” with “f(n−1)(x) exists” in the left side of the equivalence in Theorem A

for n, leading to Theorem B for n.
“⇐=” It suffices to show that Theorem B is true for k = 1, . . . , n implies that Theo-

rem A is true for n. Since the inductive hypothesis implies that Theorem A is true for n−1,
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we can substitute “f(n−1)(x) exists” with “there exist real numbers q0, q1, . . . , qn−1 6=
0,±1 such that, for each i = 0, . . . , n−1, the derivative qiD

s
i f(x) exists” with “f(n−1)(x)

exists” in the left side of the equivalence in Theorem B for n, leading to Theorem A for n.
(ii) Conjecture A says that the class ΓG is maximal with respect to making the result

of Theorem A true, and Conjecture B says that ΓG is maximal with respect to making the
result of Theorem B true. Part (ii) then follows from part (i). �

2.2. Proof of Theorem B. We are now ready to proceed with the proof of this theo-
rem. For this we will need the following lemma:

LEMMA 2.4. Let q be a real number with q 6= 0,±1, and let n be a positive integer.
Then for each function f and point x,

(i) qDnf(x) exists ⇐⇒ q−1Dnf(x) exists.
(ii) qD

s
nf(x) exists ⇐⇒ q−1Ds

nf(x) exists.

PROOF. Part (i) follows from the Gaussian Riemann differences q−1∆n(x, h; f) and
q∆n(x, h; f) being scales of each other by q±(n−1), since they are respectively based at
x, x+h, x+ q−1h, . . . , x+ q−n+1h and x, x+h, x+ qh, . . . , x+ qn−1h. Part (ii) follows
from the similar property between q−1∆s

n(x, h; f) and q∆s
n(x, h; f). �

For simplicity, in the proof of Theorem B we denote a difference ∆(0, h; f) as ∆(h).

PROOF OF THEOREM B. (i) As the existence of the nth Peano derivative f(n)(x) both
assumes the existence of every lower order Peano derivatives of f at x and implies every
nth generalized Riemann derivative of f at x, the reverse implication is clear.

Conversely, suppose that both f(n−1)(x) and qDnf(x) exist. By Lemma 2.4, we may
assume that |q| > 1. And eventually by translating the graph of f to the left by x we
may assume that x = 0, and by subtracting from f a degree n polynomial we may further
assume that f(n−1)(0) = 0 and qDnf(0) = 0, or q∆n(h) = o(hn). This is equivalent to
q∆̃n(h) = o(hn) since qλn is independent of h. The last equality means that for each
ε > 0, there is a δ > 0 such that |h| < δ ⇒ |q∆̃n(h)| < ε|h|n. Then by (7),∣∣∣q∆̃n−1(qh)− qn−1

q∆̃n−1(h)
∣∣∣ < ε|h|n,

∣∣∣∣q∆̃n−1(h)− qn−1
q∆̃n−1

(
h

q

)∣∣∣∣ < ε

∣∣∣∣hq
∣∣∣∣n , . . .

. . . ,

∣∣∣∣q∆̃n−1

(
h

qk−1

)
− qn−1

q∆̃n−1

(
h

qk

)∣∣∣∣ < ε

∣∣∣∣ hqk
∣∣∣∣n .

We multiply these inequalities resp. by 1, qn−1, q2(n−1), . . . , qk(n−1) and add. The triangle
inequality makes the left side telescope, while the right side is a geometric series. Then∣∣∣∣q∆̃n−1(qh)− q(k+1)(n−1) · q∆̃n−1

(
h

qk

)∣∣∣∣ < q

q − 1
· ε |h|n .

The second term on the left can be neglected, since it is (qh)n−1
(
q∆̃n−1(h/qk)

)
/
(
h/qk

)n−1

and this approaches 0 as k →∞, by the hypothesis f(n−1)(0) = qDnf(0) = 0. Therefore,∣∣∣q∆̃n−1(qh)
∣∣∣ < q

q − 1
· ε|h|n, that is,

∣∣∣q∆̃n−1(h)
∣∣∣ = o(hn).

By the independence on h of qλn−1, this is equivalent to |q∆n−1(h)| = o(hn). Similarly,
|q∆n−2(h)| = o(hn), and so on. At the end, |q∆1(h)| = o(hn) means that f(h)− f(0) =
f(h) = o(hn), and hence f(n)(0) = 0, as needed. The direct implication under the
hypothesis that both f(n−1)(x) and qD̄nf(x) exist is proved along the same lines. The
proof of part (ii) is similar to the proof of part (i). �



12 J. MARSHALL ASH, STEFAN CATOIU, AND HAJRUDIN FEJZIĆ

2.3. Evidence for Conjecture B. The remaining part of the section analyzes the ev-
idence towards this conjecture by proving its asserted result in a number of cases.

The following proposition shows that part (i) of Conjecture B is true for n = 1.

PROPOSITION 2.5. Let DAf(x) be a first generalized Riemann derivative without
excess which is not a Gaussian Riemann derivative. Then:

(i) DAf(x) = fs(1)(x);
(ii) both f(0)(x) and DAf(x) exist 6=⇒ f(1)(x) exists, for all f and x.

PROOF. (i) The hypothesis that DAf(x) is a first generalized Riemann derivative
without excess makes its difference ∆Af(x) = A1f(x+ a1h) +A2f(x+ a2h), for some
A1, A2, a1, a2, with a1 6= a2. If a1a2 = 0, say a1 = 0, then ∆Af(x) is the scale by a2 of
the Riemann difference ∆1f(x) = f(x+h)−f(x) = q∆1f(x) for any q, hence DAf(x)
is Gaussian, a contradiction. If a1a2 6= 0 and |a1| 6= |a2|, then ∆Af(x) is the scale by
a1 of the first difference based at x+ h, x+ qh for q = a2/a1, which is q∆̄1f(x), hence
DAf(x) is Gaussian, a contradiction. In the remaining case a1 = −a2 6= 0, ∆A(x, h; f)
is the scale by a1 of the symmetric difference ∆s

1(x, h; f), hence DAf(x) = fs(1)(x).
(ii) As an example, take the function f(t) = |t − x|, which is continuous at t = x

hence f(0)(x) = f(x) = 0, it has f(x+h)−f(x−h) = 0 hence DAf(x) = fs(1)(x) = 0,
while f(1)(x) = limh→0{f(x+ h)− f(x)}/h = limh→0 |h|/h does not exist. �

The next proposition shows that part (i) of Conjecture B is also true for n = 2.

PROPOSITION 2.6. Let DAf(x) be a second generalized Riemann derivative without
excess which is not a Gaussian Riemann derivative. Then:

(i) up to a scale, ∆A(x, h; f) is either based at x ± h, x + qh, for q 6= 0,±1, or
based at x+ h, x+ ph, x+ qh, where p, q 6= 0,±1, p 6= ±q and none of p and
q is the square of the other;

(ii) both f(1)(x) and DAf(x) exist 6=⇒ f(2)(x) exists, for all f and x.

PROOF. (i) The hypothesis that DAf(x) is second order and without excess makes it
have base points x + a1h, x + a2h, x + a3h for distinct a1, a2, a3. If one of a1, a2, a3 is
zero, say a1 = 0, then up to a scale by a−12 , DAf(x) is based at x, x + h, x + qh, for
q = a2/a1, that is DAf(x) is Gaussian, a contradiction. Thus a1, a2, a3 are all non-zero.
If two of them add up to zero, say a1 + a2 = 0, then up to a scale by a−11 , the difference
has the first outlined form. Otherwise, a scale by a−11 and discounting the Gaussian case
makes the difference have the second outlined form.

(ii) Our example has DAf(x) based at x+ h, x+ 2h, x+ 3h, that is, ∆A(x, h; f) =
f(x + 3h) − 2f(x + 2h) + f(x + h). Eventually by shifting the graph of f to the left
by x, we may assume that x = 0. Take G = 〈2, 3〉 = {2r3s | r, s integers} and define f as

f(x) = (−1)r+sx2, if x = 2r3s ∈ G,
and f(x) = 0, otherwise. Then f(h) = o(h) as h → 0, hence f(0)(0) = f(1)(0) = 0,
while f(2)(0) does not exist, due to limh→0 f(h)/h2 = 0,±1. Moreover, when h =

2r3s ∈ G, ∆A(0, h; f) = f(3h)−2f(2h)+f(h) = (−1)r+s(−32+2 ·22+1 ·12)h2 = 0,
and when h /∈ G, ∆A(0, h; f) = 0− 2 · 0 + 0 = 0, and so DAf(0) = 0. �

We now turn to the symmetric case addressed in part (ii) of Conjecture B. The first
symmetric Riemann derivativeDs

1f(x) is up to a scale the only first symmetric generalized
Riemann derivative of f at x without excess, and since its definition is the same as the
definition of fs(1)(x), the conjecture is false in the case n = 1. Same story for n = 2.
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The following proposition shows that Conjecture B(ii) is true for n = 3 and 4.

PROPOSITION 2.7. Each order 3 or 4 symmetric generalized Riemann derivative with-
out excess is a symmetric Gaussian Riemann derivative.

PROOF. Let DAf(x) be a symmetric generalized Riemann difference of order n = 3
or 4. Then it is based at (x), x ± ph, x ± qh, for 0 < p < q, which then scaled by p−1

becomes a symmetric Gaussian Riemann difference. �

3. Updating Conjecture C

In this section we are updating part (ii) of Conjecture C to n ≥ 5 by disproving the
asserted result for n = 3 and 4 in Theorem 3.1(i). In addition, we positively answer the
conjecture for n = 3, 4, . . . , 8 in Theorem 3.1(ii) and leave it open for n ≥ 9.

The following theorem gives answers to Conjecture C(ii), for n = 3, 4, . . . , 8.

THEOREM 3.1. The following are answers to Conjecture C(ii) for small n.
(i) When n = 3 or 4, the conjecture is false.
(ii) When n = 5, 6, 7, 8, the conjecture is true.

PROOF. (i) When n = 3 or 4, the symmetric Riemann derivative Ds
nf(x) is symmet-

ric Gaussian, either by Proposition 2.7 or directly by observing that
2∆s

3(x, h; f) = f(x+ 3h)− 3f(x+ h) + 3f(x− h)− f(x− 3h) = 2 · 3∆s
3(x, h; f),

∆s
4(x, h; f) = f(x+ 2h)− 4f(x+ h) + 6f(x)− 4f(x− h) + f(x− 2h) = 2∆s

4(x, h; f).

The result then follows from Theorem B(ii).
(ii) When n = 5, let G = 〈3, 5〉 = {3m5n | m,n ∈ Z} be the multiplicative subgroup

of the rationals generated by 3 and 5, and let f : R→ R be defined as

f(x) = (−1)m+nxk, for x = 3m5n ∈ G,

and f(x) = 0 for x /∈ G, where k, 3 < k < 4, is to be determined. Compute the expression
1

2
{f(h)− f(−h)} =

1

2
· (−1)m+n · (±|h|k), for h ∈ G,

and 1
2
{f(h) − f(−h)} = 0 for h /∈ G, to deduce f(3)(0) = 0, since 1

2
{f(h) − f(−h)} =

o(h3), and f(5)(0) does not exist since limh→0
1
2
{f(h) − f(−h)}/h5 does not exist. A

scale by 2 of the difference ∆s
5(0, h; f) is the difference 2−5 · ∆s

5(0, 2h; f), where the
difference ∆s

5(0, 2h; f) = f(5h) − 5f(3h) + 10f(h) − 10f(−h) + 5f(−3h) − 6f(−5h) =

(−1)m+n+15k|h|k−5·(−1)m+n+13k|h|k+10·(−1)m+n|h|k = (−1)m+n+1(5k−5·3k−10)|h|k.
Denote ϕ(k) = 5k−5·3k−10 and observe that ϕ(3)ϕ(4) < 0, and so by continuity, ϕ(k) = 0

for some k in the open interval (3, 4). Then the f for this k has Ds
5f(0) = 0.

When n = 6, let G = 〈2, 3〉 = {2m3n | m,n ∈ Z} and take f to be the function

f(x) = (−1)m+nxk, for x = 2m3n ∈ G,

and f(x) = 0, for x /∈ G, where the real number k, 4 < k < 5, is to be determined. Then
1

2
{f(h) + f(−h)} =

1

2
· (−1)m+n · (±|h|k) , for h ∈ G,

and 1
2
{f(h) + f(−h)} = 0 for h /∈ G. Then f(4)(0) = 0, since 1

2
{f(h) + f(−h)} = o(h4),

and f(6)(0) does not exist, since limh→0
1
2
{f(h) + f(−h)} is either 0 or ±∞. We com-

pute ∆s
6(0, h; f) = f(3h) − 6f(2h) + 15f(h) − 20f(0) + 15f(−h) − 6f(−2h) + f(−3h) =

(−1)m+n+13k|h|k−6·(−1)m+n+12k|h|k+15·(−1)m+n|h|k = (−1)m+n+1(3k−6·2k−15)|h|k

and denote ϕ(k) = 3k − 6 · 2k − 15. Since ϕ(4)ϕ(5) < 0, by continuity, ϕ(k) = 0 for some
k in the open interval (4, 5). For that particular k, Ds

6f(0) = 0, as we needed.
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When n = 7, let G = 〈3, 5, 7〉 and let f be the function

f(x) = (−1)n+pxk, for x = 3m5n7p ∈ G,

and f(x) = 0, otherwise, where 5 < k < 7. Then ∆s
7(0, 2h; f) = f(7h)−7f(5h)+21f(3h)−

35f(h) + · · · = (−1)n+p+1(7k − 7 · 5k − 21 · 3k + 35)|h|k, if h = 3m5n7p ∈ G. As usual,
denote ϕ(k) = 7k − 7 · 5k − 21 · 3k + 35 and check that ϕ(5)ϕ(7) < 0. The rest is the same
as in the other two cases.

When n = 8, let G = 〈2, 3〉 and let f be the function

f(x) = (−1)mxk, for x = 2m3n ∈ G,

and f(x) = 0, for x /∈ G, where 7 < k < 8. Then ∆s
8(0, h; f) = f(4h)− 8f(3h) + 28f(2h)−

56f(h) + 70f(0) − · · · = (−1)m
(
4k − 8 · 3k − 28 · 2k − 56

)
|h|k, for h = 2m3n ∈ G. The

function ϕ(k) = 4k − 8 · 3k − 28 · 2k − 56 has ϕ(7)ϕ(8) < 0, and the rest is folklore. �

Following the same method as in the proof of Theorem 3.1 for n = 5, 6, 7, 8, when n =
9 we would start by lettingG = 〈3, 5, 7〉 and then look for an expression of f(x) of the form

f(x) = (−1)am+bn+cpxk, if x = 3m5n7p ∈ G,

and f(x) = 0, otherwise, where 7 < k < 9 and a, b, c ∈ {0, 1}. Then ∆s
9(0, 2h; f) =

f(9h)− 9f(7h) + 36f(5h)− 84f(3h) + 126f(h)− · · · will be of the form

(−1)am+bn+cp
(
±9k ± 9 · 7k ± 36 · 5k ± 84 · 3k ± 126

)
|h|k.

Taking ϕ(k) as the expression in the parenthesis, the only choices for ϕ(k) with the property
that ϕ(7)ϕ(9) < 0 are ϕ(k) = ±(9k−9 ·7k+36 ·5k−84 ·3k−126). Unfortunately, no choice
for a, b, c ∈ {0, 1} leads to either expression, and so the method in Theorem 3.1 does not
extend to the n = 9 case. In this way, part (ii) of Conjecture C remains open for n ≥ 9.
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