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1 Introduction

Here are three examples of real valued functions of a real variable that are discon-

tinuous at x = 0. All three are de�ned piecewise, that is to say, by cases.

sgn (x) =

8><>:
1 if x > 0

0 if x = 0

�1 if x < 0

� (x) =

(
1 if x = 0

0 if x 6= 0

s (x) =

(
sin 1x if x 6= 0
0 if x = 0

:

These three functions, together with simple combinations of them, give a fairly

complete picture of the ways a function can be discontinuous at a point. Here is a

list of possible misbehaviors at a point, together with an example for each.

Misbehavior Example
Jump with left limit, right limit and value all distinct sgn (x)

Limit and value both exist, but are not equal � (x)

Jump, but continuous from one side sgn (x) + � (x)

Limits from both sides do not exist s (x)

No limit from one side, continuous from the other side s (x) (sgn (x)� 1)
No limit from one side, value 6= other side�s limit s (x) (sgn (x)� 1) + � (x)

When I �rst took calculus, it bothered me that whenever such a counterexample

was called for, the machinery of cases was always used, often being introduced for

the �rst time at exactly this point. These examples are satisfactory from almost
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every modern point of view, so let me try to make this vague complaint into a

manageable question.

I want to work only with functions that have domain equal to all of R. I see
no way to avoid a limiting process, so the goal is to create examples as limits of

sequences of functions that are given by very simple formulas. Notice that such

functions would have been admissible to a seventeen century mathematician, say,

for example, Euler. I will leave it to the reader to decide if my examples are �very

simple.�

I once wanted to put a graph of sgn (x) into a research paper using a graphing

program that I had not su¢ ciently mastered to input piecewise de�ned functions.

A colleague, Stephen Vagi, suggested that I use 2
� arctan (100x). This motivates the

�rst example: Let

u (x) =
x

jxj+ 1 : (1)

Then

sgn (x) = lim
n!1

u (nx) : (2)

Write jxj as
p
x2, to see that there are no hidden piecewise de�ned objects here.

Let

v (x) =
1

jxj+ 1 : (3)

Then

� (x) = lim
n!1

v (nx) : (4)

Graph u (100x) and v (100x) to get some intuition about these two examples.

For each positive integer n, both the functions u (nx) and v (nx) are immediately

expressed as formulas with domain R. A function has compact support if the set of
points where it is non-zero is contained in some �nite interval. We would like to add

the additional constraint that the approximating functions have compact support.

It is not even obvious that there can be any compactly supported function given

by a formula. We begin by constructing a family of very simple such functions which

I will call bumps. A bump is compactly supported and yet has a pretty formula

that does not involve cases.
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2 Bumps

Let p (x) = x+ = 1
2 (jxj+ x) and n (x) = x

� = 1
2 (jxj � x). The graphs of p and n

are, respectively,
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The product p (x� a)n (x� b) is positive on the interval (a; b) and is zero on the
complement of (a; b). On (a; b) it agrees with the quadratic (x� a) (b� x) which
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achieves a maximum value of
�
b�a
2

�2
at the midpoint x = a+b

2 . We normalize to

create a non-negative function of maximum height 1: Our bumps are the family of

functions, one for each pair of real numbers a; b with a < b given by

Ba;b (x) =

�
2

b� a

�2
p (x� a)n (x� b)

So Ba;b can be expressed as the formula

Ba;b (x) =

�
1

b� a

�2
(jx� aj+ (x� a)) (jx� bj � (x� b)) (5)

For another, more geometrically based formula: Recall that for x in the interval

[a; b], Ba;b (x) is the quadratic passing through the endpoints and having maximum

value 1 at the center m = (b+ a) =2, so if we set � = (b� a) =2 to the half-length of
the interval, we get

Ba;b (x) =

 
1�

�
x�m
�

�2!+
(6)

=

�����1�
�
x�m
�

�2�����+
 
1�

�
x�m
�

�2!
:

Here is the graph of the bump B�1;1 (x).
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For n � 2 and jxj �
p
n; 1 � B�n;n (x) � B�n;n (

p
n) = 1 � 1

n . It follows that

for every real number x,

lim
n!1

Bn;n (x) = 1: (7)
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3 Discontinuous examples

The bump functions allow us to convert any example of a function discontinuous at

a point being a limit of everywhere de�ned formulas into a similar example where

the approximating functions are also compactly supported. For example, let Un (x)

be u (nx)Bn;n (x). Formulas (1) and (6) show that for each integer n, Un (x) can be

given by an everywhere de�ned compactly supported formula; then limits (2) and

(7) lead to

lim
n!1

Un (x) = lim
n!1

u (nx)Bn;n (x) = lim
n!1

u (nx) lim
n!1

Bn;n (x)

= sgn (x) � 1 = sgn (x) :

A very similar argument using (3) and (4) in place of (1) and (2) gets the same

result for the discontinuous function � (x). Another, even faster, way of treating �

is to write

� (x) = lim
n!1

(B�1;1 (x))
n :

In view of the formulas expressing all six types of discontinuous functions in

terms of sgn; �; and s, it su¢ ces to produce a function S (x) that, like s (x) fails to

have either one sided limit at x = 0; but that, unlike s (x) ; is simply and naturally

given as a limit of functions, each of which is compactly supported and de�ned

everywhere by a formula.

Fix a positive integer n.

De�ne Cn (x) = B3
4

1

2n
;
5

4

1

2n

(x) : Then

(1) Cn (x) is zero outside of In =
�
3

4

1

2n
;
5

4

1

2n

�
;

(2) Cn is a quadratic bump of maximum height 1 at the center point x =
1

2n
of

In and of height 0 at both endpoints of In, and

(3) Cn is given by the everywhere de�ned formula (5) with a =
3

4

1

2n
and b =

5

4

1

2n
.

The sum of the �rst N bumps,

gN (x) =

NX
n=1

Cn (x) ;

is an everywhere de�ned formula with support in
�
3

4

1

2N
;
5

4

1

21

�
. The bumps do not
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overlap, since the sup of the set where Cn+1 6= 0 is
5

4

1

2n+1
and the inf of the set

where Cn 6= 0 is
3

4

1

2n
and

5

4

1

2n+1
=
5

8

1

2n
<
6

8

1

2n
=
3

4

1

2n
:

Now let

g (x) = lim
N!1

gN (x) =
1X
n=1

Cn (x)

It is easy to see that g
�
1

2n

�
= 1 and that g

�
3

4

1

2n

�
= 0 for n = 1; 2; 3; : : : . Thus

limx!0+ g (x) does not exist. Here is an approximation to the graph of g (x).
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The function g (x) does satisfy limx!0� g (x) = g (0) = 0; since g (x) = 0 for all

non-positive x. For a function with neither left nor right limit at x = 0, use S (x) =

g (x) � g (�x). Note that g (x) itself is directly an instance of the �fth type in the
misbehavior list.

Another way to create a function in the spirit of s (x) without cases is this. First

let

sn (x) = sin

0B@ 1

jxj+ 1

n�

1CA :
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As n!1, at every x this sequence of functions approaches8<: sin

�
1

jxj

�
if x 6= 0

0 if x = 0
;

which is equal to s (jxj). Note that for every n = 1; 2; : : : , sn (0) = sin (n�) = 0. One
can also replace the approximating functions fsn (x)g by compactly supported ones
using the general procedure that was illustrated above when we replaced fun (x)g
by fUn (x)g.

Remark 1. Fernando Gouvêa of Colby College showed me the bump function Ba;b (x).
Note that this function has corners. If we replace p (x) by 1

2

�
jxjn + x jxjn�1

�
and

then repeat the rest of the construction in a very similar way,the resulting analog

of Ba;b (x) will have a continuous derivative of order n � 1. I don�t see an equally
simple way to make the analogue of Ba;b (x) be C1. From my personal point of view,

the trouble with using P (x) = 1
2 (jxj+ x)

1

e
1
x2
and N (x) = 1

2 (jxj � x)
1

e
1
x2
in place

of p (x) and n (x) is that they are unde�ned when x = 0. However, if we are going

to use the test of being acceptable to 18th century mathematicians, then removable

discontinuities may be removed:thus since limx!0 e�1=x
2
= 0, they would take e�1=0

2

to be zero. Under these rules, there does exist a simple formula for a compactly

supported C1 bump, namely P (x� a)N (x� b) where a < b.

Remark 2. My brother, Peter Ash of Cambridge College, told me that he had seen
the function

�
1� x2

�+ when he worked in computer graphics. This motivated the
alternate formula (6) for the bump Ba;b. My colleague, Alan Berele, created fsn (x)g
for me.


