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This article completes the more than a half a century old problem of finding the 
equivalences between generalized Riemann derivatives. The real functions case is 
studied in a recent paper by the authors. The complex functions case developed 
here is more general and comes with numerous applications.
We say that a complex generalized Riemann derivative A implies another com-
plex generalized Riemann derivative B if whenever a measurable complex function 
is A-differentiable at z then it is B-differentiable at z. We characterize all pairs 
(ΔA, ΔB) of complex generalized Riemann differences of any orders for which A-
differentiability implies B-differentiability, and those for which A-differentiability 
is equivalent to B-differentiability. We show that all m points based generalized 
Riemann difference quotients of order n that Taylor approximate the ordinary nth 
derivative to highest rank form a projective variety of dimension m − n for which 
an explicit parametrization is given.
One application provides an infinite number of equivalent ways to define analyticity. 
For example, a function f is analytic on a region Ω if and only if at each z in Ω, 
the limit

lim
h→0

f(z + h) + f(z + ih) − f(z − h) + f(z − ih) − 2f(z)
2h

exists and is a finite number. Four more applications relate the classification of 
complex generalized Riemann derivatives to analyticity and the Cauchy-Riemann 
equations, and to the theory of best approximations.

© 2021 Elsevier Inc. All rights reserved.

A complex function f is n times Peano differentiable at z if there exist complex numbers f0(z), f1(z), . . . ,
fn(z) such that, as h tends to 0,

f(z + h) = f0(z) + f1(z)h + · · · + fn(z)h
n

n! + o(hn).

Taylor expansion shows that if f is n times ordinary differentiable at z then it is n times Peano differentiable
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at z and the nth Peano derivative fn(z) equals the nth ordinary derivative f (n)(z). The converse is in general 
false. Indeed, for n ≥ 2, the function f defined as f(z) = zn+1 for z rational, and f(z) = 0 for any other 
complex number z is n times Peano differentiable at 0, with fn(0) = 0, and is not twice ordinary differentiable 
at 0.

Let A = {A1, . . . , Am; a1, . . . , am} be a 2m-vector of complex numbers such that a1, . . . , am are distinct 
and satisfy the Vandermonde conditions 

∑m
i=1 Aia

j
i = δjnn!, for j = 0, 1, . . . , n. A complex function f is n

times generalized Riemann differentiable in the sense of A at z, or f is A-differentiable at z, if the limit

DAf(z) = lim
h→0

A1f(z + a1h) + A2f(z + a2h) + · · · + Amf(z + amh)
hn

exists and is a finite number. The numerator ΔAf(z, h) is called an nth generalized Riemann difference. 
The Vandermonde conditions imply that m > n. Furthermore, if the nth Peano derivative exists at a point, 
then every nth generalized Riemann derivative exists and agrees with it.

Real generalized Riemann derivatives were introduced by Denjoy in [22]. Special cases are the nth Rie-
mann derivative that has ΔAf(x, h) =

∑n
i=0(−1)i

(
n
i

)
f(x +(n − i)h), which is the ordinary derivative when 

n = 1; and the nth symmetric Riemann derivative that has ΔAf(x, h) =
∑n

i=0(−1)i
(
n
i

)
f(x + (n2 − i)h), 

which is the first symmetric derivative when n = 1, and is the Schwarz derivative when n = 2. Stein and 
Zygmund have shown in [47,51] that the generalized Riemann derivatives have numerous applications in the 
theory of trigonometric series.

The first classification of real generalized Riemann derivatives is due to Ash in [3], where it was shown 
that if f is A-differentiable of order n on a measurable set E, then a.e. on E, f has n Peano derivatives. 
This means that all nth generalized Riemann derivatives are a.e. equivalent to the nth Peano derivative, 
and consequently to one another. In other words, all generalized Riemann derivatives classify, according 
to a.e. equivalence, as only one equivalence class for each order of differentiation. Ash’s result followed an 
earlier result of Marcinkiewicz and Zygmund in [37] that the nth Riemann derivative is a.e. equivalent to 
the nth Peano derivative. This in turn was preceded by a result of Khintchine in [34] on the a.e. equivalence 
between the symmetric and the ordinary first derivatives.

Pointwise results on generalized Riemann derivatives are relatively less common in the literature. Basic 
examples like f(x) = |x|, which is symmetrically differentiable but not differentiable at 0, had suggested 
until very recently that pointwise generalized Riemann derivatives are far from the ordinary derivatives, 
hence from each other. Then, a remarkable phenomenon observed in [12], that the first generalized Riemann 
differentiation

DAf(x) = lim
h→0

2f(x + h) + f(x− h) − 3f(x)
h

is equivalent to ordinary differentiation, led to the classification of all first order generalized Riemann 
derivatives at x that are equivalent to the ordinary first order derivative [12, Theorem 1]. Restated later on 
as Theorem 3.4, this theorem provides the equivalence class of the ordinary first order derivative at x under 
the relation “A is equivalent to B” if, “for all measurable functions f and points x, f is A-differentiable 
at x is equivalent to f is B-differentiable at x”. This equivalence class is much smaller than all first order 
generalized Riemann derivatives. The same theorem shows that no generalized Riemann derivative can ever 
be pointwise equivalent to any ordinary derivative of order > 1.

Description of results. This article has five main results: Theorems 2.4 and 2.8 on the classification 
of complex A-derivatives, Theorem 3.1 on A-differentiation and �-grading, Theorem 4.3 on the numerical 
analysis of complex A-derivatives, and Theorem 6.6 on the connection between group algebras and A-
derivatives. In addition, there are five applications: Propositions 3.5, 3.8 and 3.9 on A-differentiation and 
analyticity, and Theorems 5.2 and 5.3 on best approximations and the classification of complex A-derivatives.
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We now list general descriptions of the contents of each of the six sections that comprise this paper.
Section 1. The classification of all real generalized Riemann derivatives of all orders according to pointwise 

equivalence is given in [13]. A detailed description of the real classification is included in this section. The 
classification is given in terms of even and odd components of a generalized Riemann difference, and its 
proof involves the group algebra of the multiplicative group of the real numbers over the real field, whose 
torsion subgroup, or the subgroup of all elements of finite order, is G1 = {±1} = U2.

Section 2. Both the almost everywhere and pointwise classifications of real generalized Riemann deriva-
tives, and their proofs extend naturally to the more complicated complex case. The proof of the pointwise 
case uses the group algebra of the multiplicative group G of complex numbers over the complex field. The 
torsion subgroup G1 of G is the more complicated union G1 =

⋃∞
�=2 U� of subgroups U� = {1, ω, . . . , ω�−1}, 

where ω = e2πi/�. Therefore, the U2-grading for the real differences, that is, the writing of every difference 
as a unique sum of even and odd differences, will become a U�-grading (or simply an �-grading) for all �, 
that is, every difference ΔAf(z, h) is uniquely a sum of �-graded components

ΔAf(z, h) =
�−1∑
k=0

Δ(k,�)
A f(z, h), where Δ(k,�)

A f(z, h) = 1
�

�−1∑
j=0

ω−kjΔ(k,�)
A f(z, ωjh).

This is consistent with the decomposition of a complex function as a sum of �-graded components, given 
in [16]. As an example, if ΔBf(z, h) = f(x + h) − f(x) is the difference corresponding to the ordinary first 
derivative, then the � = 2-components

Δ(0,2)
B f(z, h) = 1

2{f(z + h) − 2f(z) + f(z − h)} and Δ(1,2)
B f(z, h) = 1

2{f(z + h) − f(z − h)}

are its even and odd components, and the � = 3-components of the same difference are

Δ(0,3)
B f(z, h) = 1

3{f(z + h) + f(z + ωh) + f(z + ω2h)} − f(z),

Δ(1,3)
B f(z, h) = 1

3{f(z + h) + ω2f(z + ωh) + ωf(z + ω2h)},

Δ(2,3)
B f(z, h) = 1

3{f(z + h) + ωf(z + ωh) + ω2f(z + ω2h)},

where ω = e2πi/3. The first main theorem, Theorem 2.4, classifies all pairs (ΔA, ΔB) of generalized Riemann 
differences for which pointwise A-differentiation is equivalent to pointwise B-differentiation, for all measur-
able functions f at z. Specifically, A-differentiation of order n is equivalent to B-differentiation of order ν
if and only if n = ν and, for a fixed � and variable k = 0, . . . , � − 1, Δ(k,�)

A f(z, h) = RΔ(k,�)
B f(z, rh), for 

some R, r �= 0, depending on k, �, that satisfy the normalizing condition Rrn = 1 when k = n mod �. For 
example, when � = 2, the generalized Riemann derivatives A equivalent to ordinary differentiation B, that 
is ΔBf(z, h) = f(z + h) − f(z), are those for which

Δ(0,2)
A f(z, h) = R{f(z + rh) − 2f(z) + f(z − rh)}

Δ(1,2)
A f(z, h) = 1

s
{f(z + sh) − f(z − sh)}

, for R, r, s �= 0,

where the right sides are RΔ(0,2)
B f(z, rh) and 1

sΔ(1,2)
B f(z, sh). For � = 3 and the same B,

Δ(0,3)
A f(z, h) = R{f(z + rh) + f(z + ωrh) + f(z + ω2rh) − 3f(z)},

Δ(1,3)
A f(z, h) = 1{f(z + sh) + ω2f(z + ωsh) + ωf(z + ω2sh)},
s
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Δ(2,3)
A f(z, h) = T{f(z + th) + ωf(z + ωth) + ω2f(z + ω2th)},

where R, T, r, s, t �= 0 and the right sides are RΔ(0,3)
B f(z, rh), 1

sΔ(1,3)
B f(z, sh) and TΔ(2,3)

B f(z, th), respec-
tively.

A similar description is given in the second main theorem, Theorem 2.8, to characterize all pairs of 
generalized Riemann differences (ΔA, ΔB) for which A-differentiation implies B-differentiation.

Section 3. There are many meanings of the notion of smoothness in analysis. The most common is that 
a function f is smooth at z if its derivative f ′ is continuous at z. A. Zygmund defines a different kind 
of smoothness on Page 43 of his book [51]. This is related to the notions of modulus of continuity and 
generalized Lipschitz conditions, and can be rephrased as follows: f is Z-smooth at z if

lim
h→0

f(z + h) − 2f(z) + f(z − h)
h

= 0.

Note that the difference in the numerator is a second difference, while the denominator is degree one. 
Moreover, Z-smoothness does not change when the numerator in its defining limit is replaced by any non-
zero scalar multiple of itself.

The notion of Z-smoothness extends naturally to generalized Riemann Z-smoothness. Throughout this 
paper, smooth means Z-smooth. If A is the data vector of a difference ΔA, which is a scalar multiple of a 
generalized Riemann difference of order > n, then a function f is n times A-smooth at z if

lim
h→0

ΔAf(z, h)
hn

= 0.

Section 3 is about A-differentiability and A-smoothness and their relation with �-grading and analyticity. 
The third main theorem, Theorem 3.1, relates the A-differentiability and A-smoothness with the �-grading. 
For the earlier example with � = 2 and B-differentiation is the first ordinary differentiation, Theorem 3.1
says in Corollary 3.2 that a function f is first order ordinary differentiable at z if and only if there exists a 
complex number L such that the following two limit equations hold at z:

lim
h→0

f(z + h) − 2f(z) + f(z − h)
2h = 0 and lim

h→0

f(z + h) − f(z − h)
2h = L.

In other words, if A1 = {1/2, −1, 1/2; 1, 0, −1} and A2 = {1/2, −1/2; 1, −1}, the even part of f is 1 time A1-
smooth, while the odd part of f is A2-differentiable of order 1. (A1 can be replaced with {1, −2, 1; 1, 0, −1}
or any other rescale of the first three entries; whereas because of the definition of generalized Riemann 
differentiation, the first two entries in A2 cannot be rescaled.)

In the case when � = 3 and the same B, the same theorem says that f is differentiable at z if and only if 
there exists a complex number L such that the following three limit equations hold at z:

lim
h→0

f(z + h) + f(z + ωh) + f(z + ω2h) − 3f(z)
3h = 0,

lim
h→0

f(z + h) + ω2f(z + ωh) + ωf(z + ω2h)
3h = L,

lim
h→0

f(z + h) + ωf(z + ωh) + ω2f(z + ω2h)
3h = 0.

These amount to two conditions of first order smoothness and one condition of first order generalized 
Riemann differentiability. Since these two systems are equivalent to the same B-differentiation, Remark 3.3
says that the two systems must be equivalent via elementary row operations and h �→ rh dilations. The 
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direct proof of this equivalence is left as an exercise to the reader. The case � = 2 vs. � = 4 is worked out 
completely within the same remark.

Section 3.1 ends with an application of the classification Theorem 2.4 to analytic functions: Proposition 3.5
provides infinitely many definitions of analyticity.

Section 3.2 has two applications of Theorem 3.1 to analytic functions: by expressing the fundamental 
theorem on analytic functions and Cauchy-Riemann in terms of the symmetric Cauchy-Riemann relations 
in Proposition 3.8, or the generalized Cauchy-Riemann relations in Proposition 3.9. These involve either 
symmetric partial derivatives or generalized partial derivatives in place of ordinary partial derivatives of the 
real and imaginary parts of an analytic function.

Section 4. This is devoted to the numerical analysis of generalized Riemann derivatives. For example, 
Taylor expansion around z of the Schwarz second symmetric difference Δ1f(z, h) = f(z+h) −2f(z) +f(z−h)
yields

Δ1f(z, h) = [f(z) + f ′(z)
1! h + f ′′(z)

2! h2 + f ′′′(z)
3! h3 + f (4)(z)

4! h4 + · · · ] − 2f(z)

+ [f(z) − f ′(z)
1! h + f ′′(z)

2! h2 − f ′′′(z)
3! h3 + f (4)(z)

4! h4 − · · · ]

= 2f
′′(z)
2! h2 + 2f

(4)(z)
4! h4 + · · ·

and division by h2 in the equality of the first and last terms produces

Δ1f(z, h)
h2 = f ′′(z) + 2f

(4)(z)
4! h2 + · · · .

Read this as saying that the second difference quotient Δ1f(z, h)/h2 approximates f ′′(z) with error of 
magnitude O(h2). Similar work done for the three points based second difference, Δ2f(z, h) = 2

3 [f(z +h) +
ωf(z + ωh) + ω2f(z + ω2h)], where ω = e2πi/3, yields

Δ2f(z, h)
h2 = f ′′(z) + 2!f

(5)(z)
5! h3 + · · · ,

so the second difference quotient Δ2f(z, h)/h2 approximates f ′′(z) with an error of magnitude O(h3). In 
particular, this approximation is better than the Schwarz approximation.

In general, an m points based generalized difference quotient of order n approximates the nth deriva-
tive f (n)(z) with an error of magnitude O(hr), where r is the rank of the first non-zero term in the Taylor 
approximation. Theorem 4.1 says that, for all such approximations, r ≤ m = the number of base points and, 
for some, equality is attained. Those m points based generalized Riemann difference quotients of order n

for which r = m are called highest rank approximations.
The fourth main theorem, Theorem 4.3, shows that these highest rank approximations form a symmetric 

projective variety of dimension m −n for which an explicit parametrization is given. Back to our last example, 
all three points based generalized Riemann difference quotients that approximate the second derivative f ′′(z)
to highest rank m = 3 form a variety of dimension m − n = 3 − 2 = 1. These are all rescales 1

t2 Δ2f(z, th)
of Δ2f(z, h), for a non-zero complex parameter t.

Section 5. The main classification theorems, Theorems 2.4 and 2.8, are applied in this section to the 
theory of highest rank approximations developed in Section 4. Specifically, for any two A-derivatives that 
are either equivalent or imply each other (hence they have the same order n), and at least one of them is a 
highest rank approximation of the nth ordinary derivative, we relate the expressions of the error terms in 
their corresponding approximations.
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Section 6. This contains the proofs of the first two main theorems, Theorem 2.4 and Theorem 2.8. These 
are based on a fifth main theorem, Theorem 6.6, which translates the implication and equivalence of A-
derivatives into the containment and equality of principal ideals of the group algebra of the multiplicative 
group of complex numbers over the field of complex numbers. The properties of this group algebra, which 
is a more complicated object of abstract algebra than its real analog, are outlined in the first half of the 
section. Other instances where the abstract algebra theory of ideals is applied to (functional) analysis are 
provided in [20,33,42,46].

The present paper is not the first instance where complex A-derivatives have been investigated. For 
example, the nth roots of unity derivative of Section 4.1 first appeared in [36]. In the real case, an appli-
cation to continuity of the classification of real A-derivatives in [13] is given in [2]. Equivalences between 
Peano and sets of generalized Riemann derivatives are studied in [7,14,15,21,29]. Some general properties 
of ordinary differentiation, such as the mean value theorem, convexity or monotonicity, have been shown 
to hold to a certain extent for A-differentiation; see [9,28,31,32,38,44,48–50]. Quantum Riemann derivatives 
were investigated in [11] and [5], and multidimensional Riemann derivatives in [6]. Sufficient conditions that 
make certain first order A-differentiations imply the ordinary first order differentiation appeared in [17] and 
[43]. Best approximations real A-derivatives of orders n = 1, 2 have been investigated in [8,10] and [45]. For 
more on Peano derivatives, see [19,24–27,30,35,40]. Reviews on generalized Riemann and Peano derivatives 
are found in [4] and [23].

1. Previous work: the real case

This section outlines the results in [13] on the classification of real generalized Riemann derivatives. These 
will be extended to the complex domain in Section 2.

1.1. Even and odd functions and differences

Recall that a real function f is even if f(−h) = f(h), for all h, and is odd if f(−h) = −f(h), for all h. 
In addition, every function f is expressed uniquely as a sum

f = f0 + f1

of an even function f0 and an odd function f1. The unique expressions of f0 and f1 are

f0(x) = f(x) + f(−x)
2 and f1(x) = f(x) − f(−x)

2 .

A difference ΔAf(x, h) =
∑m

i=1 Aif(x +aih) is even if ΔAf(x, −h) = ΔAf(x, h) and is odd if ΔAf(x, −h) =
−ΔAf(x, h).

The following property is proved within text in [13, Section 2].

Proposition 1.1. Let ΔAf(x, h) be a generalized Riemann difference of order n.
(i) If ΔAf(x, h) is an even difference, then n must be even.
(ii) If ΔAf(x, h) is an odd difference, then n must be odd.

Every difference ΔAf(x, h) is expressed uniquely as a sum

ΔAf(x, h) = Δev
A f(x, h) + Δodd

A f(x, h)

of an even difference Δev
A f(x, h) and an odd difference Δodd

A f(x, h). Their expressions are
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Δev
A f(x, h) = ΔAf(x, h) + ΔAf(x,−h)

2 , Δodd
A f(x, h) = ΔAf(x, h) − ΔAf(x,−h)

2 .

Proposition 1.2. [13, Theorem 4] Let ΔAf(x, h) be a generalized Riemann difference of order n and let 
Δε

Af(x, h) and Δε′

Af(x, h) be the odd/even components of ΔAf(x, h) that have the same or opposite parity 
as n. Then

(i) Δε
Af(x, h) is a generalized Riemann difference of order n;

(ii) Δε′

Af(x, h) is a scalar multiple of a generalized Riemann difference of order > n.

1.2. The classification of real generalized Riemann derivatives

A rescale by r of an nth generalized Riemann difference ΔAf(x, h) =
∑

i Aif(x + aih) of a function f
at x is the difference ΔAr

f(x, h) = r−n
∑

i Aif(x + airh). This is an nth generalized Riemann difference 
with data vector Ar = {r−nAi; air}. One can easily check that a measurable function f is A-differentiable 
at x if and only if it is Ar-differentiable at x and, if this is the case, then DAf(x) = DAr

f(x).
The following theorem is a rephrase of [13, Theorem 2]. It classifies all pairs (ΔA, ΔB) of generalized 

Riemann differences for which pointwise A-differentiability is equivalent to pointwise B-differentiability for 
measurable functions f .

Theorem 1.3 (The equivalence of real generalized Riemann derivatives). Let A and B be data vectors corre-
sponding to generalized Riemann differences of orders m and n. For measurable functions f , the following 
are equivalent:

(i) f is A-differentiable at x if and only if f is B-differentiable at x;
(ii) m = n and

ΔBf(x, h) = r−nΔε
Af(x, rh) + AΔε′

Af(x, sh),

for some non-zero real numbers A, r, s.

Part (ii) of the above theorem says that the components of ΔAf(x, h) and ΔBf(x, h) satisfy the system 
of identities

Δε
Bf(x, h) = Δε

Af(x, h) up to a nonzero rescale, and

Δε′

Bf(x, h) = AΔε′

Af(x, h), A �= 0, up to a nonzero dilate.

The following theorem classifies all pairs (ΔA, ΔB) of generalized Riemann differences for which pointwise 
A-differentiability implies pointwise B-differentiability for measurable functions f . It is a rephrase of [13, 
Theorem 3].

Theorem 1.4. Let A and B be data vectors of generalized Riemann differences of orders m and n. For 
measurable functions f , the following statements are equivalent:

(i) f is A-differentiable at x =⇒ f is B-differentiable at x;
(ii) m = n and the component differences Δε

Bf(x, h) and Δε′

Bf(x, h) are finite linear combinations

Δε
Bf(x, h) =

∑
i

UiΔε
Af(x, uih) and Δε′

Bf(x, h) =
∑
i

ViΔε′

Af(x, vih)

of non-zero ui-dilates of Δε
Af(x, h) and vi-dilates of Δε′

Af(x, h).
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2. The classification of complex generalized Riemann derivatives

Theorem 1.3 above can be easily modified to also give a classification of complex generalized Riemann 
derivatives into equivalence classes for pointwise differentiations: Simply allow the nonzero numbers A, r
and s to be complex. This is the � = 2 case of our main theorem, Theorem 2.4, below.

What is interesting about Theorem 2.4 is that it gives an infinite number of ways to obtain the same 
equivalence class decomposition. These classifications, corresponding to the � = 3, 4, . . . cases of Theorem 2.4, 
allow us to begin to understand how the symmetries of the much larger torsion subgroup of the multiplicative 
group of nonzero complex numbers leads to new interesting generalized Riemann derivatives. For example, as 
we shall show in Section 5 below, some of these new derivatives have a role in complex approximation theory.

2.1. Generalized even and odd functions and differences

The notions of even and odd functions were generalized in [16]. Fix an integer � > 1, and let ω = e2πi/�

be a primitive �th root of unity. A complex function f is type (k, �), for k = 0, 1, . . . , � − 1, if

f(ωz) = ωkf(z), for all z.

Each complex function f is expressed uniquely as a sum

f(z) =
�−1∑
k=0

fk(z)

of type (k, �) functions fk, for k = 0, 1, . . . , � − 1. The component function fk has the expression

fk(z) = 1
�

�−1∑
j=0

ω−kjf(ωjz).

When z = x and � = 2, ω = −1 and the two terms f0(x) and f1(x) are the even and odd components 
of f(x) that were discussed at the beginning of the previous section.

By analogy with the previous section, a difference ΔAf(z, h) is a type (k, �) difference, for k = 0, 1, . . . , � −
1, if

ΔAf(z, ωh) = ωkΔAf(z, h), for all z and h.

The following is the extension to complex numbers of the result of Proposition 1.1.

Proposition 2.1. If an nth complex generalized Riemann difference ΔAf(z, h) is a type (k, �) difference, for 
some k = 0, 1, . . . , � − 1, then k = n mod �.

Proof. Suppose ΔAf(z, h) =
∑

Aif(z + aih) and recall that this is a generalized Riemann difference if ∑
Aia

s
i = δnsn!, for s = 0, 1, . . . , n. The condition making ΔAf(z, h) a type (k, �) difference is∑

Aif(z + aiωh) = ωk
∑

Aif(z + aih).

The equality of the nth Vandermonde expressions in both sides,∑
Ai(aiω)n = ωk

∑
Aia

n
i ,
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when simplified by the nonzero factor 
∑

Aia
n
i = n!, leads to ωn = ωk, which is equivalent to k = n

mod �. �
Each difference ΔAf(z, h) is expressed uniquely as a sum

ΔAf(z, h) =
�−1∑
k=0

Δ(k,�)
A f(z, h),

where Δ(k,�)
A f(z, h) is a type (k, �) difference, for k = 0, . . . , � − 1. The type (k, �) component Δ(k,�)

A f(z, h)
of ΔAf(z, h) has the expression

Δ(k,�)
A f(z, h) = 1

�

�−1∑
j=0

ω−kjΔAf(z, ωjh).

The following is the extension to complex numbers of the result of Proposition 1.2.

Proposition 2.2. Let ΔAf(z, h) be an nth complex generalized Riemann difference and let Δ(k,�)
A f(x, h) be 

its type (k, �) component, for some k = 0, 1, . . . , � − 1.
(i) If k = n mod �, then Δ(k,�)

A f(z, h) is an nth generalized Riemann difference.
(ii) If k �= n mod �, then Δ(k,�)

A f(z, h) is a scalar multiple of a generalized Riemann difference of order 
> n.

Proof. The type (k, �) component of ΔAf(z, h) =
∑

Aif(z + aih) is

Δ(k,�)
A f(z, h) = 1

�

�−1∑
j=0

ω−kjΔAf(z, ωjh) = 1
�

∑
i

�−1∑
j=0

Aiω
−kjf(z + aiω

jh).

Its sth Vandermonde condition is

1
�

∑
i

�−1∑
j=0

Aiω
−kj(aiωj)s = 1

�

∑
i

Aia
s
i

�−1∑
j=0

ω−kjωjs = 1
�
δsnn!

�−1∑
j=0

(ωs−k)j .

This equals zero when s < n, and is 1
�n! 

∑�−1
j=0(ωn−k)j when s = n. The last expression is n! when k = n

mod �, making Δ(k,�)
A f(z, h) an nth generalized Riemann difference, and is zero when k �= n mod �, making 

Δ(k,�)
A f(z, h) a scalar multiple of a generalized Riemann difference of order > n. �
Let A be the data vector of any difference ΔAf(z, h) and let A(k,�) be the data vector of Δ(k,�)

A f(z, h), 
for � ≥ 2 and k = 0, 1, . . . , � − 1. Note that A(k,�) = ∅ when Δ(k,�)

A f(z, h) = 0.

Corollary 2.3. Fix positive integers � and n, with � ≥ 2. The following statements are equivalent:
(i) A = {Ai; ai} satisfies 

∑
Aia

j
i = 0, for j = 0, 1, . . . , n.

(ii) A(k,�) = {A(k,�)
i ; a(k,�)

i } satisfies 
∑

A
(k,�)
i (a(k,�)

i )j = 0, for j = 0, 1, . . . , n.

Proof. The hypothesis (i) means that ΔAf(z, h) is a scalar multiple of a generalized Riemann difference 
of order > n. By Proposition 2.2, so are the component differences Δ(k,�)

A f(z, h), for k = 0, 1, . . . , � − 1, 
hence (ii). Conversely, for each j, the jth condition in (i) is obtained by adding the jth conditions in (ii) 
for k = 0, 1, . . . , � − 1. �
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2.2. The classification of complex generalized Riemann derivatives

In this section we extend the classification of real generalized Riemann derivatives in Theorems 1.3 and 1.4
to the classification of complex generalized Riemann derivatives. This is given in Theorems 2.4 and 2.8. We 
shall see that the complex results are much more involved.

The first complex classification theorem generalizes the real result of Theorem 1.3 to the complex domain: 
it characterizes the pairs (ΔA, ΔB) of complex generalized Riemann differences for which A-differentiation 
is equivalent to B-differentiation.

Theorem 2.4 (The equivalence of complex generalized Riemann derivatives). Let A and B be the data vectors 
of complex generalized Riemann differences of orders m and n. For measurable complex functions f , the 
following statements are equivalent:

(i) f is A-differentiable at z ⇐⇒ f is B-differentiable at z;
(ii) m = n and, for each � ≥ 2 and k = 0, . . . , � − 1, there exist non-zero constants Rk, rk, with Rk = r−n

k

when k = n mod �, such that

Δ(k,�)
B f(z, h) = RkΔ(k,�)

A f(z, rkh).

The proof, given in Section 6, uses a tool from abstract algebra: the group algebra of the multiplicative 
group C× of complex numbers over the base field C.

The simplest possible example of a pair of equivalent generalized Riemann derivatives is one where 
A = {Aj ; aj} and B = {s−nAj ; saj} is an s-rescale of A. In this case, both parts of Theorem 2.4 easily hold: 
(i) by change of variable h �→ sh; and (ii) happens with every Rk being s−n.

Example 2.5. Fix � > 1 and let A be the ordinary first order differentiation, i.e. ΔAf(z, h) = f(z+h) −f(z). 
For each k = 0, . . . , � − 1, let

Δkf(z, h) =

⎧⎨⎩
1
�

∑�−1
i=0 f(z + ωih) − f(z) if k = 0,

1
�

∑�−1
i=0 ω

−ikf(z + ωih) if k > 0.

Then k!Δkf(z, h) is a generalized Riemann difference of order k when k �= 0, and of order � when k = 0. 
Moreover, for each k, Δkf(z, h) is a type (k, �) difference and

f(z + h) − f(z) =
�−1∑
k=0

Δkf(z, h).

The uniqueness of the decomposition of a difference as a sum of type (k, �) differences makes Δ(k,�)
A f(z, h) =

Δkf(z, h), for k = 0, . . . , � − 1, a fact that we could have also checked directly. By the main classification 
Theorem 2.4, the complex generalized Riemann derivatives B equivalent to A are those with

ΔBf(z, h) =
�−1∑
k=0

RkΔkf(z, rkh),

for some non-zero constants Rk, rk, for k = 0, . . . , � − 1, with R1 = r−1
1 .
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Example 2.6. Set � = 3 and ω = e2πi/3. Then

Δ0f(z, h) = 1
3
{
f(z + h) + f(z + ωh) + f(z + ω2h)

}
− f(z),

Δ1f(z, h) = 1
3
{
f(z + h) + ω2f(z + ωh) + ωf(z + ω2h)

}
,

Δ2f(z, h) = 1
3
{
f(z + h) + ωf(z + ωh) + ω2f(z + ω2h)

}
,

are generalized Riemann differences of respective orders 3, 1, 2. By Theorem 2.4, the differences of the form

AΔ0f(z, rh) + 1
s
Δ1f(z, sh) + BΔ2f(z, th),

for nonzero constants A, B, r, s, t, are those equivalent to ordinary differentiation.

Example 2.7. Let B be the first order generalized derivative with

ΔBf(z, h) = Δ1f(z, h) = 1
3
{
f(z + h) + ω2f(z + ωh) + ωf(z + ω2h)

}
as mentioned above. Then ΔB is a type (1, 3) difference. In particular, both its type (0, 3) and type (2, 3)
components are zero, so by the previous example, B-differentiation is not equivalent to ordinary differenti-
ation.

The second main classification theorem characterizes the pointwise implication relation between complex 
generalized Riemann derivatives.

Theorem 2.8 (The implication relation on complex generalized Riemann derivatives). Let �, m, n be positive 
integers, with � ≥ 2, and let A and B be complex generalized Riemann derivatives of orders m and n, 
respectively. Then the following statements are equivalent for all measurable functions f and points z:

(i) f is A-differentiable at z =⇒ f is B-differentiable at z;
(ii) m = n and, for each k = 0, 1, . . . , � − 1, Δ(k,�)

B f(z, h) is a linear combination

Δ(k,�)
B f(z, h) =

∑
i

R
(k,�)
i Δ(k,�)

A f(z, r(k,�)
i h),

of r(k,�)
i -dilates of Δ(k,�)

A f(z, h) such that 
∑

i R
(k,�)
i

(
r
(k,�)
i

)n
= 1 when k = n mod �.

Remark 2.9. (i) Part (i) in Theorem 2.8 is independent of �, while part (ii) is �-dependent. This means that 
when part (ii) holds true for an �, it holds true for all �, � ≥ 2.

(ii) If � = 2 then ω = −1. In this case, the type (0, 2) differences are the even differences, and the type 
(1, 2) differences are the odd differences. Moreover, when � = 2, the complex classification Theorems 2.4
and 2.8 are obtained from the real classification Theorems 1.3 and 1.4 by extending scalars. On the other 
hand, by looking at the cases when � > 2, it is clear that the complex classification is more than just scalar 
extending the real classification.

Since any equivalence is the compound of two implications, it is quite clear how Part (i) of Theorem 2.8
can be used to prove Part (i) of Theorem 2.4. However, when extrapolating this to Parts (ii), it is not obvious 
how the compound of two complicated expressions has a very easy expression. Indeed, this is achieved using 
a powerful theorem of group algebras, Lemma 6.4, which is a significant extension of the following basic 
abstract algebra property of polynomials in one indeterminate over any field.
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It is well known that the algebra F [x] of polynomials in one indeterminate x and with coefficients in a 
field F is a principal ideal domain. Let f(x) and g(x) be two polynomials in F [x]. Then the inclusion of 
ideals (f(x)) ⊆ (g(x)), means that f(x) = g(x)p(x) for some p(x) ∈ F [x]. On the other hand, by abstract 
algebra, the equality of ideals (f(x)) = (g(x)) amounts to f(x) = Ag(x), for some nonzero scalar A. This 
is a much easier expression than the equivalent compound of f(x) = g(x)p(x) and g(x) = f(x)q(x) coming 
from the double inclusion of ideals.

3. Graded generalized Riemann differentiation and Cauchy-Riemann

By Proposition 2.2, the property of a difference ΔAf(z, h) of a function f at z that makes it an nth 
generalized Riemann difference is not a graded property relative to the standard �-grading

ΔAf(z, h) =
�−1∑
k=0

Δ(k,�)
A f(z, h).

This means that the difference ΔAf(z, h) being an nth generalized Riemann difference is not equivalent 
to all Δ(k,�)

A f(z, h), k = 0, 1, . . . , �, being nth generalized Riemann differences. Instead, this is graded-
intertwined with being a scalar multiple of a higher order generalized Riemann difference, for some of 
the graded components Δ(k,�)

A f(z, h). Nevertheless, it is an easy exercise to prove that the property of a 
difference that makes it a scalar multiple of a generalized Riemann difference of order > n is graded, and so 
is the compound notion of either an nth generalized Riemann or a scalar multiple of a generalized Riemann 
difference of order > n.

Dividing by hn and taking limit as h → 0, the main result of the section, Theorem 3.1 implicitly says 
that the existence of the difference quotient limit is graded, i.e.,

lim
h→0

ΔAf(z, h)
hn

=
�−1∑
k=0

lim
h→0

Δ(k,�)
A f(z, h)

hn
,

for each difference ΔAf(z, h) of order at least n. Using the concept of generalized Riemann smoothness, 
which was defined in the Introduction and will be made explicit in Section 3.1 below, Theorem 3.1(i) says 
that the notion of nth generalized Riemann differentiability of a function f at z gets graded-intertwined 
with the one of nth generalized Riemann smoothness of f at z. In addition, the nth generalized Riemann 
smoothness of f at z is a graded property (Theorem 3.1(ii)), and the same is true about the compound 
notion of either nth generalized Riemann differentiability or nth generalized Riemann smoothness of f at z
(both parts of the theorem).

As a consequence of Theorem 3.1, we show in Corollary 3.2 that the ordinary first order differentiability 
of f at z is equivalent to both symmetric differentiability and Z-smoothness of f at z. This applied to an 
analytic function f on a region Ω (resp. to the real components of an analytic function f on Ω) in Proposi-
tion 3.5 (resp. Propositions 3.8 and 3.9) produces infinitely many equivalent ways to define analyticity.

3.1. Grading generalized Riemann differentiation and smoothness

Suppose a difference ΔAf(z, h) of a function f at z and h is a scalar multiple of a generalized Riemann 
difference of order > n. Recall that f is n times A-smooth at z if

lim ΔAf(z, h) = 0.

h→0 hn
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In this way, higher order A-smoothness of a function f at z implies any lower order A-smoothness of f
at z. This is in general not true for A-differentiability. On the other hand, if m > n and f is m times 
A-differentiable at z, then f is n times A-smooth at z. Indeed,

lim
h→0

ΔAf(z, h)
hn

= lim
h→0

ΔAf(z, h)
hm

· h
m

hn
= DAf(z) · 0 = 0.

Thus higher order A-differentiability of f at z implies any lower order A-smoothness of f at z and, as a 
consequence, higher order compound notion of either A-differentiability or A-smoothness of f at z implies 
any lower order of the same compound notion of f at z.

The following theorem characterizes the pointwise notions of nth A-differentiability and n times A-
smoothness of a function f at z in terms of the �-grading. The component vector A(k,�) of A, for k =
0, 1, . . . , � − 1, is the data vector of the component difference Δ(k,�)

A f(z, h) defined in Section 2.1. The 
vector A in Part (i) of the theorem corresponds to an nth generalized Riemann difference, and in Part (ii) 
corresponds to a scalar multiple of a generalized Riemann difference of order > n.

Theorem 3.1. Let f be a measurable function, let �, n be positive integers with � ≥ 2, and let A = {Ai; ai}
be a vector of 2m complex numbers, with the Ai non-zero and the ai distinct. The following statements hold 
true at z:

(i) f is nth A-differentiable ⇐⇒ f is nth A(k,�)-differentiable, for k = n mod �, and is n times A(k,�)-
smooth, for every other k, with k = 0, 1, . . . , � − 1. In addition,

Dn
A(k,�)f(z, h) := lim

h→0

ΔA(k,�)f(z, h)
hn

= δk,n mod �DAf(z).

(ii) f is n times A-smooth ⇐⇒ f is n times A(k,�)-smooth, for k = 0, 1, . . . , � − 1.

Proof. (i) Suppose f is n times A-differentiable at z, and let k, � be integers with � ≥ 2 and 0 ≤ k < �. 
Then

Dn
A(k,�)f(z) = lim

h→0

ΔA(k,�)f(z, h)
hn

= lim
h→0

1
�

∑�−1
j=0 ω

−kjΔAf(z, ωjh)
hn

= 1
�

�−1∑
j=0

ω−kj lim
h→0

ΔAf(z, ωjh)
ωnjhn

· ωnj = 1
�

�−1∑
j=0

ω(n−k)jDAf(z)

= δk,n mod �DAf(z).

The equality of the first and last terms in the above chain of equalities proves the desired identity and the 
direct implication. The reverse implication is clear.

(ii) Recall from Corollary 2.3 that n times A-smoothness makes sense if and only if so does n times 
A(k,�)-smoothness, for k = 0, 1, . . . , � − 1. Working as in the proof of Part (i), we deduce Dn

A(k,�)f(z) =
δk,n mod �D

n
Af(z). The desired equivalence follows from here, since f is n times A-smooth at z means 

Dn
Af(z) = 0, and f is n times A(k,�)-smooth at z means Dn

A(k,�)f(z, h) = 0. �
Theorem 3.1(i) says that f is A-differentiable at z if and only if there exists a complex number L such 

that the system of � limit equations

lim ΔA(k,�)f(z, h) = δk,n mod �L, for k = 0, . . . , �− 1, (3.1)

h→0 hn



14 J.M. Ash et al. / J. Math. Anal. Appl. 502 (2021) 125270
holds true at z. When this happens, then L = DAf(z). All these limit equations are smoothness conditions 
of order n for f at z, except for the one corresponding to k = n mod �, which is an nth generalized Riemann 
differentiation condition for f at z.

The next corollary writes the above system of limits explicitly in the case when � = 2 and A corresponds 
to the first order ordinary differentiation of f at z.

Corollary 3.2. A complex function f is ordinary differentiable at z if and only if the following two conditions 
hold:

(i) lim
h→0

f(z + h) − 2f(z) + f(z − h)
2h = 0;

(ii) lim
h→0

f(z + h) − f(z − h)
2h exists and is a complex number.

Proof 1. This comes from Theorem 3.1(i) with n = 1, � = 2 and A = {1, −1; 1, 0}, that is ΔAf(z, h) = f(z+
h) −f(z). Indeed, Δ(0,2)

A f(z, h) = 1
2 [f(z+h) +f(z−h)] −f(z) and Δ(1,2)

A f(z, h) = 1
2 [f(z+h) −f(z−h)]. �

Proof 2. Suppose f is differentiable at z. Then the limit in (i) is

1
2 lim

h→0

f(z + h) − f(z)
h

− f(z − h) − f(z)
−h

= 1
2 [f ′(z) − f ′(z)] = 0,

and the limit in (ii) is

1
2 lim

h→0

f(z + h) − f(z)
h

+ f(z − h) − f(z)
−h

= 1
2 [f ′(z) + f ′(z)] = f ′(z).

Conversely, if both (i) and (ii) hold, then the addition of the two limits makes the ordinary derivative f ′(z)
exist as a finite number. �

Recall that a function f satisfying the condition in Part (i) of Corollary 3.2 is Z-smooth at z, and one 
satisfying only the condition in Part (ii) is symmetric differentiable at z; in this case, the value of the limit, 
or the symmetric derivative of f at z, is denoted by f ′

s(z). Corollary 3.2 says that f is differentiable at z if 
and only if it is both Z-smooth and symmetrically differentiable at z. If this is the case, then f ′(z) = f ′

s(z).

Remark 3.3. Corollary 3.2 makes the ordinary differentiation equivalent to a system of two limits. It reflects 
the result of Theorem 3.1(i) for � = 2. Working in the same way for � = 4, ordinary differentiation of f at z
is equivalent to the following system of limits

lim
h→0

f(z + h) + f(z + ih) + f(z − h) + f(z − ih) − 4f(z)
4h = 0,

lim
h→0

f(z + h) − if(z + ih) − f(z − h) + if(z − ih)
4h = L < ∞,

lim
h→0

f(z + h) − f(z + ih) + f(z − h) − f(z − ih)
4h = 0,

lim
h→0

f(z + h) + if(z + ih) − f(z − h) − if(z − ih)
4h = 0.

(3.2)

We expect this system to be equivalent to the one of Corollary 3.2. Indeed, by taking sums and differences 
of the same parity equations, the system (3.2) is reduced to
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lim
h→0

f(z + h) + f(z − h) − 2f(z)
2h = 0, lim

h→0

f(z + h) − f(z − h)
2h = L < ∞,

lim
h→0

f(z + ih) + f(z + ih) − 2f(z)
2h = 0, lim

h→0

f(z + ih) − if(z − ih)
2ih = L.

As the second row limits are equivalent to rescales h �→ ih of the first row limits, the system is reduced to 
only the first row equations, which is the result of Corollary 3.2.

In general, the result of Theorem 3.1(i) makes the system of limits (3.1) for general � equivalent to 
the same system for � = 2. Since the limit operator is linear and invariant under dilations h �→ rh, our 
observation is that the same equivalence is also achieved by elementary row operations and dilations. In 
particular, for each A, the system of limits (3.1) for general � has row-rank ≤ 2, up to dilations. It has 
rank 1 precisely when A corresponds to either an even or an odd difference.

Corollary 3.2 also holds true for real functions instead of complex functions. We leave as an exercise to 
the reader proving that the real version of Corollary 3.2 implies Part A of the theorem we state below. This 
theorem is the main motivation for the classification of real generalized Riemann derivatives in [13], and 
implicitly for the classification of complex generalized Riemann derivatives in this article. We revisit this in 
Example 6.7 where a second proof of the whole theorem is provided.

Theorem 3.4. [12, Theorem 1] A: The first order real A-derivatives which are dilates (h → sh, for some 
s �= 0) of

lim
h→0

A[f(x + rh) + f(x− rh) − 2f(x)] + f(x + h) − f(x− h)
2h ,

where Ar �= 0, are equivalent to ordinary differentiation.
B: Given any other A-derivative of any order n = 1, 2, . . ., there is a measurable function f(x) such that 

DAf(0) exists, but the Peano derivative fn(0) does not.

Theorem 3.4 is also true in the complex case. This is the particular case of Theorem 2.4 where A =
{A1 = 1, A2 = −1; a1 = 1, a2 = 0} corresponds to ordinary first order differentiation.

A region Ω in the complex plane is an open connected set. A function f(z) is analytic on Ω if f ′(z) exists 
at each point z = x + iy on Ω.

The following proposition is our first application of the classification of generalized Riemann derivatives 
to analytic functions. It provides an infinite number of equivalent definitions of analyticity.

Proposition 3.5. The following statements are equivalent for a complex function f defined on a region Ω:
(i) f is analytic on Ω;
(ii) for each z in Ω, there exist non-zero complex numbers Az and rz such that the limit

lim
h→0

Az[f(z + rzh) + f(z − rzh) − 2f(z)] + f(z + h) − f(z − h)
2h

exists and is a finite number.

Proof. Simply apply the complex version of Theorem 3.4 at each point z in Ω. �
The example provided in the Abstract is obtained by taking Az = 1 and rz = i at each point z in Ω.
We close this section with a lemma concerning the behavior of generalized Riemann differentiations under 

taking linear combinations of dilates.
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Lemma 3.6. (i) If ΔAj
f(z, h), for j = 1, . . . , s, are extended nth generalized Riemann differences, then so is ∑

j RjΔAj
f(z, rjh), for any nonzero complex numbers Rj , rj.

(ii) If ΔAj
f(z, h), for j = 1, 2, . . . , s, are nth generalized Riemann differences, then a linear combination 

of dilates 
∑

j RjΔAj
f(z, rjh), where the Rjrj �= 0 for all j, is an nth generalized Riemann difference if and 

only if 
∑

j Rjr
n
j = 1.

Proof. This follows from the explicit writing of the Vandermonde conditions. �
3.2. Cauchy-Riemann equations and generalized Riemann derivatives

For a complex function f of variable z = x + iy, we denote u(z) = u(x, y) and v(z) = v(x, y) as the real 
and imaginary parts of f(z), so that f(z) = u(x, y) + iv(x, y).

The following is a fundamental theorem on analyticity and the Cauchy-Riemann equations; see Ahlfors 
[1, p.68].

Theorem 3.7 (Analyticity and Cauchy-Riemann equations). The following statements are equivalent for a 
complex function f defined on a region Ω:

(i) f is analytic on Ω;
(ii) the components u and v admit continuous partial derivatives on Ω that satisfy the Cauchy-Riemann 

differential equations

∂u

∂x
= ∂v

∂y
,

∂u

∂y
= −∂v

∂x
.

Its proof is based on first showing that the component functions u and v are harmonic, that is, Δu =
0 = Δv. Ahlfors moves on to comment in Chapter II of his book that while the continuity of the partial 
derivatives is a strong condition, basic complex analysis “is not the place to discuss the weakest conditions of 
regularity which can be imposed to harmonic functions.” The goal of this section is to see whether generalized 
Riemann differentiation can be used in weakening the regularity conditions on u and v in Theorem 3.7(ii).

The components u and v of the function f(z) are partially Z-smooth (resp. partially symmetric differen-
tiable) at (x, y) if the partial real maps x �→ u(x, y), y �→ u(x, y), x �→ v(x, y) and y �→ v(x, y) are Z-smooth 
(resp. symmetric differentiable) at (x, y). The symmetric partial derivatives of u at (x, y) are defined by the 
real limits

∂su

∂x
:= lim

h→0

u(x + h, y) − u(x− h, y)
2h ,

∂su

∂y
:= lim

h→0

u(x, y + h) − u(x, y − h)
2h .

Similar definitions are given for the symmetric partial derivatives of v.
The existence of the symmetric partial derivatives is strictly weaker than the existence of the ordinary 

partial derivatives. For example, the function u(x, y) = max(|x|, |y|) has both symmetric partial derivatives 
at (0, 0) equal to 0, while both ordinary partial derivatives at the origin do not exist.

Our second application of the classification of generalized Riemann derivatives characterizes analyticity 
in terms of the symmetric Cauchy-Riemann equations. It is a translation of Theorem 3.7 in the language 
of symmetric partial derivatives and partial Z-smoothness. Weaker conditions such as the existence of 
the symmetric partial derivatives or the symmetric Cauchy-Riemann equations are balanced by stronger 
conditions such as the continuity of the symmetric partial derivatives.
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Proposition 3.8 (Analyticity and symmetric Cauchy-Riemann equations). The following statements are 
equivalent for a complex function f defined on a region Ω:

(i) f is analytic on Ω;
(ii) the components u and v are both partially Z-smooth and admit continuous symmetric partial deriva-

tives on Ω that satisfy the symmetric Cauchy-Riemann equations

∂su

∂x
= ∂sv

∂y
,

∂su

∂y
= −∂sv

∂x
.

Proof. It suffices to show that Part (ii) is equivalent to Theorem 3.7(ii). Indeed, by Corollary 3.2, u and v

are partially differentiable at (x, y) if and only if u and v are both Z-smooth and partially symmetric 
differentiable at the same point. If this is the case, the symmetric partial derivatives of u and v are equal 
to the ordinary ones. This in turn identifies the two continuity conditions and the two Cauchy-Riemann 
systems. �

Let A be the data vector of a first order real generalized Riemann differentiation. A two-variable real 
function g(x, y) is partially A-differentiable with respect to x (resp. y) at (x, y) if the partial map gy : x �→
g(x, y) (resp. gx : y �→ g(x, y)) is A-differentiable at x (resp. y). If this is the case, then

∂Ag

∂x
(x, y) := DAgy(x) and ∂Ag

∂y
(x, y) := DAgx(y)

are the A-partial derivatives of g at (x, y).
Recall from Theorem 3.4 that the real generalized Riemann differentiations equivalent to ordinary 

differentiation are those for which the data vector A is of the form A = A(A, r), where A(A, r) =
{A

2 , 
A
2 , −A, 12 , −

1
2 ; r, −r, 0, 1, −1}, for some nonzero real numbers A and r.

The following proposition is the third application of the classification of generalized Riemann derivatives 
to analyticity. It provides infinitely many equivalent ways of defining analyticity of a complex function f(z) =
u(x, y) + iv(x, y) in terms of the partial generalized Riemann differentiabilities of the real components u

and v and the generalized Cauchy-Riemann equations satisfied by them.

Proposition 3.9 (Analyticity and generalized Cauchy-Riemann equations). The following statements are 
equivalent for a complex function f defined on a region Ω:

(i) f is analytic on Ω;
(ii) There exist non-zero real numbers A1, A2, A3, A4, r1, r2, r3, r4 such that the partial generalized Rie-

mann derivatives

∂A(A1,r1)u

∂x
,
∂A(A2,r2)u

∂y
,
∂A(A3,r3)v

∂x
,
∂A(A4,r4)v

∂y

of u and v exist on Ω, are continuous, and satisfy the generalized Cauchy-Riemann equations

∂A(A1,r1)u

∂x
=

∂A(A4,r4)v

∂y
,

∂A(A2,r2)u

∂y
= −

∂A(A3,r3)v

∂x
.

Proof. This follows from Theorem 3.7 and Theorem 3.4 applied to the partial functions uy, ux, vy, vx. �
4. Numerical analysis of complex generalized Riemann derivatives

The main result here is Theorem 4.3 of Section 4.3, providing an explicit parametrization for the m − n

dimensional symmetric projective variety of highest rank generalized Riemann derivatives of order n based 
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at m points. The main theorem is preceded by the computation of the highest rank in Theorem 4.1 of 
Section 4.1, and a discussion on best numerical estimates in Section 4.2. The last notable result, Theorem 4.7
of Section 4.4 computes the first significant term in the Taylor approximation of the nth derivative by a 
highest rank generalized Riemann difference quotient of order n based at m points. This is followed by a 
discussion on normalizing the same significant term.

4.1. The rank of an m points based generalized Riemann derivative of order n

Fix an order of differentiation n and an integer m, with m ≥ n + 1. Let ω = e2πi/m be a primitive mth 
root of 1. The linear system

m−1∑
j=0

Ajω
jk =

⎧⎪⎨⎪⎩
0 if k = 0, . . . , n− 1
n! if k = n

0 if k = n + 1, . . . ,m− 1
(4.1)

whose coefficient matrix 
(
ωjk

)
is non-singular has a unique solution A0, A1, . . . , Am−1. Then A =

{
Aj ;ωj

}
corresponds to an nth generalized Riemann derivative. We call it the mth roots of unity derivative of order n. 
Observe that if k = m, m + 1, . . . , m + n − 1, then

m−1∑
j=0

Ajω
jk =

m−1∑
j=0

Ajω
j(m+�) =

m−1∑
j=0

Ajω
jmωj�, (4.2)

where � runs from 0 to n − 1. But ωjm = (ωm)j = 1, so by the first n equations of the system (4.1), all the 
n quantities

m−1∑
j=0

Ajω
jk, for k = m,m + 1, . . . ,m + n− 1,

are also 0. Similarly,

m−1∑
j=0

Ajω
j(m+n) =

m−1∑
j=0

Aj (ωm)j ωjn =
m−1∑
j=0

Ajω
jn = n!,

so if f has m + n Peano derivatives, then

m−1∑
j=0

Ajf
(
z + ωjh

)
=

m−1∑
j=0

Aj

m+n∑
k=0

ωjk fk (z)
k! hk + o

(
hm+n

)
(4.3)

=
m+n∑
k=0

⎛⎝m−1∑
j=0

Ajω
jk

⎞⎠ fk (z)
k! hk + o

(
hm+n

)
= n!fn (z)

n! hn + n!fm+n (z)
(m + n)!h

m+n + o
(
hm+n

)
.

Divide the equation of the above first and last terms by hn and get

∑m−1
j=0 Ajf

(
z + ωjh

)
n

= fn (z) + n!fm+n (z)
hm + o (hm) . (4.4)
h (m + n)!
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This gives a clear picture of how the mth roots of unity derivative of order n approximates the nth Peano 
derivative. Observe that there are m − 1 “missing” terms, those of order h1, h2, . . . , hm−1, and any one of 
these terms not being 0 would have resulted in a main error term that would have been infinitely large 
asymptotically as h → 0 when compared with the actual main error term n! fm+n(z)

(m+n)! h
m. The identities

m−1∑
j=0

Aj

(
ωj
)n+1 =

m−1∑
j=0

Aj

(
ωj
)n+2 = · · · =

m−1∑
j=0

Aj

(
ωj
)m+n−1 = 0 (4.5)

are the reason for the missing terms.
Motivated by this example, we create a scale for ranking m points based generalized Riemann derivatives 

of order n by saying that the rank of B = {Bj ; bj} is the natural number r, if 
∑m−1

j=0 Bjb
n+r
j �= 0 and ∑m−1

j=0 Bjb
n+1
j =

∑m−1
j=0 Bjb

n+2
j = · · · =

∑m−1
j=0 Bjb

n+r−1
j = 0. If B1, B2 are m points based generalized 

Riemann derivatives of order n whose ranks r1, r2 satisfy r1 < r2, then B2 is a better approximation of the 
nth Peano derivative than B1 is. This means that the difference quotient ΔB2f(z, h)/hn approximates fn(z)
to higher h-order when compared to ΔB1f(z, h)/hn.

An m points based generalized Riemann derivative of order n is a highest rank approximation of the 
nth Peano derivative if its rank r(m, n) is the largest among the ranks of all m points based generalized 
Riemann derivatives of order n. The above work shows that the mth roots of unity derivative of order n
has rank r = m, so r(m, n) ≥ m. The next theorem shows that r(m, n) = m; that is, the largest possible 
rank of an m points based generalized Riemann derivative of order n is m.

Theorem 4.1. If an nth generalized Riemann derivative is a highest rank approximation, then its rank coin-
cides with the number m of base points.

Proof. Suppose an m points based generalized derivative B = {Bj ; bj} of order n, has rank > m. This would 
mean that

m−1∑
j=0

Bjb
n+i
j = 0, for i = 1, 2, . . . ,m. (4.6)

If all bj �= 0, then det
(
bn+i
j

)
= bn+1

0 · · · bn+1
m−1 · det

(
bij
)
i=0,...,m−1;j=0,...,m−1 �= 0 since det

(
bij
)

is a Van-
dermonde determinant. Thus the matrix 

(
bn+i
j

)
is non-singular, so that the system (4.6) has the unique 

solution of all Bj = 0, contradicting 
∑m−1

j=0 Bjb
n
j = n!.

If some bj = 0, say bm−1 = 0, then the system (4.6) can be written in matrix block form as

⎛⎜⎜⎜⎜⎝
0

B
...
...

bm+n
0 · · · bm+n

m−2 0

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

B0
...
...

Bm−1

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
0
...
...
0

⎞⎟⎟⎟⎟⎠
where B, the m − 1 × m − 1 block matrix 

(
bij
)
i=n+1,...,n+m−1;j=0,...,m−2, is non-singular. Block multipli-

cation gives in particular that B

⎛⎜⎝ B0
...

Bm−2

⎞⎟⎠ =

⎛⎜⎝ 0
...
0

⎞⎟⎠, whence as above B0 = · · · = Bm−2 = 0. But since 

∑m−1
Bj = 0, also Bm−1 = 0 and we arrive at the same contradiction. �
j=0



20 J.M. Ash et al. / J. Math. Anal. Appl. 502 (2021) 125270
4.2. A first refinement of the classification by rank

Next we present a method of determining the relative merits for numerical approximation of m points 
based generalized derivatives of different orders n and highest rank m. Let B = {Bj ; bj} be such a rank m

derivative and compute the number s = mini�=j |bi − bj |. If s = 1, then B is normalized. In general, we assign 
to B a scaled version of itself, B′ =

{
B′

j ; b′j
}
, where B′

j = snBj and b′j = bj/s, for each j, and observe that 
B′ is normalized, since s′ = mini�=j

∣∣b′i − b′j
∣∣ = 1. Call B′ the normalized version of B. Finally, Taylor expand 

the numerical estimate for fn (z) given by B′ arriving at

∑m−1
j=0 B′

jf
(
z + b′jh

)
hn

= fn (z) + E (B′) fm+n (z)
(m + n)!h

m + o (hm) ,

where

E (B′) =
m−1∑
j=0

B′
j

(
b′j
)m+n = 1

sm

m−1∑
j=0

Bjb
m+n
j , where s = min

i�=j
|bi − bj | .

The smaller E is, the better the estimate for fn (z). If there is a rank m derivative with smallest E, then 
we say that derivative provides the best numerical estimate for fn (z). This method is given, together with 
some justification, in reference [8]. Keep in mind, however, that since the rank of the error term in a 
Taylor approximation is much more important than the exact value of its scalar factor, all m points based 
generalized derivatives of order n and rank m are quite good approximations for the nth Peano derivative.

We illustrate the above method by deriving the normalized version of the nth order, mth roots of 
unity derivative A = {Aj ; ωj} we studied in Section 4.1. This has s = mini�=j

∣∣ωi − ωj
∣∣ =

∣∣ω0 − ω1
∣∣ =∣∣1 − e2πi/m

∣∣ = 2 sin π
m . The normalized nth order, mth roots of unity derivative is A′ =

{
A′

j ; ωj

s

}
, where 

s = 2 sin π
m and each A′

j = Ajs
n. This has base points 

{
ω0

s , ω1

s , . . . , ωm−1

s

}
, so that the adjacent ones are 

distance 1 apart. To compute E(A′), start from equation (4.4) and replace each Aj by A′
js

−n to get

1
sn

m−1∑
j=0

A′
jf

(
z + ωj

s
(sh)

)
= 1

sn
fn (z) (sh)n + 1

sn
n!
sm

fm+n (z)
(m + n)! (sh)m+n + o

(
hm+n

)
.

Note that as h → 0, the variable sh also tends to 0 and o (hm+n) = o 
(
(sh)m+n

)
, so after division by hn

and replacement of sh by h we have

∑m−1
j=0 A′

jf
(
z + ωj

s h
)

hn
= fn (z) + n!

sm
fm+n (z)
(m + n)!h

m + o (hm) , (4.7)

where s = 2 sin π
m , so that E (A′) = n!(

2 sin π
m

)m . A glance at the approximations in (4.7) and (4.4) shows that 
the normalized version (4.7) differs by a factor of 1/sm when compared with the original version (4.4).

In [8], the case of m = 3, n = 1 is worked out completely. The normalized first order, cube roots of unity 
derivative is the best possible approximating derivative. It has s = 2 sin π

3 =
√

3 and E = 1!(√
3
)3 =

√
3

9 , which 

is the smallest possible value of E. Furthermore, there are also real-valued generalized Riemann derivatives 
(this means that the {bj}, and consequently also the {Bj}, are real) of order 1 and rank 3 and the best of 
these has E = 2 ·

√
3 .
9



J.M. Ash et al. / J. Math. Anal. Appl. 502 (2021) 125270 21
4.2.1. Questions
We close this discussion on best approximations with a list of seven questions, of which the first two give 

insight into the material in Sections 4.3 and 4.4, and the last five remain open.
1. Is the mth roots of unity derivative of order n always the unique highest rank complex generalized 

Riemann derivative? The answer to this question is YES when n = m − 1 and NO when n < m − 1; see 
Examples 4.5 and 4.6 below. When all base points have modulus one, the answer to the same question is 
YES, for each n, n = 1, 2, . . . , m − 1; see Theorem 4.10.

2. Since all best numerical estimates are among all rank m generalized Riemann derivatives based at m
points, what do all rank m generalized Riemann derivatives based at m points look like? This question is 
answered in Theorem 4.3.

3. What do the best numerical estimates look like in all cases when the answer to Question 2 is NO?
The same examples mentioned in Question 1 show that the highest rank of a real m points based 

generalized Riemann derivative of order n sometimes is m and some other times is < m. The next four 
questions refer to real generalized Riemann derivatives.

4. Given m and n, what is the highest rank of a real generalized Riemann derivative of order n based at 
m points?

5. Given m and n, what do all highest rank real generalized Riemann derivatives of order n based at m
points look like? In other words, what is the variety of real highest rank approximations?

6. In particular, what do all m points based real Generalized Riemann derivatives of order n and rank m
look like? These are the real generalized Riemann derivatives that count as highest rank complex generalized 
Riemann derivatives.

7. What are the best numerical estimates real generalized Riemann derivatives of order n and based at 
m points?

4.3. Explicit parametrization for the variety of all highest rank approximations

The main result, Theorem 4.3, shows that all rank m generalized Riemann derivatives of order n based 
at m points form a symmetric projective variety that is explicitly given by m − n parameters.

Let Wm = Wm(a1, . . . , am) be the determinant of the m ×m Vandermonde matrix (ai−1
j ), for 1 ≤ i ≤ m

and 1 ≤ j ≤ m. For each k = 1, . . . , m − 1, denote wm,k = wm,k(a1, . . . , am) as the determinant of the 
k-shifted m ×m Vandermonde matrix (βij), where

βij =
{

ai−1
j if i = 1, . . . , k,

aij if i = k + 1, . . . ,m.

In particular, this is (−1)m+1+k+1 times the (k+1, m +1)-cofactor of the m +1 Vandermonde determinant 
Wm+1(a1, . . . , am+1). This interpretation allows the definition of wm,k to extend naturally to k = m and 
k = 0 by setting wm,m = Wm and wm,0 = a1a2 · · · amWm. If W�j is the determinant of the matrix obtained 
from the one of Wm by removing the �th row and j-th column, then

W�j = wm−1,�−1(a1, . . . , aj−1, aj+1, . . . , am) = wm−1,�−1(a1, . . . , âj , . . . , am).

The following lemma establishes the relationship between the k-shifted Vandermonde determinant and the 
regular Vandermonde determinant. Thomas Muir in [39, Vol.1, Chapt.XII] attributes it to Prony (1795), 
despite a general consensus that this result marked Cauchy’s (1812) invention of alternating symmetric 
functions. Its proof is omitted.
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Lemma 4.2. If 0 ≤ k ≤ m, then

wm,k(a1, . . . , am) = em−k(a1, . . . , am) ·Wm(a1, . . . , am),

where er(a1, . . . , am), for 1 ≤ r ≤ m, is the rth elementary symmetric polynomial in variables a1, . . . , am
and e0 = 1.

The goal for this section is to determine all 2m-vectors A = {Aj ; aj | j = 1, . . . , m} for which the 
difference quotient ΔAf(x, h)/hn approximates the nth derivative fn(x) with error of magnitude O(hm). 
This condition is accounted in the Vandermonde system

m∑
j=1

Aja
i−1
j =

{
0 if i �= n + 1,
n! if i = n + 1,

for i = 1, 2, . . . , m + n. The system of the first m equations has an m ×m Vandermonde coefficient matrix, 
hence it can be solved uniquely for variables Aj . Cramer’s rule yields

Aj = Δj

Δ , for j = 1, . . . ,m,

where Δ = Wm and Δj = (−1)n+1+j · n! ·Wn+1,j . Consequently,

Aj = (−1)n+1+j · n! ·Wn+1,j

Wm
= (−1)n+1+j · n! · wm−1,n(a1, . . . , âj , . . . , am)

Wm

= (−1)n+1+j · n! · em−n−1(a1, . . . , âj , . . . , am) ·Wm−1(a1, . . . , âj , . . . , am)
Wm

= (−1)n · n! · em−n−1(a1, . . . , âj , . . . , am)∏
i�=j(ai − aj)

.

We regard the system of the last m − 1 Vandermonde equations

m∑
j=1

Aja
i−1
j = 0, for i = n + 2, . . . , n + m

as the linear homogeneous system

m∑
j=1

Aja
i−1
j xj = 0, for i = 1, . . . ,m− 1

in variables xj = an+1
j , for j = 1, . . . , m. Passing the xm-terms to the right side, the remaining left side of 

the system has a non-singular coefficient matrix, hence it can be solved by Cramer’s rule as

xj =
Δ′

j

Δ′ , for j = 1, . . . ,m− 1,

where

Δ′ =

∣∣∣∣∣∣∣∣∣∣
A1 A2 · · · Am−1
A1a1 A2a2 · · · Am−1am−1
...

...
. . .

...
A am−2 A am−2 · · · A am−2

∣∣∣∣∣∣∣∣∣∣
= A1 · · ·Am−1Wmm
1 1 2 2 m−1 m−1
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and

Δ′
j =

∣∣∣∣∣∣∣∣∣∣
A1 · · · −Amxm · · · Am−1
A1a1 · · · −Amamxm · · · Am−1am−1
...

...
. . .

...
A1a

m−2
1 · · · −Amam−2

m xm · · · Am−1a
m−2
m−1

∣∣∣∣∣∣∣∣∣∣
= A1 · · ·Amxm

Aj
(−1)m−jWmj .

This makes

xj =
A1···Amxm

Aj
(−1)m−jWmj

A1 · · ·Am−1Wmm
= (−1)m−j · Amxm

Aj
· Wmj

Wmm

= (−1)m−j · (−1)n+1+mWn+1,mxm

(−1)n+1+jWn+1,j
· Wmj

Wmm
= Wn+1,mxm

Wn+1,j
· Wmj

Wmm

= wm−1,n(a1, . . . , am−1)xm

wm−1,n(a1, . . . , âj , . . . , am) · Wm−1(a1, . . . , âj , . . . , am)
Wm−1(a1, . . . , am−1)

= em−n−1(a1, . . . , am−1)Wm−1(a1, . . . , am−1)xm ·Wm−1(a1, . . . , âj , . . . , am)
em−n−1(a1, . . . , âj , . . . , am)Wm−1(a1, . . . , âj , . . . , am) ·Wm−1(a1, . . . , am−1)

.

Thus

an+1
j = em−n−1(a1, . . . , am−1)

em−n−1(a1, . . . , âj , . . . , am)a
n+1
m , for j = 1, . . . ,m− 1. (4.8)

A condition that makes m complex numbers a1, . . . , am distinct is that the discriminant D =∏
1≤i<j≤m(aj − ai)2 of the degree m equation xm + α1x

m−1 + · · · + αm = 0 that has a1, . . . , am as its 
roots is non-zero. This expression D is symmetric in variables a1, . . . , am and can be written in terms of the 
elementary symmetric polynomials in the same variables, or in terms of the coefficients α1, . . . , αm of the 
above equation. The expression of D can be made more explicit as D = (detWm)(detWT

m) = det(WmWT
m) =∣∣∣∣∣∣∣∣∣

⎛⎜⎜⎝
1 1 · · · 1
a1 a2 · · · am
...

...
. . .

...
am−1
1 am−1

2 · · · am−1
m

⎞⎟⎟⎠
⎛⎜⎜⎜⎝

1 a1 · · · am−1
1

1 a2 · · · am−1
2

...
...

. . .
...

1 am · · · am−1
m

⎞⎟⎟⎟⎠
∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
m t1 · · · tm−1
t1 t2 · · · tm
...

...
. . .

...
tm−1 tm · · · t2m−2

∣∣∣∣∣∣∣∣ (4.9)

where tr = ar1 + ar2 + · · · + arm, for r ≥ 1, are Newton’s polynomials. These are expressed in terms of the 
elementary symmetric polynomials e1, . . . , em using Newton’s identities

tr =
{
e1tr−1 − e2tr−2 + · · · + (−1)r−2er−1t1 + (−1)r−1rer if r ≤ m,

e1tr−1 − e2tr−2 + · · · + (−1)m−1emtr−m if r > m.
(4.10)

The next theorem shows that all m points based generalized Riemann derivatives of order n and rank m, 
the highest rank approximates of the ordinary (Peano) nth derivative, form a projective variety parametrized 
by m − n complex numbers α1, . . . , αm−n−1, αm.

Theorem 4.3 (Parametrizing the variety of highest rank approximations). Let m, n be integers with 0 < n <
m and A = {A1, . . . , Am; a1, . . . , am} is a vector of 2m complex numbers, where the Aj are non-zero and 
the aj are distinct. The following statements are equivalent:

(i) A corresponds to a highest rank approximation generalized Riemann derivative of order n, that is, A
satisfies the Vandermonde system of m + n equations
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m∑
j=1

Aja
i
j =

{
0 if i �= n,

n! if i = n,

for i = 0, 1, . . . , m + n − 1.
(ii) The numbers a1, . . . , am are all m roots of the family of degree m monic equations

xm + α1x
m−1 + · · · + αm−n−1x

n+1 + αm = 0 (4.11)

parametrized by complex numbers α1, . . . , αm−n−1, αm that satisfy the condition D �= 0, where D =∏
1≤i<j≤m(aj − ai)2 is expressed in terms of the coefficients αj = (−1)jej using relations (4.9) and (4.10). 

The numbers A1, . . . , Am are uniquely expressed in terms of a1, . . . , am as follows:

⎡⎢⎣ A1
...

Am

⎤⎥⎦ = W−1
m (a1, . . . , am)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
...
n!
...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (4.12)

where the nonzero entry of the last column vector is in the n + 1st row.

Proof. (i) ⇒ (ii): Suppose A satisfies the Vandermonde system of m + n equations. Multiplication of (4.8)
by em−n−1(a1, . . . , ̂aj , . . . , am) clears the denominator. The identity

em−n−1(a1, . . . , âj , . . . , am) =
m∑

k=n+1

(−1)k−n−1em−ka
k−n−1
j

applied to the resulting equation leads to

m∑
k=n+1

(−1)k−n−1em−ka
k
j =

m∑
k=n+1

(−1)k−n−1em−ka
k
m. (4.13)

When divided by (−1)m−n−1e0 = (−1)m−n−1, this equation says that a1, . . . , am are roots of the degree m
equation

xm + α1x
m−1 + · · · + αm−n−1x

n+1 + αm = 0,

where αm−k = (−1)(k−n−1)−(m−n−1)em−k for k = n +1, . . . , m −1 and (−1)m−nαm is the common value of 
both sides in (4.13). The numbers A1, . . . , Am are computed using the first m equations of the Vandermonde 
system.

(ii) ⇒ (i): Suppose (ii) is satisfied. Then multiplication of (4.12) by the Vandermonde matrix 
Wm(a1, . . . , am) is the system of the first m Vandermonde equations in matrix form. Then, inductively, 
it suffices to show that for i = 1, . . . , n the system of the first m + i − 1 Vandermonde equations implies the 
m + ith Vandermonde equation. To see this, multiply equation (4.11) for x = ak by Aka

i−1
k and sum up 

over k. The resulting equation,∑
Aka

m+i−1
k + α1

∑
Aka

m+i−2
k + · · · + αm−n−1

∑
Aka

n+i
k + αm

∑
Aka

i−1
k = 0,

has the terms 
∑

Aka
m+i−2
k , . . . , 

∑
Aka

n+i
k , 

∑
Aka

i−1
k all equal to zero by the system of the first m + i − 1

Vandermonde equations. The leftover equation 
∑

Aka
m+i−1
k = 0 is the needed m + ith Vandermonde 

equation. �
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Corollary 4.4. Suppose A = {A1, . . . , Am; a1, . . . , am} is the data vector of a highest rank approximation m

points based generalized Riemann derivative of order n, where m, n are positive integers. Then each of 
a1, . . . , am is a non-zero number.

Proof. Assuming the contrary, we have (−1)ma1 · · · am = 0, so equation (4.11), whose roots are a1, . . . , am, 
has no constant term. The hypothesis n > 0 makes m − n − 1 < m − 1, and the same equation has no 
degree 1 term either. Then the equation has x = 0 as a multiple root, a contradiction with the hypothesis 
that a1, . . . , am are distinct. �
Example 4.5. When n = m − 1 in Theorem 4.3, equation (4.11) becomes xm + αm = 0. Since a1, . . . , am
are distinct, without loss, we may assume that am �= 0, hence αm = −amm �= 0. Then (aj/am)m =
(−αm)/(−αm) = 1, for all j, and the distinct numbers a1/am, . . . , am/am are precisely all mth roots 
of unity. We may further assume without loss that, up to a dilation by 1/am, aj = ωj , for j = 1, . . . , m, 
where ω = e2πi/m is a primitive mth root of unity. Theorem 4.3(ii) computes the Aj ’s by inverting the 
Vandermonde system

⎡⎢⎣ A1
...

Am

⎤⎥⎦ = W−1
m (ω, . . . , ωm)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
...
n!
...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= Wm(ω−1, . . . , ω−m)

m

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
...
n!
...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= n!

m

⎡⎢⎢⎢⎢⎢⎢⎣
1
ω−n

ω−2n

...
ω(1−m)n

⎤⎥⎥⎥⎥⎥⎥⎦ .

We conclude that, when n = m − 1, the mth roots of unity derivative, as a highest rank approximation of 
the nth derivative, is unique up to a rescaling and a permutation of base points.

Example 4.6. When n < m −1, the mth roots of unity derivative is not a unique highest rank approximation 
of the nth derivative. For example, when m = 3 and n = 1, the cubic x3 − 7x2 + 36 = 0 has roots a1 = 3, 
a2 = −2 and a3 = 6. By Theorem 4.3(ii), we compute A1 = 4

15 , A2 = − 9
40 and A3 = − 1

24 . The difference 
quotient

4
15f(z + 3h) − 9

40f(z − 2h) − 1
24f(z + 6h)

h

approximates the first Peano derivative f1(z) to highest rank without being a rescale of the third roots of 
unity first derivative. This derivative was considered in [8].

4.4. Error estimation and normalizing the highest rank approximations

We are now ready to generalize the error estimation given in (4.4) for the mth roots of unity derivative 
of order n. For any m points based difference quotient ΔAf(x, h)/hn of order n that approximates the nth 
derivative fn(x) to highest rank, the next theorem computes exactly the first significant term in the Taylor 
approximation.

Theorem 4.7 (Error estimation). Suppose A = {A1, . . . , Am; a1, . . . , am} is the data vector corresponding to 
a difference quotient ΔAf(x, h)/hn that approximates fn(z) to highest rank, for any m + n times (Peano) 
differentiable function f . Then

ΔAf(z, h)
n

− fn(z) = (−1)m+1a1 · · · am · n! · fm+n(z)
hm + o(hm).
h (m + n)!
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Proof. Using Taylor expansion and the m + n Vandermonde relations, we compute

ΔAf(z, h)
hn

= 1
hn

m∑
j=1

Ajf(z + ajh) = 1
hn

m∑
j=1

Aj

(
m+n∑
k=0

fk(z)
k! (ajh)k + o(hm+n)

)

= 1
hn

m+n∑
k=0

⎛⎝ m∑
j=1

Aja
k
j

⎞⎠ fk(z)
k! hk + o(hm)

= fn(z) +

⎛⎝ m∑
j=1

Aja
m+n
j

⎞⎠ fm+n(z)
(m + n)!h

m + o(hm).

To finish the proof, it suffices to show that 
∑m

j=1 Aja
m+n
j = (−1)m+1a1 · · · am. Indeed, the equation (4.11)

allows the replacement of amj by − 
∑m−n−1

i=1 αia
m−i
j − αm as follows:

m∑
j=1

Aja
m+n
j =

m∑
j=1

Aja
n
j (−

m−n−1∑
i=1

αia
m−i
j − αm)

= −
m−n−1∑

i=1
αi

m∑
j=1

Aja
m+n−i
j − αm

m∑
j=1

Aja
n
j

= −
m−n−1∑

i=1
αi · 0 − αm · n! = −αm · n!

= (−1)m+1a1 · · · am · n!. �
Example 4.8. The symmetric derivative Dsf(z) = limh→0

f(z+h/2)−f(z−h/2)
h is a first generalized Riemann 

derivative. Its data vector A = {1, −1; 1/2, −1/2} satisfies the m + n Vandermonde relations (1)(1/2)i +
(−1)(−1/2)i = δin · n!, i = 0, 1, . . . , m + n − 1, for m = 2 and n = 1, where m is the number of base points 
in A. Then the associated first difference quotient is a highest rank approximation of the first derivative of 
any three times differentiable function f at z. Theorem 4.7 provides the error term in this approximation:

f(z + h
2 ) − f(z − h

2 )
h

− f1(z) = (−1)3a1a2 · 1! · f3(z)
3! h2 + o(h2) = f3(z)

24 h2 + o(h2).

Let A = {Aj ; aj | j = 1, . . . , m} be the data vector of a nth generalized Riemann difference ΔA. This 
means that for an n times differentiable function f the difference quotient ΔAf(z, h)/hn approximates the 
nth Peano derivative fn(z). When this is a highest rank approximation, Theorem 4.7 provides the error for 
each m + n times differentiable function f . Recall that the rescale of ΔA by a nonzero complex number s
is the difference ΔAs

, where As = {sdAj ; aj/s | j = 1, . . . , m}.
The next corollary studies the behavior of the estimate given in Theorem 4.7 under rescaling the corre-

sponding highest rank generalized Riemann difference.

Corollary 4.9. Let ΔA be a generalized Riemann difference of order n based at m points a1, . . . , am, and let 
ΔAs

be its rescale by a non-zero complex number s. Then
(i) ΔAs

is also a generalized Riemann difference of order n.
(ii) If ΔAf(z, h)/hn approximates fn(z) to highest rank for any m + n times differentiable function f , 

then so does ΔAs
f(z, h)/hn and

ΔAs
f(z, h)
n

− fn(z) = s−m · (−1)m+1a1 · · · am · n! · fm+n(z)
hm + o(hm).
h (m + n)!
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Proof. Part (i) and the first half in Part (ii) is standard Vandermonde computation. The error estimation 
comes from Theorem 4.7 applied to As. �

In particular, a rescale by an mth root of unity s leaves the error term unchanged, and one by a complex 
number s of modulus one leaves the magnitude of the error term unchanged. The best numerical estimate 
(m points based generalized Riemann derivative of order n) in Section 4.2 is then unique up to a rescale 
by a complex number s on the unit circle. By the results in this section, the problem of finding the best 
numerical estimate derivative translates into the following formal problem:

(P1) For all m-tuplets (a1, . . . , am) of complex numbers satisfying Theorem 4.3(ii), minimize |a1 · · · am|
subject to mini�=j |ai − aj | = 1.

This is equivalent to the problem

(P2) For all m-tuplets (a1, . . . , am) of complex numbers satisfying Theorem 4.3(ii), maximize mini�=j |ai−aj |
subject to |a1 · · · am| = 1.

It is not hard to prove that the additional condition that (a1, . . . , am) is closest to the origin, coupled with 
|a1 · · · am| = 1, makes |a1| = · · · = |am| = 1. Problem (P2) is then reduced to the following easier problem:

(P2′) For all m-tuplets (a1, . . . , am) of complex numbers of modulus one satisfying Theorem 4.3(ii), maxi-
mize mini�=j |ai − aj |.

Solution to Problem (P2′). The minimum distance between any two of m points on the unit circle is the 
minimum distance between two consecutive points. This corresponds to the minimum of the m central 
angles corresponding to consecutive points on the circle. The largest such minimum is attained when the 
points a1, . . . , am determine a regular polygon, that is, when they are base points of a scale of an mth roots 
of unity derivative. By Section 4.1, this is a highest rank approximation, so a1, . . . , am satisfy the conditions 
in Theorem 4.3(ii). The maximum of 2 sin(π/m) is computed in Section 4.2. �

We have then proved the following theorem, which gives a different answer to the second question in 
Section 4.2.1 when the base points are required to be on the unit circle.

Theorem 4.10. When the base points are required to be on the unit circle, for each n = 1, 2, . . . , m − 1, the 
mth roots of unity derivative of order n is the best numerical estimate m points based derivative of order n. 
This is unique up to a rescale and a permutation of base points.

5. Numerical analysis and the classification of generalized Riemann derivatives

In this section we put together the classification of generalized Riemann derivatives of Section 2 and 
the numerical analysis of generalized Riemann derivatives of Section 4. Specifically, given any two nth 
generalized Riemann differentiations A and B that are either equivalent or imply each other, one obviously 
suspects that the first significant terms in the approximations of the nth derivative by the nth difference 
quotients corresponding to A and B are related to each other. This question has a nice answer, given in 
Theorems 5.2 and 5.3, in the case when either A or both A and B correspond to highest rank approximations.

By Theorem 4.7, if A is the data vector of a highest rank m points based nth generalized Riemann 
difference then, for an m + n times differentiable function f ,
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ΔAf(z, h) − fn(z)hn = (−1)m+1a1 · · · am · n! · fm+n(z)
(m + n)!h

m+n + o(hm+n). (5.1)

Fix a positive integer �, and recall that ΔAf(z, h) is expressed uniquely as the sum

ΔAf(z, h) =
�−1∑
k=0

Δ(k,�)
A f(z, h)

of �-components Δ(k,�)
A f(z, h), for k = 0, 1, . . . , � − 1, where

Δ(k,�)
A f(z, h) = 1

�

�−1∑
j=0

ω−kjΔAf(z, ωjh)

is a type (k, �) difference of f at z and h. We average the products of the form ω−kj times (5.1) evaluated 
at z and ωjh, for j = 0, 1, . . . , � − 1, to deduce that

Δ(k,�)
A f(z, h) −

⎛⎝1
�

�−1∑
j=0

ω(n−k)j

⎞⎠ fn(z)hn

=

⎛⎝1
�

�−1∑
j=0

ω(m+n−k)j

⎞⎠ (−1)m+1a1 · · · am · n! · fm+n(z)
(m + n)!h

m+n + o(hm+n).

(5.2)

Basic complex roots of unity computation show that

1
�

�−1∑
j=0

ω(n−k)j = δ0,n−k mod � and 1
�

�−1∑
j=0

ω(m+n−k)j = δ0,m+n−k mod �. (5.3)

The following lemma adds numerical perspective to the result of Theorem 3.1.

Lemma 5.1. Let ΔAf(z, h)/hn be an m points based nth generalized Riemann difference quotient that ap-
proximates fn(z) to highest rank, for each m + n times (Peano) differentiable function f . Then

(i) If n mod � = k = m + n mod �, then

Δ(k,�)
A f(z, h)

hn
− fn(z) = (−1)m+1a1 · · · am · n! · fm+n(z)

(m + n)!h
m + o(hm).

(ii) If n mod � = k �= m + n mod �, then

Δ(k,�)
A f(z, h)

hn
− fn(z) = o(hm).

(iii) If n mod � �= k = m + n mod �, then

Δ(k,�)
A f(z, h)

hn
= (−1)m+1a1 · · · am · n! · fm+n(z)

(m + n)!h
m + o(hm).

(iv) If n mod � �= k �= m + n mod �, then

Δ(k,�)
A f(z, h) = o(hm).
hn
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Proof. All parts follow from (5.2) and (5.3). �
Recall that each n times differentiable function f is A-differentiable, for each generalized Riemann deriva-

tive A of order n. In particular, the difference quotient ΔAf(z, h)/hn approximates the ordinary nth (Peano) 
derivative fn(z). Higher order of differentiability for f allows the computation of the error by Taylor ex-
pansion. For highest rank approximations, this error is computed in Theorem 4.7.

The next theorem is the numerical application of Theorem 2.4. It relates the error terms of any two gener-
alized Riemann derivatives A and B of order n for which A-differentiation is equivalent to B-differentiation, 
when at least one of A and B corresponds to a highest rank approximation.

Theorem 5.2. Let A = {A1, . . . , Am, a1, . . . , am}, B = {B1, . . . , Bμ, b1, . . . , bμ} be the data vectors of two nth 
generalized Riemann derivatives, for 1 ≤ n < min{m, μ}. Suppose A-differentiability ⇐⇒ B-differentiability, 
and A is a highest rank approximation, or

ΔAf(z, h)
hn

− fn(z) = (−1)m+1a1 · · · am · n! · fm+n(z)
(m + n)!h

m + o(hm),

for each m + n times (Peano) differentiable function f . Then
(i) There exists a nonzero constant C such that

ΔBf(z, h)
hn

− fn(z) = C(−1)m+1a1 · · · am · n! · fm+n(z)
(m + n)!h

m + o(hm),

for each m + n times differentiable function f .
(ii) If B is also of highest rank, then μ = m and b1b2 . . . bm = Ca1a2 . . . am.

Proof. (i) Let k, � be integers with 0 ≤ k < �. By Theorem 2.4,

Δ(k,�)
B f(z, h) =

{
r−n
k Δ(k,�)

A f(z, rkh) if k = n mod �

RkΔ(k,�)
A f(z, rkh) otherwise.

(5.4)

When m mod � = 0 and k = n mod �, the above expression and Lemma 5.1(i) yield

Δ(k,�)
B f(z, h)

hn
− fn(z) = Δ(k,�)

A f(z, rkh)
(rkh)n − fn(z)

= (−1)m+1a1 · · · am · n! · fm+n(z)
(m + n)! (rkh)m + o(hm)

(5.5)

When m mod � = 0 and k �= n mod �, the same expression and Lemma 5.1(iv) yield

Δ(k,�)
B f(z, h)

hn
= Rkr

n
k · Δ(k,�)

A f(z, rkh)
(rkh)n = o(hm) (5.6)

The desired relation with C = rmn mod � is obtained by adding (5.5) and all � −1 (5.6)s. When m mod � �= 0
and k = n mod �, the expression (5.5) and Lemma 5.1(ii) yield

Δ(k,�)
B f(z, h)

hn
− fn(z) = Δ(k,�)

A f(z, rkh)
(rkh)n − fn(z) = o(hm) (5.7)

When m mod � �= 0 and k �= n mod �, the expression (5.4) and Lemma 5.1(iii)(iv) yield
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Δ(k,�)
B f(z, h)

hn
= Rkr

n
k · Δ(k,�)

A f(z, rkh)
(rkh)n ={

Rkr
n
k · (−1)m+1a1 · · · amn! fm+n(z)

(m+n)! (rkh)m + o(hm) if k = m + n mod �,

o(hm) otherwise.

(5.8)

The desired relation with C = Rkr
m+n
k and k = m + n mod � is obtained by adding (5.7) and all � − 1

(5.8)s.
(ii) The hypothesis that B is a highest rank approximation translates into

ΔBf(z, h)
hn

− fn(z) = (−1)μ+1b1 · · · bμ · n! · fn+μ(z)
(n + μ)!h

μ + o(hμ).

The result comes by identifying the rank and magnitude of the error term on the right side here and the 
one on the right side in Part (i). �

The hypothesis in Theorem 5.2 does not imply the hypothesis in its Part (ii). This means A-
differentiability equivalent to B-differentiability and A is a highest rank approximation do not imply 
that B is also a highest rank approximation. Indeed, suppose A = {Ai; ai | i = 1, . . . , m} corresponds 
to a highest rank approximation nth generalized Riemann derivative, and take B = (A + As)/2, where 
As = {s−nAi; sai | i = 1, . . . , m} is the s-rescale of A. More explicitly, B is the 4m-vector

B = {Ai/2; ai | i = 1, . . . ,m} ∪ {s−nAi/2; sai | i = 1, . . . ,m}, (5.9)

subject to the reduction

{Ai/2; ai} ∪ {s−nAj/2; saj} = {(Ai + s−nAj)/2; ai} when saj = ai. (5.10)

Since A-differentiation is equivalent to As-differentiation (see the paragraph following Theorem 2.4), 
this clearly implies A-differentiation equivalent to B-differentiation. The choice a1a2 . . . am �= 0 and 
s > (max |ai|)/(min |ai|) makes B precisely the 4m-vector given by (5.9), with no reductions (5.10). By 
Theorem 5.2(i) and its proof, the rank of the approximation of fn(z) by the nth difference quotient deter-
mined B is m. Since B is based at 2m > m points, this is not a highest rank approximation generalized 
Riemann derivative of order n.

The next theorem is the numerical application of Theorem 2.8.

Theorem 5.3. Let A = {A1, . . . , Am, a1, . . . , am}, B = {B1, . . . , Bμ, b1, . . . , bμ} be the data vectors of two nth 
generalized Riemann derivatives, for 1 ≤ n < min{m, μ}. Suppose A-differentiability =⇒ B-differentiability, 
and A is a highest rank approximation, or

ΔAf(z, h)
hn

− fn(z) = (−1)m+1a1 · · · am · n! · fm+n(z)
(m + n)!h

m + o(hm),

for each m + n times (Peano) differentiable function f . Then
(i) There exists a nonzero constant C such that

ΔBf(z, h)
hn

− fn(z) = C(−1)m+1a1 · · · am · n! · fm+n(z)
(m + n)!h

m + o(hm),

for each m + n times differentiable function f .
(ii) If B is also a highest rank approximation and μ ≥ m, then either μ > m and Ca1 . . . am = 0 or 

μ = m and Ca1 . . . am = b1 . . . bm.
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Proof. (i) Let k, � be integers with 0 ≤ k < �. By Theorem 2.8,

Δ(k,�)
B f(z, h) =

∑
i

R
(k,�)
i Δ(k,�)

A f(z, r(k,�)
i h), (5.11)

of r(k,�)
i -dilates of Δ(k,�)

A f(z, h) such that 
∑

i R
(k,�)
i (r(k,�)

i )n = 1 when k = n mod �. When m mod � = 0
and k = n mod �, the above expression and Lemma 5.1(i) yield

Δ(k,�)
B f(z, h)

hn
− fn(z) =

∑
i

R
(k,�)
i (r(k,�)

i )n · [Δ
(k,�)
A f(z, r(k,�)

i h)
(r(k,�)

i h)n
− fn(z)]

=
∑
i

R
(k,�)
i (r(k,�)

i )n · (−1)m+1a1 · · · am · n! · fm+n(z)
(m + n)! (r

(k,�)
i h)m + o(hm)

(5.12)

When m mod � = 0 and k �= n mod �, the same expression and Lemma 5.1(iv) yield

Δ(k,�)
B f(z, h)

hn
=
∑
i

R
(k,�)
i (r(k,�)

i )n · Δ(k,�)
A f(z, r(k,�)

i h)
(r(k,�)

i h)n
= o(hm) (5.13)

The desired relation with C =
∑

i R
(k,�)
i (r(k,�)

i )m+n and k = n mod � is obtained by adding (5.12) and all 
� − 1 (5.13)s.

When m mod � �= 0 and k = n mod �, the expression (5.11) and Lemma 5.1(ii) yield

Δ(k,�)
B f(z, h)

hn
− fn(z) =

∑
i

R
(k,�)
i (r(k,�)

i )n · [Δ
(k,�)
A f(z, r(k,�)

i h)
(r(k,�)

i h)n
− fn(z)] = o(hm) (5.14)

When m mod � �= 0 and k �= n mod �, the equation (5.11) and Lemma 5.1(iii)(iv) yield

Δ(k,�)
B f(z, h)

hn
=
∑
i

R
(k,�)
i (r(k,�)

i )n · Δ(k,�)
A f(z, r(k,�)

i h)
(r(k,�)

i h)n
=

{∑
i R

(k,�)
i (r(k,�)

i )n(−1)m+1a1 · · · amn! fm+n(z)
(m+n)! (r(k,�)

i h)m + o(hm) if �|m + n− k,

o(hm) otherwise.

(5.15)

The desired relation with C =
∑

i R
(k,�)
i (r(k,�)

i )m+n and k = m +n mod � is obtained by adding (5.14) and 
all � − 1 (5.15)s.

(ii) The hypothesis that B is a highest rank approximation translates into

ΔBf(z, h)
hn

− fn(z) = (−1)μ+1b1 · · · bμ · n! · fn+μ(z)
(n + μ)!h

μ + o(hμ).

The result comes by identifying the rank and magnitude of the error term on the right side here and the 
ones on the right side in Part (i). �
6. Divisible groups, group algebras, and the proof of the main classification results

The proofs of the main classification theorems, Theorems 2.4 and 2.8 of Section 2, are given in Section 6.5. 
These are based on Theorem 6.6 of Section 6.4, which reduces the equivalence and implication relations on 
generalized Riemann differentiations to equality and containment of principal ideals of the group algebra of 
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the multiplicative group of complex numbers over the complex field. Properties of divisible groups, a class 
of groups related to the multiplicative group of complex numbers, are reviewed in Section 6.1, and those of 
group algebras are studied in Sections 6.2 and 6.3.

6.1. Divisible groups

The standard way of writing the operation in an abelian group is additive. An abelian group G is divisible
if for any g ∈ G and any positive integer n, there exists h ∈ G such that nh = g. For example, the additive 
groups Q, R and C are divisible, and the same is true about the factor group Q/Z and its quasicyclic 
subgroup

Cp∞ =
{

a

pt
+ Z : t ≥ 0, a = 0, 1, . . . , pt − 1

}
,

where p is a prime number. Multiplicative examples of divisible groups include the group C× of non-zero 
complex numbers and its subgroup U = {z ∈ C : |z| = 1}. If Un is the group of all nth complex roots of 
unity, then both Ufin =

⋃∞
n=1 Un = {e2πqi : q ∈ Q} and Up∞ =

⋃∞
k=1 Upk are divisible groups. The map 

q �→ e2πqi : Q → C× induces isomorphisms Q/Z ∼= Ufin and Cp∞ ∼= Up∞ . The multiplicative group R×

of non-zero real numbers is not divisible, since −1 is not the square of any real number. By contrast, 
the multiplicative group R+ of positive real numbers is a divisible group, since it is isomorphic to R via 
exponentiation.

An abelian group is indecomposable if it is not the direct sum (product) of two non-trivial subgroups. For 
example, Z3 is indecomposable, while Z6 = 3Z6 ⊕ 2Z6 ∼= Z2 ×Z3 is not. Divisible groups have the property 
that they are injective Z-modules. Equivalently, they are direct summands in all abelian groups that contain 
them. The fundamental theorem of divisible groups says that an indecomposable divisible group is either 
isomorphic to Q or to Cp∞ for some p, and each divisible group is a direct sum of indecomposable divisible 
subgroups. In particular, each divisible group G is the direct sum

G = G1 ⊕G2

of two characteristic divisible subgroups: G1 is the torsion subgroup of G and consists of all elements of G
of finite order; it is the sum of all indecomposable divisible subgroups of G that are isomorphic to Cp∞ for 
some p. G2 is torsion free; it is the sum of all indecomposable divisible subgroups of G that are isomorphic 
to Q.

Example 6.1. (i) Let G = (R, +). Then G1 = (0) and G2 = Q(c) where c = 2ℵ0 . This means that R = G2 is 
the direct sum of continuum many copies of Q.

(ii) Let G = U . Then G1 = Ufin(∼= Q/Z ∼=
⊕

p prime Cp∞) and G2 ∼= Q(c)(∼= R).
(iii) Let G = C×. Then G ∼= U ×R+, hence G1 = Ufin and G2 ∼= Q(c).

Note that each type Cp∞ indecomposable summand of G1 in Parts (ii) and (iii) of the above example 
has multiplicity one.

6.2. Group algebras

Let k be a field and G is a group. The group algebra kG is the vector space

kG = spankG =

⎧⎨⎩∑ agg : ag ∈ k, all but finitely many non-zero

⎫⎬⎭

g∈G
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of basis G, where the multiplication is given by the multiplication of basis elements, which is the multipli-
cation in G. When G is a semigroup or a monoid, the same definition makes kG a semigroup algebra or a 
monoid algebra. For example, the monoid algebra kM of the multiplicative monoid M = {1, x, x2, . . .} = xN

of nonnegative powers of a variable x is nothing but the polynomial algebra k[x]. Since (M, ·) ∼= (N, +), we 
have kN ∼= k[x]. In the same way, the group algebra kZ ∼= k[xZ] is isomorphic to the Laurent polynomial al-
gebra k[x, x−1], and the group algebra kQ is isomorphic to the generalized polynomial algebra k[xQ] in one 
variable, where rational exponents are allowed. Based on these observations, for an abelian group G whose 
operation is written additively, we shall prefer its isomorphic multiplicative copy xG. The group algebra of 
a direct sum of groups is the tensor product of the group algebras of the individual terms. The same is true 
for semigroups or monoids. For example, k[N ×N] ∼= k[xNyN ] = k[x, y] ∼= k[x] ⊗k k[y] ∼= k[N] ⊗ k[N].

An element e of a ring R is an idempotent if e2 = e. The elements 0 and 1 are always idempotents. An 
idempotent is primitive if it cannot be written as a sum of non-zero idempotents. A complete system of 
primitive idempotents of R is a set of primitive idempotents that add up to 1. It is the set consisting of 
the identity elements of the summands in a decomposition of R as a direct sum of indecomposable ideals. 
For example, a complete set of primitive idempotents in Z6 is {e1 = 3, e2 = 4}. They correspond to the 
decomposition Z6 = 3Z6 ⊕ 4Z6 ∼= Z2 × Z3 of Z6 as a direct sum of indecomposable ideals. A ring R is 
indecomposable if and only if 0 and 1 are its only idempotents; equivalently, if and only if 1 is a primitive 
idempotent. The ring Zn is indecomposable if and only if n is a power of a prime. If n = pa1

1 · · · par
r , then 

Zn has 2r idempotents and r primitive idempotents; in this case Zn is a direct sum of r indecomposable 
ideals.

For the remaining of the section, k = C is the field of complex numbers and G = C× is the multiplicative 
group of non-zero complex numbers. To avoid confusion with complex numbers being both scalars and group 
elements, we denote the field elements a, b, . . . ∈ k and the group elements xa, xb, . . . ∈ G. The group algebra 
kG is the k-algebra generated by elements xa with a ∈ G and subject to the relations xaxb = xab, for all 
a, b ∈ C×. Recall that the group G decomposes as the direct sum G = G1 ⊕G2 of its torsion subgroup

G1 = Ufin =
∞⋃

n=1
Un

∼=
⊕

p prime
Up∞ ∼= Q/Z ∼=

⊕
p prime

Cp∞

and the torsion-free subgroup G2 ∼= Q(c) ∼=
(
xQ
)(c). This in turn gives the tensor product decomposition 

kG ∼= kG1 ⊗k kG2.
The algebraic structure of kG2 is quite clear: this is a tensor product of continuum many factors all 

isomorphic to k[xQ], or a generalized polynomial algebra over k in continuum many indeterminates where 
rational exponents are allowed.

Turning to the factor kG1 ∼=
⊗

p prime kUp∞ , we first notice that m|n is equivalent to Um ⊆ Un, which in 

turn yields kUm ⊆ kUn. If ωn = e2πi/n is a primitive nth root of unity, then ωn/m
n = ωm. The cyclic group 

Un = 〈ωn〉 has order n and the group algebra kUn is n-dimensional over k.
The following proposition gives information about the idempotents of kUn.

Proposition 6.2. (i) The elements

ek,n := 1
n

n−1∑
i=0

ωki
n xωi

n
, for k = 0, 1, . . . , n− 1,

form a complete set of primitive idempotents and a k-basis of the group algebra kUn.
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(ii) If n = �m and t = 0, 1, . . . , m − 1, then

et,m =
�−1∑
j=0

emj+t,n.

In particular, the group algebra kUp∞ = k [
⋃∞

n=1 Upn ] has no primitive idempotents.

Proof. (i) It is routine computation checking that the ek,n are orthogonal idempotents. In particular, they 
form a linearly independent subset, hence a basis, of the n-dimensional group algebra kUn. (ii) We have

�−1∑
j=0

emj+t,n =
�−1∑
j=0

(
1
n

n−1∑
i=0

ω(mj+t)i
n xωi

n

)
= 1

n

n−1∑
i=0

⎛⎝�−1∑
j=0

ωmji
n

⎞⎠ωti
n xωi

n
.

The sum in the last parenthesis is 
∑�−1

j=0 ω
ji
� . This equals � when �|i, that is, when i = �s for some s =

0, 1, . . . , m − 1, and it equals zero in all other cases. Then

�−1∑
j=0

emj+t,n = 1
n

m−1∑
s=0

(�)ωt�s
n xω�s

n
= 1

m

m−1∑
s=0

ωts
mxωs

m
= et,m. �

We let the idempotents in Proposition 6.2(ii) label the vertices of a simple two-level tree graph, with a 
parent et,m and � children emj+t,n, for j = 0, . . . , � − 1. For a prime p and various nonnegative integers r, 
by taking n = pr, m = pr−1 and � = p, these simple trees match together to form an infinite p-splitting tree
of idempotents in kCp∞ where the sum of the children of each node equals the node. The tree is rooted at 1
and has pr nodes at the rth level, corresponding to the pr primitive idempotents in kCpr . The figure below 
shows this graph when p = 2.

e0,1

e0,2 e1,2

e0,4 e2,4 e1,4 e3,4

The next corollary gives a surprising expression of the group algebra kC× as a tensor product of a group 
algebra of a torsion group and a group algebra of a torsion-free group.

Corollary 6.3. For each prime p, we have kC× ∼= kUp∞ ⊗ kR+.

Proof. Recall from earlier in the section that kUfin ∼=
⊗

p prime kUp∞ . By Proposition 6.2, both algebras 
kUfin and kUp∞ have countable dimensions over k, are generated by idempotents, and do not have any 
primitive idempotents. A theorem of D. Berman (see [41, Chapter 14, Theorem 3.8]) makes them isomorphic. 
The rest comes from the isomorphism kC× ∼= kUfin ⊗ kR+ deduced earlier. �
6.3. The group algebra A = kC× and the monoid algebra B = kC

Let A be the group algebra over k of the multiplicative group of non-zero complex numbers introduced 
in the previous section and let B denote the k-monoid algebra of the multiplicative monoid of all complex 
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numbers. Then B is obtained from A by adjoining the absorbing basis element x0. As in real case, see [13], 
we show that the questions of implication or equivalence of complex generalized Riemann differentiation 
translate into principal ideals in A or B.

Adding to the properties of A deduced in Section 6.2, here are a few more basic facts about the algebras 
A ⊂ B:

• The identity element in both A and B is x1.
• The basis elements xr, for r ∈ C×, are units (invertible elements) of A, but these are not the only ones. 

We call them the trivial units of A.
• If r is a complex nth root of unity, then x1 −xr is a zero-divisor of A; we have (x1 −xr)(x1 +xr +x2

r +
· · · + xn−1

r ) = x2
1 − xn

r = x12 − xrn = x1 − x1 = 0.
• Let V =

∑
r∈k kxr. Then the dual k-space V ∗ is isomorphic to the k-space of functions k → k via 

ϕ ∈ V ∗ ↔ f : k → k, f(r) = ϕ(xr).
• The element σ = x−1 is the unique element of B of order 2.
• The sets ω(A) = {

∑
Aixai

∈ A :
∑

Ai = 0} and ω(B), defined in a similar manner, are ideals of 
codimension one in A and B, called the augmentation ideals of these algebras.

The following lemma gives an expression of all units in A as linear combinations of trivial units of the 
indecomposable summands of A determined by the idempotents ek,n. These trivial units are expressed as

ek,nxr = 1
n

n−1∑
i=0

ωki
n xrωi

n
,

where n and k are integers with 0 ≤ k ≤ n − 1, and r is a positive real number.

Lemma 6.4. For each unit u of the group algebra A = kC×, there exists a positive integer n such that u is 
expressed as the linear combination

u =
n−1∑
k=0

Akek,nxrk ,

where the coefficients Ak are non-zero complex numbers and rk are positive real numbers, for all k.

Proof. Recall that A ∼= kUfin ⊗k kR+ =
⋃∞

n=1 (kUn ⊗k kR+) and let An be the subalgebra of A that cor-
responds to kUn⊗kkR+ under this isomorphism. Then u ∈ An, for some n. The primitive idempotents ek,n
give rise to a direct sum decomposition An = ⊕n−1

k=0ek,nAn of indecomposable ideals ek,nAn. In particular, 
u =

∑n−1
k=0 uk, where uk is a unit in ek,nAn

∼= ek,nkUn ⊗k kR+. Since ek,nkUn is one-dimensional and kR+

is a torsion free group, a theorem of Bovdi in [18] (see also Passman [41, Chapter 13, Theorem 1.11]) makes 
all units in ek,nAn trivial, that is, non-zero scalar multiples of group elements. Then uk = Akek,nxrk , for a 
non-zero complex number Ak and a positive real number rk. �
6.4. Group algebras and generalized Riemann derivatives

For a complex function f , each element α =
∑

Aixai
of B corresponds uniquely to the difference 

Δαf(z, h) =
∑

i Aif (z + aih). If this is an nth generalized Riemann difference, then Δαf(z, h) = ΔAf(z, h), 
where A = {Ai; ai| for all i}, and the α-derivative of f at z, given by

Dαf(z) := lim Δαf(z, h)
,

h→0 hn
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is nothing but the generalized Riemann derivative DAf(z).
For each non-zero r in k×, define dr = 1

2 (xr − x−r) and er = 1
2 (xr + x−r). Then α = d1 corresponds to 

the first symmetric difference Δαf(z, h) = 1
2{f(z +h) − f(z−h)}; α = x1 −x0 corresponds to the ordinary 

first difference Δαf(z, h) = f(z + h) − f(z); and when k = R, α = d1 + A(er − x0), where A, r ∈ k×, 
corresponds to the first order generalized Riemann difference

Δαf(z, h) = f(x + h) − f(x− h) + A[f(x + rh) + f(x− rh) − 2f(x)]
2

considered in [12]. Note that dr does not correspond to a generalized Riemann derivative, for r �= 1, and 
the same is true about er, for each complex number r.

The following lemma relates generalized Riemann differences to elements of the augmentation ideal ω(B). 
In this way, it provides the tool for separating the α-differences that are scalar multiples of generalized 
Riemann differences from those that are not.

Lemma 6.5. Let α =
∑

Aixai
be a non-zero element of B and let Δαf(z, h) be the difference corresponding 

to it. Then
(i) If Δαf(z, h) is a generalized Riemann difference, then α ∈ ω(B).
(ii) If α ∈ ω(B), then there exists a unique nonzero complex number a such that a−1Δαf(z, h) is a 

generalized Riemann difference.

Proof. (i) If Δαf(z, h) is a generalized Riemann difference, then α ∈ ω(B) by the first Vandermonde 
condition.

(ii) Suppose α is a non-zero element of ω(B). Then by the linear algebra of Vandermonde systems, there 
exists a positive integer n such that 

∑
Aja

n
j is a non-zero number a. If n is taken minimal with this property, 

then a−1Δαf(z, h) is a generalized Riemann difference. �
Suppose α, β ∈ ω(B) and z is a complex number. We will write α � β if for each measurable function f , 

Dαf(z) exists ⇒ Dβf(z) exists, and β ∼ α if the converse also holds. The ideal of B generated by α
is denoted by (α). Write α =

∑
Aixai

and let αr = αxr =
∑

Aixair be the dilate of α by r ∈ k×. Note 
especially that (α) = (αr) is the span of the dilates of α, i.e., dilates are associate. For each r ∈ k, a function f

is α-differentiable at z if and only if it is αr-differentiable at z. This means that the equality of some 
principal ideals of B corresponds to the equivalence of the generalized differentiations corresponding to their 
generators. We shall see that the same is true in general. The support of α is the set supp(α) = {ai | Ai �= 0}.

The following theorem writes the implication and equivalence of complex generalized Riemann differen-
tiations in terms of inclusion and equality of principal ideals of the algebra B = kC of the multiplicative 
monoid C.

Theorem 6.6. Let A, B be data vectors of complex generalized Riemann derivatives of orders m and n, and 
let α, β be the elements of ω(B) corresponding to them. Then

(i) α � β if and only if m = n and (α) ⊇ (β);
(ii) α ∼ β if and only if m = n and (α) = (β).

Proof. Part (ii) is a consequence of Part (i). We first prove Part (i) under the assumption m = n, and then 
show that the remaining cases m > n and m < n of the direct implication are impossible.

Suppose m = n. When (α) ⊇ (β), write β = α
∑

r Arxr =
∑

r Arαr as a linear combination of translates 
of α. If a function f is α-differentiable at z then f is β-differentiable at z and Dβf(z) =

∑
r ArDαr

f(z).
Conversely, we assume (α) � (β) and construct a function f such that Dαf(0) exists but Dβf(0) does 

not exist. Let G be the subgroup of k× generated by all nonzero ai’s and bi’s. Then G is countable while 
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the factor group k×/G is not. Then there exists a sequence {sn}n≥1 of representatives of cosets of G in k×

such that limn→∞ sn = 0. Since xsn is a (trivial) unit in B, we have βsn := βxsn /∈ (α), for all n. We claim 
that the βsn ’s are linearly independent modulo (α). Indeed, if 

∑
λnβsn ∈ (α), with λn ∈ k, then this can be 

expressed as 
∑

λnβsn = α
∑

μixri , for μi ∈ k and ri ∈ k×. For each n, let σsn be the sum of all terms μixri

with ri ∈ Gsn. Then 
∑

λnβsn = α
∑

σsn =
∑

ασsn . Since the supports of α and β are contained in G, the 
supports of βsn and ασsn are included in Gsn. By the uniqueness of expression of a group algebra element 
as a sum of elements with supports in distinct cosets of a subgroup, we deduce λnβsn = ασsn for each n. If 
λn �= 0 for some n, then βsn = λ−1

n ασsn ∈ (α), a contradiction, and the claim is proved.
Let V =

∑
r∈k kxr, and recall that the dual space V ∗ = Homk(V, k) is linearly isomorphic to the space 

of functions Func(k) = {f |f : k → k} via the map θ ∈ V ∗ maps to f ∈ Func(k) such that f(r) = θ(xr), for 
all r ∈ k. Let W be a complement of the subspace (α) ⊕

∑
kβsn in V , and let θ : V → k be the linear map 

defined as zero on both (α) and W , and θ(βsn) = 1, for all n. Then the complex function f that corresponds 
to θ under the above isomorphism has Δαf(0, h) =

∑
Aif(aih) =

∑
Aiθ(xaih) = θ (

∑
Aixaih) = θ(αh). 

As αh = αxh ∈ (α), the last term of the above chain is zero, so Dαf(0) = limh→0 Δαf(0, h)/hn = 0. Also, 
Δβf(0, sn) =

∑
Bif(bisn) =

∑
Biθ(xbisn) = θ (

∑
Bixbisn) = θ(βsn) = 1, for all n, implies that the limit 

limn→∞ Δβf(0, sn)/smn = limn→∞ 1/smn is not a finite number, and so Dβf(0) does not exist.
Suppose m > n and α � β. Let F be the subfield of C generated over the rationals by all ai’s and all 

bi’s. Define a function f by f(z) = zmχ(z), where χ is the characteristic function of the subset F of C. 
Then f(h) = o(hn) as h → 0, making f is n times Peano differentiable at 0, hence β-differentiable at 0 and 
Dβf(0) = fn(0) = 0. On the other hand, taking h ∈ F makes Dαf(0) = m! and taking h ∈ C \ F makes 
Dαf(0) = 0. Then f is not α-differentiable at 0, a contradiction with the hypothesis (i).

Suppose m < n and α � β. Then the mth Vandermonde conditions, 
∑

Aia
m
i = m! for α and 

∑
Bib

m
i = 0

for β, show that α is not a linear combination of dilates of β. This means that (β) � (α) and, as we did in 
the first part of the proof, this leads to contradiction by constructing a function f such that Dβf(0) exists 
but Dαf(0) does not exist. �
6.5. Proof of the main classification theorems

Before we proceed with the proofs of the Theorems 2.4 and 2.8, the following two examples both illustrate 
the result of Theorem 6.6 and give insight on how this is going to be used in the above mentioned proofs. 
Given an element α in ω(B), both examples classify all elements β in ω(B) for which β-differentiation 
is equivalent to α-differentiation. Recall from Lemma 6.5 that for each β in ω(B), there exists a unique 
nonzero scalar multiple of β that corresponds to a generalized Riemann derivative. Also, if α corresponds 
to a generalized Riemann derivative, then so too does 1

rαxr = 1
rαr, for r ∈ k.

Example 6.7. Consider the cyclic subgroup U2 = {±1} of k×. Pick � = 2 and observe that the primitive 
idempotents

ε0 = e0,2 = 1
2(x1 + x−1) = e1 and ε1 = e1,2 = 1

2(x1 − x−1) = d1

of the group algebra kU� extend to orthogonal idempotents of B that add up to 1.
Let α = x1 − x0 be the element of B corresponding to the first difference Δαf(z, h) = f(z + h) − f(z). 

Then α-differentiation is the same as ordinary differentiation. We compute

ε0α = 1
2(x1 + x−1)(x1 − x0) = 1

2(x1 + x−1) − x0 = e1 − x0,

ε1α = 1(x1 − x−1)(x1 − x0) = 1(x1 − x−1) = d1
2 2
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to deduce that (α) = (ε0α) ⊕ (ε1α) = (e1 − x0) ⊕ (d1) = (e1 − x0, d1).
An element β of B = Bε0 ⊕ Bε1 has the expression β = ε0β + ε1β = (

∑
Arxr)e1 + (

∑
Bsxs)d1 + Cx0, 

where r, s �= 0. The condition β ∈ ω(B) makes 
∑

Ar + C = 0, so

β = (
∑

Arxr)(e1 − x0) + (
∑

Bsxs)d1.

This leads to ε0β = (
∑

Arxr)(e1 − x0) and ε1β = (
∑

Bsxs)d1, which in turn yields (β) = ((
∑

Arxr)(e1 −
x0)) ⊕((

∑
Bsxs)d1). By Theorem 6.6(ii), α-differentiation equivalent to β-differentiation translates into the 

equality of ideals (α) = (β). This is the same as the equality of their components

(e1 − x0) = ((
∑

Arxr)(e1 − x0)) and (d1) = ((
∑

Bsxs)d1).

It follows that 
∑

Arxr and 
∑

Bsxs are units in B, so by Lemma 6.4 they are sums of trivial units of the 
indecomposable components of B. Writing 

∑
Arxr = Axu(e1 −x0) +Bxvd1, for complex numbers u and v, 

allows a recalculation of the first component of β: (
∑

Arxr)(e1 − x0) = (Axu(e1 − x0) +Bxvd1)(e1 − x0) =
Axu(e1 − x0) = A(eu − x0). A similar computation simplifies the second component of β as (

∑
Bsxs)d1 =

Bdv. Thus β = A(eu − x0) + Bdv. It corresponds to a first generalized Riemann difference precisely when 
the first Vandermonde condition A(u2 + −u

2 ) +B(v2 −
−v
2 ) = 1, or B = 1

v , is satisfied. It follows that the first 
order derivatives Dβ, for

β = A(eu − x0) + 1
v
dv,

are all possible generalized Riemann differentiations of a function f at z that are equivalent to ordinary 
differentiation. When k = R, we recover the result of [12, Theorem 1].

The next example shows that the symmetric derivative is implied by many generalized Riemann deriva-
tives, but it implies only rescales of it.

Example 6.8. Let α = d1 and let β = (
∑

Arxr)(e1 − x0) + (
∑

Bsxs)d1 be a generic element of ω(B)
equivalent to α. As in Example 6.7, we first deduce (β) = ((

∑
Arxr)(e1 − x0)) ⊕ ((

∑
Bsxs)d1), and then 

write the equality of ideals (β) = (α) implied by Theorem 6.6, componentwise, as

((
∑

Arxr)(e1 − x0)) = (0) and ((
∑

Bsxs)d1) = (d1).

The first equality makes 
∑

Arxr = 0; the second makes 
∑

Bsxs a unit in B, hence by Lemma 6.4, it is a sum ∑
Bsxs = Auxu(e1 − x0) +Bvxvd1 of trivial units of the indecomposable components of B. Multiplication 

by d1 yields (
∑

Bsxs)d1 = Bvxvd1 = Bvdv. All these simplify the expression of β as β = Bvdv. Finally, the 
first Vandermonde condition, Bv(v2 ) −Bv(−v

2 ) = 1 or Bv = 1
v , makes β = 1

vdv. In conclusion, the generalized 
Riemann derivatives equivalent to the symmetric derivative are all its rescales.

We are now ready to give the proofs of the Theorems 2.4 and 2.8. Both proofs rely on the result of 
Theorem 6.6 and the decomposition B = ⊕�−1

k=0ek,�B of the algebra B as a direct sum of ideals. This 
decomposition is inherited from a similar decomposition in A, which in turn comes from the decomposition 
of kU�. If α is an element of B, then α =

∑�−1
k=0 ek,�α is the unique decomposition of α as a sum α =

∑�−1
k=0 αk, 

with αk ∈ ek,�B. The term αk = ek,�α is the kth component of α.

Proof of Theorem 2.4. Let α, β be the elements of ω(B) corresponding to A and B. Theorem 6.6(ii) trans-
lates the equivalence of A-differentiation and B-differentiation into m = n and the equality (α) = (β) of 
principal ideals of B. This in turn says that β = uα, for some unit u of B. By Lemma 6.4, u is expressed 
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as u =
∑�−1

k=0 Akek,�xrk , with Ak ∈ k× and rk ∈ R+. It follows that β =
∑�−1

k=0 Akek,�xrkα. By taking the 
kth components of α and β, this reads as βk = Akek,�xrkα = Akxrkαk, or βk is a nonzero scalar multiple of 
the rk-dilate of αk, for each k. Since m = n, Proposition 2.2 makes the components αk and βk, when k = n

mod �, correspond to nth generalized Riemann derivatives, so βk = r−n
k αkxrk . �

Proof of Theorem 2.8. By ring theory, each ideal I of B = ⊕�−1
k=0ek,�B has a unique decomposition I =

⊕�−1
k=0ek,�I as a direct sum of ideals of the components of B. In particular, (α) = ⊕�−1

k=0(αk) and (β) =
⊕�−1

k=0(βk). By Theorem 6.6(i), the assertion in Part (i) translates into m = n and (α) ⊇ (β). Basic ideal 
theory makes this is equivalent to (αk) ⊇ (βk), for all k. In particular, βk is a linear combination βk =∑

i Riαkxri of dilates of αk. This is equivalent to the first identity in Part (ii). The second identity comes 
from Lemma 3.6(ii). �
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