
On concentrating idempotents, a survey

J. Marshall Ash

Abstract. A sum of exponentials of the form f(x) = exp (2�iN1x)+exp (2�iN2x)+
� � �+exp (2�iNmx), where the Nk are distinct integers is called an idempotent
trigonometric polynomial or, simply, an idempotent. It is known that for every
p > 1; and every set S of the torus T = R=Z with jSj > 0; there are idempo-
tents concentrated on S in the Lp sense. We sketch how this concentration
phenomenon originated as a reformulation of a functional analysis problem,
and, in turn, studying concentration led to some interesting questions about
Lp norms of Dirichlet kernels associated with multiple trigonometric series.
Some counterexamples involving linear operators not of convolution type are
given.

In 1977 I was visiting Stanford on sabbatical from DePaul. It was a most
productive year, both personally and professionally. One the �rst side, I met and
married Alison who subsequently gave me the second and third of my three won-
derful sons. On the mathematical side, one of the best things was discussions with
Mischa Zafran concerning a question about linear operators on L2 (T).

1. From Operators on L2 (Z) to Concentration

1.1. De�nitions. By L2 (Z) = `2 we mean sequences C = f: : : ; c�1; c0; c1; : : : g
of complex numbers such that

P
jc� j2 < 1. We identify the sequence with its

Fourier series C (x) =
P
c�e

2�i�x. A characteristic function associated to the �-
nite subset S = fn1; n2; : : : ; nKg of Z is a sequence f: : : ; s�1; s0; s1; : : : g where
s� = 1 when � 2 S and sv = 0 when � =2 S. The product of C = fcng and
D = fdng is CD = fcndng, while the convolution is C � D =

�P1
�=�1 cn��d�

	
.

A �xed sequence K = fk�g creates an operator on functions on Z according to
the rule T : C ! K � C. We identify TC with the function K (x)C (x) where
K (x) =

P1
n=�1 kne

2�inx. By Plancherel�s formula, we have

kTCk22 =
1X

n=�1

�����
1X

�=�1
kn��c�

�����
2

=

Z 1

0

jK (x)C (x)j2 dx:

To avoid confusion we will call the above mentioned characteristic functions idem-
potents and reserve the term characteristic function for a function of the form
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2 J. MARSHALL ASH

�E (x) which is 1 when x 2 E, E some measurable subset of T = [0; 1], and 0 when
x 2 TnE. For each �nite subset S of Z, the trigonometric polynomial associated
to the idempotent associated to S is �S (x) =

P
n2S e

2�inx; �S (x) derives its name
from the identity �S�S = �S . Here and henceforth we abuse notation and write � for
both the sequence and the associated trigonometric polynomial.

A linear operator de�ned on simple functions is s: (2; 2) or of strong type (2; 2)
or bounded on L2 (Z) if there is a constant M > 0 so that

kTCk2 �M kCk2

where kCk2 =
qP

jcnj2 =
qR 1

0
jC (x)j2 dx. It is r: (2; 2) or of restricted type (2; 2)

if there is a constant M > 0 such that

kT�k2 �M k�k2
whenever � = �S is an idempotent. It is w: (2; 2) or of weak type (2; 2) if there is a
constant M > 0 such that

kTCk�21 �M kCk2
where

kCk�21 :=
r
sup
�>0

jfn 2 Z : jC� (n)j > �gj�2

and C� denotes the nonincreasing rearrangement of C. Finally it is w:r: (2; 2) or of
weak restricted type (2; 2) if there is a constant M > 0 so that for all idempotents

kT�k�21 �M k�k2 :

1.2. Relating classes of operators. We have four trivial implications: sim-
ply restricting the action of T to a subset of functions cannot increase the asso-
ciated constant so that (1) if T is s: (2; 2), then T is r: (2; 2) and also (2) if T
is w: (2; 2), then T is w:r: (2; 2). By Tchebyche¤�s inequality, for each � > 0,
jfn : jC� (n)j > �gj�2 �

P
jcnj2, so that (3) if T is s: (2; 2), then T is w: (2; 2) and

also (4) if T is r: (2; 2), then T is w:r: (2; 2).

s.(2,2)

r.(2,2)

w.r.(2,2)

w.(2,2)

3
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ON CONCENTRATING IDEMPOTENTS 3

None of these implications are reversible in general. To see this, consider the
following three linear operators initially de�ned on idempotents.

T1 (fcng) :=
( 1X

�=�1

c�p
j�j+ 1

!
1

jnj+ 1

)
,

T2 (fcng) :=
( 1X

�=�1

c�p
j�j+ 1

!
1p
jnj+ 1

)
, and

T3 (fcng) :=
( 1X

�=�1

c�
j�j+ 1

!
1p
jnj+ 1

)
:

The operators T1 and T2 cannot be de�ned on all of `2; look at the sequence�
1p

jnj+1 ln(jnj+2)

�
2 `2 to see this. Since T1 2 r: (2; 2), but not s: (2; 2), implica-

tion (1) is irreversible. Since T2 2 w:r: (2; 2), but not w: (2; 2), implication (2) is
irreversible. Since T3 2 w: (2; 2) and hence w:r: (2; 2), but not in r: (2; 2) and hence
not in s: (2; 2); neither implication (3) nor implication (4) can be reversed. When
the underlying group is the torus T = [0; 1) with addition mod 1, there are similar
counterexamples to all four implications. (See [SW] or [As1] for examples.)

Alexander Stokolos asked me if the fact that the example T1 and T2 are not
de�ned on all of L2 is crucial. For example, one might conjecture that a restricted
(2; 2) linear operator de�ned on all of L2 (T) is necessarily bounded. Paul Hagelstein
and Brian Raines created the following counterexample for me.

Theorem 1. There exists a linear operator T : L2 (T)! R such that T�E = 0
for any measurable set E and such that T is unbounded on L2 (T).

Proof. Let S denote the set of simple functions on T. Let g1 2 L2=S and
[g1] = fag1 + h : a 2 C; h 2 Sg. Proceeding with trans�nite induction, assume
fg
g
<� and f[g
 ]g
<� have been constructed. Let g� 2 L2=

S

<�

[g
 ] and set

[g� ] =

(
ag� + h : a 2 C; h 2

S

<�

[g
 ]

)
. Note L2 =

S

<2!�

[g
 ], where 2!� is the

ordinality of the continuum. Let ' be any bijection from the fg
 : 
 < 2!�g to the
real numbers. De�ne Ts = 0 for all s 2 S. If f = ag1 + h with h 2 S, de�ne
Tf = a kg1k2 ' (g1); T is linear on [g1]. Extend T inductively to L2: if T is de�ned
and linear on

S

<�

[g
 ] and f = ag�+h 2 [g� ], then de�ne Tf = a kg�k2 ' (g�)+Th.

Now T is de�ned and linear on [g� ]. By the principle of trans�nite induction, T is
de�ned and linear on all of L2. The operator norm of T jS is zero, so T 2 r: (2; 2);
but T is unbounded on L2, since T stretches the L2 norm of g� by j' (g�)j, and
' (g�) can be any (arbitrarily large) real number. �

In the late 1970s several people suspected that these implications were reversible
for convolution operators. I focused on trying to reverse implication (1), in other
words to prove:

(1.1) For convolution operators de�ned on idempotents, r: (2; 2) implies s: (2; 2) .
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Because of the following simple duality result, this would also reverse implica-
tion (3).

Lemma 1. If a convolution operator T : C ! K � C has the property that
r: (2; 2) =) s: (2; 2), then by duality it has the property w: (2; 2) =) s: (2; 2).

Proof. For �nite sequences C = fcng and D = fdng we have

(C; TD) =
1X

n=�1
cn(TD)n(1.2)

=
1X

n=�1
cn

 1X
�=�1

kn��g�

!
(1.3)

=
1X

�=�1

 1X
n=�1

cnk
�
��n

!
g� = (T

�C;D)(1.4)

where for every n 2 Z, k�n = k�n and T � is the convolution operator corresponding
to fk�ng. Let K� (x) be the Fourier series associated with fk�ng.

Let T be w: (2; 2). This means that there is a constant M so that

(1.5) kTCk�21 �M kCk2 :

We show that this implies that T � is r: (2; 2).
Let �S be the idempotent associated to a �nite set S, S � Z. By the de�nition

of adjoint and Lorentz�s generalization of Holder�s inequality(see page 261 of [Hu])
we have

kT ��Sk2 = sup
kDk2�1

j(K� � �S ; D)j

= sup
kDk2�1

j(�S ;K �D)j

� 2 sup
kDk2�1

k�Sk�21 kK �Dk�21 :

Applying inequality 1.5 yields

(1.6) kT ��Sk2 �M k�Sk�21 :

Letting C� denotes the nonincreasing rearrangement of a sequence C, the following
calculations hold

k�Sk�21 :=
1

2

Z
��S (x)

dxp
x
=
1

2

Z jSj

0

dxp
x
=
p
jSj and(1.7)

k�Sk2 =

sZ
(��S (x))

2
dx =

sZ jSj

0

dx =
p
jSj:

From this and inequality 1.6 we have

(1.8) kT ��Sk2 �M k�Sk2 ;

so that T � is r: (2; 2). Our hypothesis now yields that T � is s: (2; 2). Finally if T �

is s: (2; 2), so is T . �
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1.3. A surprising connection. We say that L2 interval concentration occurs
if there is an absolute constant a > 0 such that for each interval I � [0; 1] there is
an idempotent � (x) = �I (x) =

PK
j=1 e

2�njx 2 L2 (Z) so thatR
I
j� (x)j2 dxR 1

0
j� (x)j2 dx

> a

and that L2 set concentration occurs if there is an absolute constant b > 0 such
that for each set of positive measure E � [0; 1] there is an idempotent � (x) = �E (x)
so that

(1.9)

R
E
j� (x)j2 dxR 1

0
j� (x)j2 dx

> b:

Note that if b exists we may take a to be b.
When I was studying implication (1.1) in the late 1970s, I was only able to �nd

an equivalent formulation in terms of concentration. Here is that equivalence.

Theorem 2. If L2 concentration for sets holds, then r: (2; 2) implies s: (2; 2)
when the underlying group is Z.

If r: (2; 2) implies s: (2; 2) when the underlying group is Z, then L2 concentration
for intervals holds.

Proof. Assume that L2 concentration holds for sets and that T is r: (2; 2).
Letting T correspond to convolution with fkng so that with K (x) =

P
kne

2�inx

for a certain positive constant A the inequality

(1.10)
Z 1

0

jK (x) � (x)j2 dx � A
Z 1

0

j� (x)j2 dx

holds for every idempotent �. We also know that there is a positive number b so
that inequality (1.9) holds. Our goal is to show that K (x) is an essentially bounded
function, since this is well known to be the necessary and su¢ cient condition for a
multiplier operator to be bounded on L2. Assume that the multiplier K (x) exceeds
A=b on a set E of positive measure. Find an idempotent � so thatZ

E

j� (x)j2 dx > b
Z 1

0

j� (x)j2 dx

Applying �rst this and then inequality (1.10), we �ndZ 1

0

j� (x)j2 dx < 1

b

Z
E

j� (x)j2 dx

=
1

A

A

b

Z
E

j� (x)j2 dx

� 1

A

Z
E

jK (x) � (x)j2 dx

5 1

A
A

Z 1

0

j� (x)j2 dx;

which is a contradiction.
The converse implication is Theorem 7 of [As1]: Assume the failure of L2

concentration for intervals. Then there is a sequence of intervals fIigi=1;2;::: so that
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for every i and every idempotent �,Z
Ii

j� (x)j2 dx � 2�2i
Z 1

0

j� (x)j2 dx:

Then K (x) =
P
i�Ii (x) is unbounded so that the operator corresponding to

the multiplier K is not bounded on L2 (Z). However, for any idempotent �, by
Minkowski�s inequality we have

kK (x) � (x)k2 �
X�Z 1

0

ji�Ii (x) � (x)j
2
dx

�1=2
�
X

i

�Z
Ii

j� (x)j2 dx
�1=2

�
�X

i2�i
��Z 1

0

j� (x)j2 dx
�1=2

= 2 k� (x)k2
so that the operator is r: (2; 2). �

1.4. Results for L2 Concentration. Just about the time of the formulation
of the equivalence theorem, Michael Cowling proved that when the underlying group
is Z, r: (2; 2) implies s: (2; 2).[Co] Actually, he proved much, much more than this.
He proved that if the underlying group is any amenable group, than w:r: (2; 2)
implies s: (2; 2). An amenable group is a topological group G carrying a kind of
averaging operation, that is invariant under translations by group elements. In the
case where G is not an abelian group, that means translation on a �xed side (left-
or right-translation). For our purposes, it is enough to know that Z is an amenable
group. So by the equivalence theorem above, it followed that L2 concentration for
intervals was true!

But this result is exceedingly non constructive. De�ne the absolute constant
C2 as the largest real number such that for every set E � T with jEj > 0, and
every � > 0; there is an idempotent � = �E;� satisfying the inequality

(1.11)

qR
E
j� (x) j2dxqR

T j� (x) j2dx
� C2 � �:

Thus C2 is the amount of L2 norm that can be concentrated on any set, no matter
how small, nor no matter how inconveniently situated. Obviously, C2 � 1. So far
we know that C2 > 0, but our information is neither quantitative nor constructive,
we have no idea of its size, no lower bound, nor any e¤ective procedure for �nding
one.

1.5. Quantitative results for L2 concentration. (1)The referee of paper
[As1] pointed out that C2 must be at least 1=8 = :125 . This follows from Cowl-
ing�s Theorem. The assumption of Cowling�s Theorem, that T is a convolution
operator of type w:r: (2; 2) means that there is a constant A > 0 such that for every
idempotent �, we have

(1.12) kT�k�21 � A k�k2 = A k�k
�
21 :
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There are two steps to the proof that T is of strong type; �rst we show that
inequality (1.12) can be extended to hold for simple functions and hence for all
functions in L21 - this step results in the operator norm being stretched by at most
8. In other words, producing the inequality

kTCk�21 � 8A kCk�21
for every sequence C 2 L21. (This step is shown in detail on page 682 of [As1].)
The second step gets from this to the �nal result

(1.13) kTCk2 � 8A kCk2
for every C 2 L2 with no further increase in operator norm.

Assume that the L2 concentration constant C2 satis�es C2 < 1=8. This means
that there is a set E � T of positive measure so that for every idempotent �,
(1.14) k�E (x) � (x)k2 � C2 k� (x)k2 :
Let T be the linear operator associated with the multiplier function �E (x). Then
by Tchebyche¤�s inequality, for any idempotent �

(1.15) kT�k�21 � kT�k2 = k�E (x) � (x)k2 :
Concatenating inequalities (1.14) and (1.15) gives

kT�k�21 � C2 k� (x)k2 :
Thus by the remark above that the strong (2; 2) constant is at most 8 times the
weak restricted (2; 2) constant we have that for every sequence C,

kTCk2 � 8C2 kCk2 :
But 8C2 < 1, which contradicts the fact that the strong (2; 2) norm of the operator
T must be 1, since 1 is the essential supremum of the multiplier function �E .

De�ne a constant C�2 which is for intervals what C2 is for sets. In other words,
the absolute constant C�2 is the largest real number such that for every interval
J � T with jJ j > 0, and every � > 0; there is an idempotent � = �J;� satisfying the
inequality

(1.16)

qR
J
j� (x) j2dxqR

T j� (x) j2dx
� C�2 � �:

Of course C�2 � C2.
(2) S. Pichorides [Pi] obtained C�2 � :14.
(3) H. L. Montgomery [Mo], and
(4) J.-P. Kahane [Ka2] obtained several better lower bounds. (The ideas of H.

L. Montgomery were �deterministic�while those of J.-P. Kahane used probabilistic
methods from [Ka1].)

1.6. The best possible L2 concentration constant. Finally, in [AJS],
together with Roger Jones and Bahman Sa¤ari, I achieved this lower bound for
C2 :

(1.17) 
2 := max
x>0

sinxp
�x

= :4802:::;

which, in [DPQ1], was proved to be best possible, thus C2 = 
2. (See [DPQ2] for
a more detailed exposition of the contents of [DPQ1].)
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2. A Paper 20 Years in the Making

In 1982, I began to consider the Lp concentration question for values of p other
than 2. This question represents a move away from the functional analysis issues
naturally connected to the L2 concentration question in Theorem 2 for two reasons.
First, only for p = 2 do we have the very simple characterization of a convolution
operator being bounded if and only if the corresponding multiplier function is in L1.
Second, Misha Zafran has shown that even when the underlying group is T so that
things are as simple as possible, there are convolution operators of type w: (p; p)
but not s: (p; p) when 1 < p < 2 and thus by duality there are also convolution
operators of type r: (p; p) but not s: (p; p) when 2 < p < 1.[Za] Consequently,
w:r: (p; p) implies s: (p; p) only when p = 2.

Misha Zafran was a talented mathematician. When I was spending 1977 at
Stanford, Misha sel�essly and patiently shared many ideas. The subject discussed
here owes much of its origin to Misha. I profoundly regret his untimely death.

2.1. The early years. In the fall of 1982, Roger Jones and I submitted a
grant proposal to the National Science Foundation centered around the question of
whether Lp concentration was valid for any p < 2. One proposal reviewer wrote
�...This [Lp concentration] is a very speci�c problem. They [Ash and Jones] mention
several ways it has been done for p > 2. Doing it for p < 2 doesn�t seem very di¢ cult
either; a product of Dirichlet kernels is likely to work.�Needless to say, the proposal
was not funded. Intrigued by the above comment, I communicated a desire to the
NSF analysis director John Ry¤ that the referee divest anonymity and collaborate
on the question. A few months later, I received a letter from Dan Rider stating
�...Enclosed is a sketch of what I think works for your problem for 1 < p � 2. It
turned out to be messier than I had anticipated...�

Here, in very heuristic terms, is Rider�s idea. We �x p > 1 and explain how to
�nd an idempotent which has a goodly percentage of its Lp mass near k=q, where
q is a large prime and 1 � k � q � 1. First let k = 1. We concentrate Lp mass on
the interval

h
1
q �

1
q2 ;

1
q +

1
q2

i
by considering the idempotent

I (x) = Dq2 (qx)D q�1
2
(x) ;

where Dn (x) =
Pn�1

�=0 e
2�i�x. The �rst factor is concentrated near x = 0 and has

period 1=q so we think of it as being roughly

c

q�1X
j=0

�h j
q�

1
q2
; jq+

1
q2

i (x) ;
in other words as a series of q equal pulses. The second factor we think of as being
even and having decay like 1=x on [1=q; 1=2]. This gives Lp concentration sinceR 1

q�
1
q2

1
q�

1
q2
jI (x)jp dxR 1

0
jI (x)jp dx

�
P1

j=1
1
jpP(q�1)=2

j=1
1
jp

� 1P1
j=1

1
jp

:

If k > 1, since the set f1; 2; : : : ; q � 1g is a group under multiplication modulo q,
we may �nd a so that ka � 1mod q and use

Dq2 (qx)D q�1
2
(ax)
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as our concentrated idempotent. Notice that a
�
k
q + �

�
� 1

q +a�mod1 so that this

idempotent behaves at k=q in a way that is similar to how I (x) behaved at 1=q.

2.2. On the virtues of procrastination. Our early work on the Lp concen-
tration problem is summarized in [AAJRS1]. This paper lists the results of what
we were able to prove developing what was mentioned above. We had established
Lp concentration for intervals for 1 < p < 1 and Lp concentration for sets for
2 � p < 1. A good thing was that the method was both quantitative and con-
structive. But there was a 17 year gap between the L2 result in [AJS] and this and
there would be another 7 year gap between this and our next paper [AAJRS2].
Two reasons for this time gap were our desire to �nd out whether Lp concentration
for sets held when 1 < p < 2 and whether there was any L1concentration. We
had a little negative evidence for the latter and more interesting (to us) of these

questions, namely that if one considers the �enemy�interval
h
1
q �

1
q2 ;

1
q +

1
q2

i
, the

fraction of the L1 mass of I (x) concentrated here is roughly

1P(q�1)=2
j=1

1
j

� 1

ln q
:

So if I (x) were about as concentrated as an idempotent can be, then C1 would be
less than 1

ln q for arbitrarily large q and L
1 concentration would be false.

We �nally gave up on resolving these two questions and sent the paper to
Annal. Inst. Fourier where an excellent referee showed us how to solve the former
question, that is how to establish concentration for sets when 1 < p < 2. What was
surprising to me was that doing this involved using the following two dimensional
result.

Lemma 2 (Triangle Lemma). Let p > 1, 0 < � < 1, and

K�;N =
�
(x; y) 2 Z2 : x+ ��1y � N;x � 0; y � 0

	
:

Then for arbitrary N � 4,

(2.1)
Z 1

0

Z 1

0

������
X

(m;n)2K�;N

e2�i(mx+ny)

������
p

dxdy � CpN2p�2



10 J. MARSHALL ASH

uniformly with respect to � and N .

But this was still not the end of the line for paper [AAJRS2]. We resubmitted
the paper with the Triangle Lemma linked in, but the referee then pointed out that
the proof of the Triangle Lemma was just �ne, but that the linkage was defective.
We now needed a number theory fact that none of us knew, namely:

Lemma 3. Almost every point � has the property that there are in�nitely many
primes q and integers k for which

����� � kq
���� < 1

q2
.

But paper [AAJRS2] had taken so long to evolve that the internet was now
equipped with strong enough search engines to allow a one day wrap up. Searching
for "Approximation to Irrational Number by Rational Numbers with Prime De-
nominators" led me directly to Chao-Hua Jia in China. His immediate response to
my email in turn led me to Glyn Harman in England. Harman immediately emailed
me that Lemma 3 was on page 27 of his book![Ha] One last point: we were able to
guess the identity of the referee, from the combination of his previously displayed
expertise in moving from intervals to sets of positive measure, his involvement with
two dimensional estimates like the Triangle Lemma, and his extreme generosity.
Since Fedja Nazarov would not let us make him a coauthor, I thank him here.



ON CONCENTRATING IDEMPOTENTS 11

3. The Future

3.1. A segue. The Triangle Lemma, Lemma 2 was a natural conjecture sinceZ 1

0

Z 1

0

������
X

jmj;jnj�N

e2�i(mx+ny)

������
p

dxdy

=

Z 1

0

Z 1

0

������
X

jmj�N

e2�imx
X
jnj�N

e2�iny

������
p

dxdy

=

8<:
Z 1

0

������
X

jmj�N

e2�imx

������
p

dx

9=;
2

=
�
O
�
Np�1�	2 = O �N2p�2� :

Furthermore, Z 1

0

Z 1

0

������
X

(m;n)2K�;N

e (mx+ ny)

������ dxdy � Cp ln2N;
(which is again obvious when K�;N is replaced by the square fjmj ; jnj � Ng) had
been proved by Yudin and Yudin.[YY] Their proof involved a number theoretic
argument and luckily extended directly to p > 1. (See [As2].)

Thinking further about the Triangle Lemma led me to think about generaliza-
tions. First of all, every convex polygon can be decomposed into a �nite number
of triangles, so it is almost immediate that an estimate like (2.1) holds for convex
polygons in general. The next thought was to try to push the result up to three
dimensions. Unfortunately, the number theory required to extend the method to a
higher dimension appeared formidable.

The one dimensional integralZ 1

0

������
X
jkj�N

e2�ikx

������ dx w 4

�2
lnN

is called the �Lebesgue constant.�The Lp Lebesgue constant isZ 1

0

������
X
jkj�N

e2�ikx

������
p

du w �pNp�1:

Since fk 2 Z : jkj � Ng = N [�1; 1] is the set of lattice points in the dilate of the
one dimensional convex polygon [�1; 1] by N , it is natural to let

LN (D) =

Z
Td

������
X

k2ND\Zd
e2�ik�x

������
p

dx

be a d-dimensional Lp Lebesgue constant for any bounded set D � Rd. This raised
the following two questions. (1) If p > 1 and D is a d-dimensional polyhedron, do
there exist constants c = c (p;D) and C = C (p;D) so that

cNd(p�1) � LN (D) � CNd(p�1)?



12 J. MARSHALL ASH

(2) What can be said for more general bounded d-dimensional sets with nonempty
interior?

The �rst question became much more accessible when Elijah Li�yand told me
that Belinsky had proved the p = 1 analogue of this with a methodology that
avoided the delicate number theory completely.[BT] With respect to the second
question, here is a conjecture.

Conjecture 1. If D is a bounded d-dimensional set with nonempty interior
then

cNd(p�1) � LN (D) �8><>:
CNd(p�1) if p > 2d

d+1

CN
d�1
2 p ln

d+1
2d pN if p = 2d

d+1

CN
d�1
2 p if 1 < p < 2d

d+1

:

Laura De Carli and I have a¢ rmed the �rst question and have some partial
progress that points toward the conjecture in a recently submitted paper.[AD]

3.2. The L1 concentration question. Aline Bonami and Szilárd Gy. Révész
appear to have disproved the main conjecture of [AAJRS2]. Evidentially Lp con-
centration does occur for p = 1 and even for some p < 1 as well. These results
should appear soon. To keep abreast of developments, look at Révész�s website,
http://www.renyi.hu/~revesz/preprints.html.

3.3. A conjecture about operators. A long standing question about con-
volution operators is this.

Conjecture 2. Let p > 2. If a convolution operator is w: (p; p), then it must
also be s: (p; p).

I have no feelings either way concerning the truth of this conjecture. Misha
Zafran warned me of di¢ culty in 1977, so I am not too surprised to see that it is
still unsolved.
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