
CHARACTERIZING PEANO AND SYMMETRIC DERIVATIVES

AND THE GGR CONJECTURE’S SOLUTION

J. MARSHALL ASH AND STEFAN CATOIU∗

Abstract. We provide three characterizations of the nth symmetric (Peano)

derivative fs
(n)

(x) in terms of symmetric generalized Riemann derivatives of

a function f at x, and a characterization of the nth Peano derivative f(n)(x)
in terms of generalized Riemann derivatives of f at x. The latter has been a

conjecture by Ginchev, Guerragio and Rocca since 1998.

About twenty years ago, three mathematicians studied the question of finding
a necessary and sufficient condition for a function having n − 1 Peano derivatives
at a point to also have an nth Peano derivative at that point. They conjectured
that the simultaneous existence of the nth forward Riemann derivative, together
with the existence of all of its first n− 1 backward integer shifts, with all these nth
Riemann derivatives having the same common value, would be such a condition.
The first seven cases of n = 2, 3, . . . , 8 were proved in [GR].

(Some terminology: An order n, or nth, generalized Riemann derivative without
excess of a function f at x is given by the limit

DAf(x) := lim
h→0

h−n
n∑

i=0

Aif (x+ aih) ,

where the data vector A consists of the distinct n+ 1 numbers {a0, . . . , an}, called
the base points, which uniquely determine the coefficients by means of the defin-

ing linear system of equations
∑n

i=0Ai (ai)
j

= δjnn!, for j = 0, 1, . . . , n. The
definitions of a Peano and a generalized Riemann derivative are given a couple
of paragraphs down below. If the base points are given by {ai} = {0, 1, . . . , n},
then DA is called the nth forward Riemann derivative and written as Dn, and

the {Ai} are given by
(
n
i

)
(−1)

n−i
, i = 0, 1, . . . , n. When the {ai} are shifted back

by 1 to become {ai} = {−1, 0, 1, . . . , n− 1}, the Ai are unchanged and the resultant
generalized derivative will be called the first backward integer shift of the nth for-
ward Riemann derivative and denoted Dn,−1; when the {ai} are shifted back by 2
to become {ai} = {−2,−1, 0, 1, . . . , n− 2}, the Ai are unchanged and the resultant
generalized derivative will be called the second backward integer shift of the nth
forward Riemann derivative and denoted Dn,−2, and so on.)

Suppose that a function has n − 1 Peano derivatives at a point x. Then a
necessary and sufficient condition for that function to have an nth Peano derivative
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at the point x is that the function also has a certain nth generalized Riemann
derivative at the point x, namely the one with base points

{
0, 20, 21, 22, . . . , 2n−1

}
,

introduced by Marcinkiewicz and Zygmund in [MZ] (1936). This equivalence was
observed in a recent preprint [ACF]. In that preprint appears another necessary
and sufficient condition for extending Peano differentiation from order n − 1 to
order n, namely the simultaneous existence of the nth forward Riemann derivative,
together with the existence of all of its first n− 2 forward integer shifts.

Section 3 below contains the proof for all n ≥ 3 of a slightly stronger statement
than the conjecture. Suppose that a function has n − 1 Peano derivatives at a
point x. We weaken the additional assumptions made by the conjecture in two
ways. First, we drop the assumption that the nth forward Riemann derivative
exists, while retaining the assumed existence of all of its first n−1 backward shifts.
Second, we do not assume that these backward shifts all have the same common
value. We then prove that the function has n Peano derivatives at the point x.

To carry out the conjecture’s proof, we needed to first establish a result for
symmetric Peano derivatives that is very much like the conjecture itself. In doing so,
we develop a whole theory of symmetric Peano and symmetric generalized Riemann
derivatives in Sections 1 and 2. The major results in these two sections respectively
amount to two characterizations of the symmetric Peano derivative in terms of
symmetric generalized Riemann derivatives. As a consequence of the results in
Section 3, a third such characterization is given in Section 4.

The next part of the introduction outlines the definitions, examples and basic
properties needed to understand the details. At the end of the introduction we give
more insight into the main results in each section.

Definitions and basic properties.

Peano derivatives. A real function f has n Peano derivatives at x if there exist real
numbers f(0)(x), f(1)(x), . . . , f(n)(x) such that

(1) f(x+ h) = f(0)(x) +
f(1)(x)

1!
h+

f(2)(x)

2!
h2 + · · ·+

f(n)(x)

n!
hn + o(hn).

The number f(n)(x) is the nth Peano derivative of f at x. The existence of the
nth Peano derivative of f at x assumes the existence of all lower order Peano
derivatives of f at x. By Taylor expansion, if the nth ordinary derivative f (n)(x)
exists, then so does the nth Peano derivative f(n)(x) and f(n)(x) = f (n)(x). The
converse of this is, in general, false. For example, the function f(x) = 0 for x
rational, and f(x) = xn+1 for x irrational, is n times Peano differentiable at 0 and
f(0)(0) = f(1)(0) = · · · = f(n)(0) = 0, while f (n)(0) does not exist for n ≥ 2, since
f ′(x) does not exist in a punctured neighborhood of 0.

The Peano derivatives were introduced by Peano in [P] (1891) and then studied
by de la Vallée Poussin in [VP] (1908). For more on Peano derivatives, see [As1, Olv]
and the survey article [EW] by Evans and Weil.

Symmetric Peano derivatives. A real function f has n symmetric Peano derivatives
at x if there exist real numbers fs(0)(x), fs(1)(x), . . . , fs(n)(x) such that

(2)
1

2
{f(x+ h) + (−1)nf(x− h)} = fs(0)(x) +

fs(1)(x)

1!
h+ · · ·+

fs(n)(x)

n!
hn + o(hn).
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In this case, fs(n)(x) is called the nth symmetric Peano derivative of f at x. Def-

inition (2) implies that fs(0)(x) = f(x) for n even, and fs(n−1)(x) = fs(n−3)(x) =

fs(n−5)(x) = · · · = 0 for all n, hence f is also symmetric Peano differentiable at x of

orders n− 2, n− 4, · · · . In particular, fs(0)(x) = 0 for n odd.

It is clear that every n times Peano differentiable function at x is also n times
symmetric Peano differentiable at x. The converse of this is in general false. For
example, the function f(x) = xn for x ≥ 0, and f(x) = −xn for x < 0, is n times
symmetric Peano differentiable at 0 and fs(n)(0) = f(n−2)(0) = · · · = 0, while f(n)(0)

does not exist, since h→ 0+ (resp. h→ 0−) would force f(n)(0) to be n! (resp. −n!).
Every even (odd) function being symmetric Peano differentiable at 0 of any odd
(even) order makes symmetric Peano differentiabilities of f at x of different parity
orders incomparable. (Except when f(0 + h) = o(hn).)

The symmetric Peano derivatives were invented by de la Vallée Poussin in [VP],
in 1908, and by this they should have been called de la Vallée Poussin derivatives.
In the literature they were called generalized symmetric derivatives in [Z], whose
first edition appeared in 1935, and simply symmetric derivatives in [Ws] (1964)
and all later references. Our choice for further name change here is to distinguish
them from other symmetric derivatives that we will frequently use throughout the
paper. The symmetric Peano derivatives have many applications in the theory of
trigonometric series.[SZ, Z]

Generalized Riemann derivatives. For a given function f and point x, the difference

∆A(x, h; f) =

d∑
i=0

Aif(x+ aih), for d ≥ n,

is an nth generalized Riemann difference, if its data A = {A0, . . . , Ad; a0, . . . , ad}
satisfies the nth Vandermonde conditions

∑
iAi (ai)

j
= δij · n!, for j = 0, 1, . . . , n.

In this case, the nth generalized Riemann derivative, or the A-derivative of f at x,
is defined by the limit

(3) DAf(x) = lim
h→0

∆A(x, h; f)/hn.

For simplicity, throughout the paper, we will write ∆A(h) to denote ∆A(x, h; f).
The most known examples of nth generalized Riemann derivatives are the ear-

lier mentioned nth forward Riemann derivative Dnf(x), corresponding to the nth
Riemann difference

∆n(h) =

n∑
i=0

(−1)n−i
(
n

i

)
f(x+ ih),

where A = {(−1)n−i
(
n
i

)
; i | i = 0, . . . , n}, and the nth symmetric Riemann deriva-

tive Ds
nf(x), corresponding to the nth symmetric Riemann difference

∆s
n(h) =

n∑
i=0

(−1)n−i
(
n

i

)
f(x+ (i− n/2)h),

where A = {(−1)n−i
(
n
i

)
; i− n

2 | i = 0, . . . , n}.
More examples of generalized Riemann derivatives are obtained by taking shifts

of known generalized Riemann derivatives. By linear algebra, for each real num-
ber r, the nth Vandermonde relations holding for A = {Ai; ai} is equivalent to their
holding for the forward and backward r-shifts A,±r := {Ai; ai ± r} of A. In this
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way, Ds
nf(x) = Dn,−n/2f(x), or the nth symmetric Riemann derivative is the n/2-

backward shift of the nth forward Riemann derivative, and Dnf(x) = Ds
n,n/2f(x),

or the nth forward Riemann derivative is the n/2-forward shift of the nth symmetric
Riemann derivative.

Another way of making new generalized Riemann derivatives from old is by
scaling known generalized Riemann derivatives. An r-scale of an nth generalized
Riemann difference ∆A(h) with A = {Ai; ai} is the nth generalized Riemann differ-
ence ∆Ar (h) with Ar = {r−nAi; rai}. The process of scaling is different from other
processes used to create new generalized derivatives. To see this, look at the sim-

plest case of limh→0
f(x+rh)−f(x)

rh = limh→0
f(x+h)−f(x)

h to see that scaling is never
anything more than applying the change of variable h → rh before letting h tend
to 0. So whenever a property is enjoyed by exactly the set {DAr : r > 0} we may
say that DA is the unique generalized derivative with that property. Nevertheless,
scaling is often a useful tool because if ∆A is the difference associated with DA
and r 6= s then ∆Ar

(h) and ∆As
(h) are distinct.

When d = n, the nth generalized Riemann difference ∆A(h) has no excess: given
a0, . . . , an, the above nth Vandermonde relations for A form a system of n + 1
linear equations in n + 1 unknowns A0, . . . , An with non-singular Vandermonde
coefficient matrix, hence it has a unique solution. In particular, the nth forward
Riemann difference ∆n(h) is the unique nth generalized Riemann difference based
at a0 = 0, a1 = 1, . . . , an = n, and the nth symmetric Riemann difference ∆s

n(h) is
the unique nth generalized Riemann difference based at a0 = −n/2, a1 = −n/2 +
1, . . . , an = n/2.

Riemann derivatives were introduced in 1892 by Riemann in [R]. Generalized
Riemann derivatives were formalized in 1935 by Denjoy in [D]. These were shown to
satisfy properties similar to those for the ordinary derivatives, such as monotonicity,
convexity, or the mean value theorem.[AJ, FFR, HL, HL1, T, W] For more on
Riemann derivatives, see [AC1, BK].

Symmetric generalized Riemann differences. A (not necessarily generalized Rie-
mann) difference ∆A(h) is even if ∆A(−h) = ∆A(h), and odd if ∆A(−h) =
−∆A(h). An nth generalized Riemann difference ∆A(h) is symmetric if ∆A(−h) =
(−1)n∆A(h), meaning that ∆A(h) is even when n is even, and odd when n is odd.
For example, the nth symmetric Riemann difference ∆s

n(h) is symmetric for all n.
Each nth generalized Riemann difference ∆A(h) gives rise to an nth symmetric

generalized Riemann difference, its symmetrization, defined as

∆s
A(h) = {∆A(h) + (−1)n∆A(−h)}/2.

Denoting ∆As(h) = ∆s
A(h), if f is A-differentiable at x, then f is As-differentiable

at x and DAf(x) = DAsf(x).
More examples of symmetric generalized Riemann differences are obtained from

shifts of either forward or symmetric Riemann differences. Since ∆n,−j(−h) =
(−1)n∆n,−n+j(h), for j = 0, 1, . . . , n, the differences

∆s
n,j(h) = {∆n,−j(h) + ∆n,−n+j(h)}/2,

for j = 0, 1, . . . , n, are symmetric nth generalized Riemann differences. Note
that ∆s

n,j(h) is not the same as the j-shift of ∆s
n(h), as the notation might suggest.

The nth generalized Riemann difference without excess based at a symmetric
relative to the origin point set {a0, a1, . . . , an} is an nth symmetric generalized
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Riemann difference. Denote m = b(n + 1)/2c, and relabel the base points as
{(a0 = 0),±a1,±a2, . . . ,±am}, where (a0) means a0 appears only when n is even,
and 0 < a1 < · · · < am. By eliminating redundancies, the data vector A is
simplified to an increasingly ordered set S = {(a0 = 0), a1, a2, . . . , am} of non-
negative real numbers. In this way, A-differentiation will be the same as symmetric
S-differentiation, and ∆A(h) will also be denoted as ∆S(h).

Implication and equivalence of generalized derivatives. We say that a generalized
derivative of a function f at x implies or is equivalent to another generalized deriv-
ative of f at x, if the existence of the first generalized derivative of f at x implies
or is equivalent to the existence of the other generalized derivative of f at x.

Let A be the data vector of an nth generalized Riemann derivative. Taylor
expansion about x shows that every n times Peano differentiable function f at x
is A-differentiable at x and DAf(x) = f(n)(x). The converse of this is in general
false, and the result of [ACCs, Theorem 1], which we will invoke again at the end
of Section 1, classifies all A for which the generalized Riemann derivative DAf(x)
implies, hence is equivalent to, the Peano derivative f(n)(x), for all functions f and
points x.

By Taylor expansion, the nth symmetric Peano derivative fs(n)(x) implies every

symmetric nth generalized Riemann derivativeDAf(x). Theorem 1.5 determines all
cases where the reverse of this implication is true. Theorem 1.3 in particular shows
that, likewise symmetric Peano differentiations, symmetric generalized Riemann
differentiations of different parity orders are incomparable.

The earliest equivalence of generalized derivatives was proved in 1927 by Kint-
chine in [Ki], who showed that the first symmetric Peano derivative, hence the first
symmetric Riemann derivative, is a.e. equivalent to the first ordinary derivative.
This was extended by Marcinkiewicz and Zygmund in [MZ], proving that the nth
symmetric Riemann derivative and the nth Peano derivative are a.e. equivalent,
and then further extended by Ash in [As] (1967), who showed that each nth gen-
eralized Riemann derivative is a.e. equivalent to the nth Peano derivative. More
equivalences between symmetric, Peano and Riemann derivatives and their quan-
tum analogues are given in [AC, ACR, GGR1].

Until very recently, the equivalence of generalized derivatives was largely viewed
as an almost everywhere equivalence. The above mentioned result of [ACCs] paved
the way to a more explicit pointwise theory of equivalences between generalized
derivatives. Article [ACCh] classified all pairs of generalized Riemann derivatives
that either pointwisely imply or are pointwisely equivalent to each other, and we
will describe that result in Section 1. This classification was extended to complex
functions in [ACCh1], and an application of it to continuity is given in [AAC].
The present article is a part of the same pointwise theory of equivalences between
generalized derivatives. With the exception of Lemma 1.1 and all of Section 3, where
the generalized derivatives are Peano and generalized Riemann, the generalized
derivatives involved here are the symmetric Peano and the symmetric generalized
Riemann.

Results. As we said earlier, Section 3 proves the conjecture by Ginchev, Guerragio
and Rocca, a characterization of (ordinary) Peano differentiation by generalized
Riemann differentiations, and Sections 1, 2 and 4 provide three characterizations of
symmetric Peano differentiation by symmetric generalized Riemann differentiations.
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Section 1. The existence of every nth symmetric generalized Riemann derivative
DAf(x) easily follows from the existence of the corresponding nth symmetric Peano
derivative fs(n)(x). In short, fs(n)(x) ⇒ DAf(x). We first find the set of pairs

(n,A) for which the implication fs(n)(x)⇒ DAf(x) is reversible. When this occurs,

we have a characterization of fs(n)(x) by a single symmetric generalized Riemann

derivative DAf(x). This happens in a trivial way when n = 1 or 2. In fact, fs(1)(x)

is the number b satisfying 1
2 {f(x+ h)− f(x− h)} = bh+o (h) while Ds

1f(x) is the

number b = limh→0
f(x+h)−f(x−h)

2h so that fs(1)(x) and Ds
1f(x) have exactly the same

definition. Similarly, fs(2)(x) is the number c such that 1
2 {f(x+ h) + f(x− h)} =

f (x) + 1
2ch

2 + o
(
h2
)

and Ds
2f(x) is the number c = limh→0

f(x+h)−2f(x)+f(x−h)
h2

so that fs(2)(x) and Ds
2f(x) also have exactly identical definitions. We have then

found the pairs (1, {±1/2;±1}) and (2, {1,−2, 1; 1, 0,−1}).
Theorem 1.5 says that, with the exception of these two trivial examples, there are

no other pairs (n,A) producing a characterization of fs(n)(x) by a single symmetric

generalized Riemann derivative, neither for any n ≥ 3, nor for any symmetric
generalized Riemann derivative other than Ds

1 when n = 1 and Ds
2 when n = 2.

In other words, for n ≥ 3, every nth symmetric generalized Riemann derivative is
strictly more general than the nth symmetric Peano derivative.

The result of Theorem 1.5 is that for only a very slender set of orders of dif-
ferentiation (namely n = 1, 2) a characterization of the nth symmetric Peano dif-
ferentiation by a single symmetric generalized Riemann differentiation is possible.
As such, Theorem 1.5 provides the motivation for the next two characterizations of
each higher order symmetric Peano differentiation by means of a small system of
symmetric generalized Riemann differentiations.

Section 2. Since no non-trivial symmetric generalized Riemann differentiation is
equivalent to the nth symmetric Peano differentiation, for all functions f and
points x, and since the nth symmetric Peano differentiation is incomparable to
the n − 1st symmetric Peano differentiation, a natural question to ask that might
have a positive answer is the following:

Are there non-trivial symmetric generalized Riemann differentia-
tions that are equivalent to nth symmetric Peano differentiation,
for all n− 2 times symmetric Peano differentiable functions f and
points x?

This is what we call a characterization by symmetric generalized Riemann differ-
entiations of the nth symmetric Peano differentiation modulo n − 2nd symmetric
Peano differentiation.

The second characterization of the nth symmetric Peano differentiation is a
positive characterization by a single symmetric generalized Riemann differentiation
modulo n−2nd symmetric Peano differentiation. We show in Theorem 2.2 that the

nth symmetric generalized Riemann derivative without excess, D̃nf(x) = DSf(x),
corresponding to the simplified data vector S = {(a0 = 0), a1 = 1, a2 = 2, a3 =
4, . . . , am = 2m−1}, for m = b(n + 1)/2c, is equivalent to the nth symmetric
Peano derivative fs(n)(x), for all n − 2 times symmetric Peano differentiable func-

tions f at x. This means that fs(n)(x) is equivalent to the system consisting of both

fs(n−2)(x), D̃nf(x). Corollary 2.3 contains an equivalent result, namely, that the
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nth symmetric Peano derivative fs(n)(x) is equivalent to the system consisting of all

of D̃nf(x), D̃n−2f(x), D̃n−4f(x), and so on.

Section 3. This section proves a characterization of the nth Peano differentiation
modulo n−1st Peano differentiation, by backward shifts of the nth forward Riemann
differentiation. In Theorem 3.1 we show that the system Dsh−

n f(x) consisting of
all backward shifts Dn,−jf(x), for j = 1, . . . , n − 1, of the nth forward Riemann
derivative Dnf(x) is equivalent to the nth Peano derivative f(n)(x), for all n − 1

times Peano differentiable functions f at x. Equivalently, f(n−1)(x) and Dsh−
n f(x)

together are equivalent to f(n)(x). Corollary 3.2 provides an equivalent statement
of Theorem 3.1: the nth Peano derivative f(n)(x) is equivalent to f(1)(x) and all of

Dsh−
k f(x), for k = 2, . . . , n, that is, to a system consisting of 1 + 2 + · · ·+ (n− 1) =

n(n− 1)/2 shifts of forward Riemann derivatives of orders up to n.
Corollary 3.2, and implicitly Theorem 3.1, has been a conjecture by Ginchev,

Guerragio and Rocca since 1998. They proved it for n ≤ 4 in [GGR] and, with the
use of a computer, they proved the result for n ≤ 8 in [GR], and left the general
case as an open problem. Their method is different than ours.

Section 4. Motivated by Conjecture 4.1, asserting that the nth symmetric Riemann
derivative Ds

nf(x), or the most common example of a symmetric generalized Rie-
mann derivative, does not characterize the nth symmetric Peano derivative fs(n)(x)

modulo fs(n−2)(x) in the same way as D̃s
nf(x) did in Section 2, and in the light of

the results in Section 3 for the Peano derivative, the natural question to ask next
is the following:

Are there sets of symmetric generalized Rieman derivatives, which
are closely related to the symmetric Riemann derivative Ds

nf(x),
that are equivalent to the nth symmetric Peano derivative fs(n)(x)

modulo fs(n−2)(x)?

The third characterization of the symmetric Peano derivative fs(n)(x) is the result of

Theorem 4.3, showing that fs(n)(x) is equivalent modulo fs(n−2)(x) to the set of all

consecutive symmetrizations Ds
n,jf(x), for j = 1, 2, . . . , bn/2c, of backward shifts

Dn,−jf(x) of the forward Riemann derivative Dnf(x), which are also shifts of the
symmetric Riemann derivative Ds

nf(x).

1. First characterization of the symmetric Peano derivative

The first characterization of the symmetric Peano differentiation is the question
of finding all single symmetric generalized Riemann differentiations A of order m
such that, for all f and x, the symmetric generalized Riemann derivative DAf(x)
implies, hence is equivalent to, the nth symmetric Peano derivative fs(n)(x). This

question is answered in Theorem 1.5 of Section 1.2. The proof of Theorem 1.5
relies on the classification of symmetric generalized Riemann derivatives, given in
Section 1.1, which is the question of characterizing all pairs (A,B) of symmetric
generalized Riemann differentiations such that, for each function f and point x, the
derivative DAf(x) either implies or is equivalent to the derivative DBf(x). This
question is answered in Theorem 1.3, whose proof relies in part on a highly non-
trivial theorem, the analogue result for generalized Riemann derivatives, proved
in [ACCh] and conveniently restated here as Lemma 1.1.
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1.1. The equivalence of symmetric generalized Riemann derivatives. Re-
call that the symmetrization ∆s

A(h) = {∆A(h) + (−1)n∆A(−h)}/2 of any nth
generalized Riemann difference ∆A(h) is an nth symmetric generalized Riemann
difference. The anti-symmetrization of ∆A(h) is the difference

∆s′

A(h) = {∆A(h) + (−1)n+1∆A(−h)}/2.

When this is non-zero, it is a scalar multiple of a symmetric generalized Riemann
difference whose order is both larger than n and with parity opposite to n; see
[ACCh, Theorem 4]. Furthermore, since ∆A(h) = ∆s

A(h) + ∆s′

A(h) is the unique
expression of ∆A(h) as a sum of an even difference and an odd diference, a gener-
alized Riemann difference ∆A(h) is symmetric if and only if ∆A(h) = ∆s

A(h), that

is, if and only if ∆s′

A(h) = 0.
Also recall that the r-scale (r 6= 0) of an nth generalized Riemann differ-

ence ∆A(h) is the difference ∆Ar
(h) = r−n∆A(rh), and that Ar-differentiation

is equivalent to A-differentiation. In addition, a linear combination ∆Ā(h) :=∑
k Rk∆Ark

(h) of scales of ∆A(h) is an nth generalized Riemann difference if and

only if it is normalized, or
∑

k Rk = 1. In this case A-differentiation implies Ā-
differentiation. These are the two obvious ways to provide generalized Riemann
differentiations B that are respectively equivalent to or implied by a given general-
ized Riemann differentiation A.

The following lemma characterizes, in terms of symmetrizations and anti-symme-
trizations of differences, all pairs (∆A,∆B) of generalized Riemann differences for
which A-differentiation either implies or is equivalent to B-differentiation, for all
functions f and points x. This combined result of two theorems in [ACCh] is the
classification of generalized Riemann derivatives, which can be rephrased as follows:

Lemma 1.1. [ACCh, Theorems 2 and 3] Let A and B be two generalized Riemann
derivatives of orders m and n. Then, for each function f and point x,

(i) DAf(x) is equivalent to DBf(x) if and only if m = n and there exist non-zero
constants A, p and q such that

∆s
B(h) = ∆s

Ap
(h) and ∆s′

B (h) = A∆s′

Aq
(h).

(ii) DAf(x) implies DBf(x) if and only if m = n and there exist constants

{Pj ; pj 6= 0 | j = 1, . . . , k} and {Qj ; qj 6= 0 | j = 1, . . . , `}, with
∑k

j=1 Pj = 1, so that

∆s
B(h) =

k∑
j=1

Pj∆
s
Apj

(h) and ∆s′

B (h) =
∑̀
j=1

Qj∆
s′

Aqj
(h).

An important feature of Lemma 1.1 is its use in producing non-obvious examples
of generalized Riemann differentiations B that are either implied by or equivalent
to a given generalized Riemann differentiation A, for all functions f at x.

Example 1.2. Consider the following first generalized Riemann differentiations:

1. DAf(x) = lim
h→0

∆A(h)

h
= lim

h→0

f(x+ h)− f(x)

h
;

2. DBf(x) = lim
h→0

∆B(h)

h
= lim

h→0

4f(x+ h)− 7f(x) + 3f(x− h)

h
;

3. DCf(x) = lim
h→0

∆C(h)

h
= lim

h→0

f(x+ 2h) + f(x+ h)− 3f(x) + f(x− 2h)

h
.
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The symmetrizers and anti-symmetrizers of their defining differences are:

∆s
A(h) = ∆s

B(h) = ∆s
C(h) = {f(x+ h)− f(x− h)}/2,

∆s′

A(h) = {f(x+ h)− 2f(x) + f(x− h)}/2,

∆s′

B (h) =
7

2
{f(x+ h)− 2f(x) + f(x− h)},

∆s′

C (h) = f(x+ 2h) +
1

2
f(x+ h)− 3f(x) +

1

2
f(x− h) + f(x− 2h).

Since ∆s
A(h) = ∆s

B(h) and ∆s′

B (h) = 7∆s′

A(h), by Lemma 1.1(i), A-differentiation is
equivalent to B-differentiation, for all functions f at x. Since ∆s

C(h) = ∆s
A(h)

and ∆s′

C (h) = 2∆s′

A(2h) + ∆s′

A(h) = 4∆s′

A2
(h) + ∆s′

A(h), by Lemma 1.1(ii), A-

differentiation implies C-differentiation. And since ∆s′

C (h) is not a non-zero scalar

multiple of a scale of ∆s′

A(h), A-differentiation is not equivalent to C-differentiation.

We shall see next that the analogue result of Lemma 1.1 for symmetric gener-
alized Riemann derivatives does no longer have a surprise factor: all symmetric
generalized Riemann derivatives that are either implied by or equivalent to a given
symmetric generalized Riemann derivative are precisely the expected ones.

The following theorem characterizes all pairs (∆A,∆B) of symmetric general-
ized Riemann differences with the property that A-differentiation either implies
or is equivalent to B-differentiation, for all functions f and points x. This is the
classification of symmetric generalized Riemann derivatives.

Theorem 1.3. Let A and B be the data vectors for two symmetric generalized Rie-
mann derivatives of orders m and n. Then, for all functions f and real numbers x,

(i) DAf(x) is equivalent to DBf(x) if and only if m = n and there is a non-zero
real number p, such that

∆B(h) = ∆Ap(h).

(ii) DAf(x) implies DBf(x) if and only if m = n and there exist constants

P1, . . . , Pk, with
∑k

j=1 Pj = 1, and non-zero constants p1, . . . , pk, such that

∆B(h) =

k∑
j=1

Pj∆Apj
(h).

Proof. This is an easy consequence of Lemma 1.1 and our earlier observation that
a difference ∆A(h) is symmetric if and only if ∆A(h) = ∆s

A(h). �

Part (i) of Theorem 1.3 says that the differences corresponding to equivalent
symmetric generalized Riemann derivatives are scales of each other. Part (ii) says
that a symmetric generalized Riemann differentiation implies another symmetric
generalized Riemann differentiation precisely when the difference corresponding
to the second differentiation is a normalized linear combination of scales of the
difference corresponding to the first differentiation.

Example 1.4. Consider the second symmetric generalized Riemann differences:

∆A(h) = f(x+ h)− 2f(x) + f(x− h),

∆B(h) = {f(x+ 2h)− f(x+ h)− f(x− h) + f(x− 2h)}/3.

Since ∆B(h) = 1
3∆A(2h)− 1

3∆A(h) = 4
3∆A2(h)− 1

3∆A(h) is a linear combination
of scales of ∆A(h), by Theorem 1.3(ii), A-differentiation implies B-differentiation.
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And since ∆B(h) is not a non-zero scalar multiple of a scale of ∆A(h), by Part (i)
of the same result, A-differentiation is not equivalent to B-differentiation.

1.2. First characterization of the symmetric Peano differentiation. In this
section, for all positive integers m and n, we determine all symmetric generalized
Riemann differences ∆A(h) of order m for which the derivative DAf(x) implies,
hence is equivalent to, the symmetric Peano derivative fs(n)(x), for all f and x. This

is achieved in the following theorem:

Theorem 1.5. When n = 1 or 2, the nth symmetric Riemann differentiation and
the nth symmetric Peano differentiation have the same definition. With the excep-
tion of these two trivial cases, for n ≥ 1, any nth symmetric generalized Riemann
differentiation is more general than the nth symmetric Peano differentiation.

Proof. We will prove the following more specific result: For all f and x, an mth
symmetric generalized Riemann derivative DAf(x) is equivalent to the nth sym-
metric Peano derivative fs(n)(x) if and only if m = n ≤ 2 and ∆Af(x) is a scale of

the nth (non-generalized) symmetric Riemann difference ∆s
nf(x).

The result for n = 1, 2 comes from Theorem 1.3, since the first symmetric Peano
derivative fs(1)(x) is identical to the first symmetric Riemann derivative Ds

1f(x), and

the second symmetric Peano derivative fs(2)(x) is identical to the second symmetric

Riemann derivativeDs
2f(x), for all f and x. For this, see the Results/Section 1/Para-

graph 1 part of the introduction.
Suppose now that A = {Ai, ai | i = 0, 1, . . . , d} is the data vector of a symmetric

generalized Riemann difference of order n ≥ 3, and let K be the field generated
over Q by all the ai’s. Denote j = n mod 2 and define the real function fj by
setting fj(x) = 0, if x ∈ K, and fj(x) = xj , if x ∈ R \ K. Then fj has no
symmetric Peano derivative of order n at 0. On the other hand,

∆A(0, h; fj) =

d∑
i=0

Aifj(aih) =

{∑d
i=0Aia

j
ih

j if h ∈ R \K,
0 if h ∈ K.

By the jth Vandermonde condition, ∆A(0, h; f) = 0, for all h, so f isA-differentiable
at 0 and DAf(0) = 0. Thus DAf(0) does not imply fs(n)(0), for n ≥ 3. �

Our motivation for the classification result in Theorem 1.5 comes from Theorem 1
in [ACCs], asserting that the only generalized Riemann derivatives of every orders
that are equivalent to the Peano derivative f(n)(x) are the first order A-derivatives
which are dilates (h→ sh, for some s 6= 0) of limits of the form

lim
h→0

Af(x+ rh) +Af(x− rh) + f(x+ h)− f(x− h)− 2Af(x)

2h
,where Ar 6= 0.

2. Second characterization of the symmetric Peano derivative

Theorem 1.5 showed that, for each n, there are no single non-trivial symmetric
generalized Riemann derivatives that are equivalent to the symmetric Peano deriv-
ative fs(n)(x). The second characterization of the symmetric Peano derivative, for

each n, will provide a set of non-trivial symmetric generalized Riemann derivatives
that is equivalent to the symmetric Peano derivative fs(n)(x).
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Consider the sequence of differences ∆̃s
n(h) = ∆̃s

n(x, h; f) of a function f at x,
defined recursively as follows:

(4)

∆̃s
1(h) = f(x+ h)− f(x− h),

∆̃s
2(h) = f(x+ h)− 2f(x) + f(x− h),

∆̃s
n(h) = ∆̃s

n−2(2h)− 2n−2∆̃s
n−2(h), for n > 2.

The recursive relation implies that

(5) ∆̃s
n(h) = 2n−2{∆̃s

n−2(2h)/(2h)n−2 − ∆̃s
n−2(h)/hn−2}hn−2,

and that the difference ∆̃s
n(h) is even when n is even, and odd when n is odd. We

can write this difference explicitly as

(6) ∆̃s
n(h) = A0f(x) +

m∑
i=1

Ai{f(x+ 2i−1h) + (−1)nf(x− 2i−1h)},

where the coefficients A0, A1, . . . , Am satisfy A0 = 0 for odd n and Am = 1 for all n.
This is a symmetric Peano difference based at (x), x±h, x±2h, x±4h, . . . , x±2m−1h,
that is, at S = {(0), 1, 2, 4, . . . , 2m−1}.

Part (ii) of the following lemma shows that the difference ∆̃s
n(h) satisfies all but

the last of the nth Vandermonde conditions,

(7) A0 + {1 + (−1)n} ·
m∑
i=1

Ai = 0 and {1 + (−1)n−j} ·
m∑
i=1

Ai2
(i−1)j = 0,

for j = 1, . . . , n − 1, hence is a scalar multiple of an nth generalized Riemann
derivative. Note that the equations (7) for j with n− j odd are trivially satisfied.

Lemma 2.1. For a function f at x, if the symmetric Peano derivative fs(n)(x)

exists, then:

(i) ∆̃s
n(h) is a scalar multiple of an nth generalized Riemann difference;

(ii) the limit lim
h→0

∆̃s
n(h)/hn exists.

Proof. Induct on n. Cases n = 1, 2 are clear. For n > 2, suppose the result is true
for n− 2 and that fs(n)(x) exists. Then, by (5) and the inductive hypothesis,

(8) ∆̃s
n(h) = ∆̃s

n−2(2h)− 2n−2∆̃s
n−2(h) = o(hn−2).

And by (4) and the inductive hypothesis, ∆̃s
n(h) is a scalar multiple of a generalized

Riemann difference of order n− 2. Recall that the existence of the nth symmetric
Peano derivative (2) always implies that fs(j)(x) = 0, for j = n − 1, n − 3, · · · .
Moreover, substitution of (2) in (6) yields

(9)

∆̃s
n(h) =

(
A0 + 2 · {1 + (−1)n} ·

m∑
i=0

Ai

)
f(x)

+

n∑
j=1

(
2 · {1 + (−1)n−j} ·

m∑
i=1

2(i−1)jAi

)
fs(j)(x)

j!
hj + o(hn).

By (8) and (9), all but the last equation of the Vandermonde system (7) are clearly
satisfied. The remaining equation, the one for j = n− 1, is trivially satisfied. This

proves (7), hence (i). Moreover, equation (9) is reduced to ∆̃s
n(h) = Ahn+o(hn), for

some real number A, completing the remaining Part (ii) of the inductive step. �
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Lemma 2.1 implies that a unique scalar multiple λn∆̃s
n(h) of the difference ∆̃s

n(h)
is an nth generalized Riemann difference. In particular, the derivative defined as

D̃s
nf(x) := lim

h→0
λn∆̃s

n(h)/hn

is an nth generalized Riemann derivative and D̃nf(x) = fs(n)(x). Moreover, since

the number of its base points is n+1, by the Vandermonde relations, the difference

λn∆̃s
n(h) is the unique nth generalized Riemann derivative based at these points.

The following theorem asserts that the special symmetric Riemann derivative

D̃s
nf(x) is equivalent to the symmetric Peano derivative fs(n)(x), for all n− 2 times

symmetric Peano differentiable functions f at x. This will also be referred to simply

as D̃s
nf(x) is equivalent to fs(n)(x) modulo fs(n−2)(x)

From now on, unless otherwise specified, all results assume n ≥ 3.

Theorem 2.2. For each function f and real number x,

both derivatives fs(n−2)(x) and D̃s
nf(x) exist ⇐⇒ fs(n)(x) exists.

Proof. Since the definition of the nth symmetric Peano derivative fs(n)(x) both

assumes the existence of any symmetric Peano derivative of f at x of the same
parity lower order, and implies any nth symmetric generalized Riemann derivative
DAf(x), one implication is clear. For the converse, an eventual translation of f(x)
by x reduces the problem to the case x = 0, and an eventual subtraction from f(x)
of a degree n polynomial in x reduces it further to the case where f(0) = fs(1)(0) =

· · · = fs(n−1)(0) = 0 and D̃s
nf(0) = 0. The last condition means that ∆̃s

n(h) = o(hn),

or, for each ε > 0 there is a δ = δ(ε) > 0 such that |h| < δ ⇒ |∆̃s
n(h)| < ε|h|n.

Then∣∣∣∆̃s
n−2(2h)− 2n−2∆̃s

n−2(h)
∣∣∣ ≤ ε|h|n, ∣∣∣∣∆̃s

n−2(h)− 2n−2∆̃s
n−2

(
h

2

)∣∣∣∣ ≤ ε ∣∣∣∣h2
∣∣∣∣n , . . .

. . . ,

∣∣∣∣∆̃s
n−2

(
h

2k−1

)
− 2n−2∆̃s

n−2

(
h

2k

)∣∣∣∣ ≤ ε ∣∣∣∣ h2k
∣∣∣∣n .

Multiply these equations by 1, 2n−2, 22(n−2), . . . , 2k(n−2), respectively, and add.
Further use of the triangle inequality on the left side yields∣∣∣∣∆̃s

n−2(2h)− 2(k+1)(n−2)∆̃s
n−2

(
h

2k

)∣∣∣∣ ≤ 2ε|hn|.

Since D̃s
n−2f(0) = fs(n−2)(0) = 0, without loss of generality, by choosing k suffi-

ciently large, the second term on the left side above can be made ≤ ε|hn| and, by
the triangle inequality, this leads to∣∣∣∆̃s

n−2(2h)
∣∣∣ ≤ 3ε|hn|, or simply ∆̃s

n−2(h) = o(hn).

Similarly, each term of the sequence of ∆̃s
n−4(h), ∆̃s

n−6(h), and so on, is o(hn).

Depending on the parity of n, the last of these is either ∆̃s
1(h) = f(0 + h) −

f(0 − h) = o(hn) or ∆̃s
2(h) = f(0 + h) − 2f(0) + f(0 − h) = o(hn), leading to

1
2{f(0 + h) + (−1)nf(0 − h)} = o(hn), regardless of the parity of n. Then fs(n)(0)

exists, as needed, and is equal to zero. �
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Theorem 1.5 showed that no single generalized symmetric Riemann derivative
is equivalent to the nth symmetric Peano derivative fs(n)(x) when n > 2. The

following corollary does characterize the symmetric Peano derivative fs(n)(x) when

n > 2. For each such n, it provides a set of
⌊
n+1

2

⌋
symmetric generalized Riemann

derivatives which is equivalent to fs(n)(x).

Corollary 2.3. For each real function f and point x,

fs(n)(x) exists ⇐⇒ all derivatives D̃s
kf(x) exist, for k = n, n− 2, n− 4, · · · .

Proof. Induct on n with step 2. The equivalence is clear when n = 1, 2. The
inductive step is the result of Theorem 2.2. �

The above proof shows that Corollary 2.3 is actually equivalent to Theorem 2.2.
An easy consequence of Corollary 2.3 is the following result which highlights the
case of functions f for which both symmetric derivatives fs(n)(x) and fs(n−1)(x) exist.

This case will play an important role in the next section in the proof of the GGR
conjecture (Theorem 3.1).

Corollary 2.4. For all functions f and real numbers x,

both fs(n)(x) and fs(n−1)(x) exist ⇐⇒ all D̃s
kf(x) exist, for k = 1, 2, . . . , n.

Proof. This follows from the result of Corollary 2.3 for both n and n− 1. �

3. Proof of Ginchev-Guerragio-Rocca conjecture

This section proves the conjecture by Ginchev, Guerragio and Rocca on charac-
terizing the Peano derivative by backward shifts of the forward Riemann derivative.

Theorem 2.2 is the symmetric analogue of a result given in [MZ] (1936) that we
state later on as Lemma 3.8 and which asserts that a special nth forward generalized

Riemann derivative D̃nf(x) is equivalent to f(n)(x) modulo f(n−1)(x). The analo-
gous result for the symmetric or forward Riemann derivatives Ds

nf(x) or Dnf(x)

in place of D̃s
nf(x) are not true; see [ACF] and Conjecture 4.2. This points at

the fact that the cases when a single generalized Riemann derivative characterizes

f(n)(x) modulo f(n−1)(x) are very scarce, and so the derivative D̃nf(x) is really

special. (The same can be said in the symmetric case about D̃s
nf(x) via reference

to Theorem 2.2 and Conjecture 4.1.)
Our next focus will then be on characterizing f(n)(x) modulo f(n−1)(x) by sets

of nth generalized Riemann differentiations. As Ds
nf(x) and Dnf(x) are shifts of

each other, and inspired by how the second characterization of the symmetric Peano
derivative in Section 2 was built out of the failure of the first characterization in
Section 1, the next theorem characterizes the nth Peano derivative f(n)(x), modulo
the n− 1-st Peano derivative f(n−1)(x), in terms of sets of shifts of either Dnf(x)
or Ds

nf(x).
The theorem has been a conjecture by Ginchev, Guerragio and Rocca since 1998,

saying that the nth Peano derivative f(n)(x) is equivalent to the system of all n− 1
consecutive backward shifts of the nth forward Riemann derivative Dnf(x), for all
n − 1 times Peano differentiable functions f at x. The theorem is easiest stated
in terms of the set Dsh−

n f(x) = {Dn,−jf(x) | j = 1, . . . , n − 1} of the first n − 1
backward shifts of the Riemann derivative Dnf(x) of f at x. We say that Dsh−

n f(x)
exists if all Dn,−jf(x), for j = 1, . . . , n− 1, exist. The result goes as follows:
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Theorem 3.1. For each function f , real number x, and integer n at least 2,

both f(n−1)(x) and Dsh−
n f(x) exist ⇐⇒ f(n)(x) exists.

The result is slightly stronger than the original Ginchev–Guerragio–Rocca con-
jecture, where the j = 0 shift was also included in the left side of the equivalence.
In addition, we do not need to assume that all values of the elements of Dsh−

n f(x)
are equal. The reason for this is because their mere existence guaranteed that they
will be equal; see pages 3-5 of the thesis of Patrick J. O’Connor.[O]

The example of the function f(x) = x2 · sgn(x) for which both symmetric deriva-
tives fs(1)(0) and fs(2)(0) exist and are zero due to respectively f(h) = o(h) as h→ 0

and f being an odd function, while the Peano derivative f(2)(0) does not exist

due to its defining limit becoming 2 when h → 0+ and −2 when h → 0−, shows
that the Peano derivative f(n)(x) is in general not equivalent to the compound of
symmetric derivatives fs(n)(x) and fs(n−1)(x). However, for the purpose of the proof

of Theorem 3.1, we chose to first prove the reverse implication in general and the
direct implication for functions f for which the nth Peano is equivalent to both
nth and n − 1-st symmetric derivatives; we refer to this as the restricted proof of
the theorem. In this way, we are able to develop in an easier setting most of the
techniques needed in the general proof and also add more results to the theory of
symmetric derivatives, which is consistent with the main goal of the article. The
general proof is given at the end of the section.

Proof. By definition, the nth Peano derivative f(n)(x) implies the n − 1-st Peano
derivative f(n−1)(x) and, by Taylor expansion, the same f(n)(x) implies every nth
generalized Riemann derivative DAf(x), so the reverse implication is clear. For
the direct implication, suppose that the Peano derivative f(n)(x) is equivalent
to the conjunction of symmetric Peano derivatives fs(n)(x) and fs(n−1)(x). Then,

by Theorem 2.2 and since f(n−1)(x) implies fs(n−2)(x) via f(n−2)(x), it suffices to

show that the system Dsh−
n f(x) implies D̃s

nf(x), for each f at x. This is the re-
sult of Lemma 3.3. �

The next consequence of Theorem 3.1 is actually equivalent to the theorem. It
shows that the nth Peano derivative f(n)(x) of a function f at x can be viewed as
a system of backward shifts of the first n Riemann derivatives of f at x.

Corollary 3.2. For each function f , real number x, and integer n at least 2,

f(1)(x) exists and all Dsh−
k f(x), for k = 2, . . . , n, exist ⇐⇒ f(n)(x) exists.

Proof. Induct on n. Both the initial case n = 2 and the inductive step follow easily
from Theorem 3.1. �

Recall that the proof of Theorem 3.1 was reduced to the following lemma:

Lemma 3.3. For each function f , real number x, and integer n at least 2,

Dsh−
n f(x) exists =⇒ D̃s

nf(x) exists.

The rest of the section is dedicated to proving Lemma 3.3. As an example, we
first prove the result for n = 5.
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Case n = 5. Eventually by subtracting a degree 5 polynomial from f(x) and then

shifting f by x, without loss of generality, we may assume that x = 0 and Dsh−
5 f(0)

exists and all its components D5,−jf(0), for j = 1, . . . , 4, are zero. The existence
of the degree 5 polynomial depends on all components D5,−jf(0) having the same
value. This always happens due to the result of [O] that we discussed above. The
hypothesis translates into all differences

∆5,−1(h) = f(4h) − 5f(3h) + 10f(2h) − 10f(h) + 5f(0) − f(−h),

∆5,−2(h) = f(3h) − 5f(2h) + 10f(h) − 10f(0) + 5f(−h) − f(−2h),

∆5,−3(h) = f(2h) − 5f(h) + 10f(0) − 10f(−h) + 5f(−2h) − f(−3h),

∆5,−4(h) = f(h) − 5f(0) + 10f(−h) − 10f(−2h) + 5f(−3h) − f(−4h)

being o(h5). Then the same is true about the 5th symmetric generalized Riemann
differences ∆s

5,j(h) = {∆5,−j(h) + ∆5,j−5(h)}/2, for j = 1, 2, written explicitly as

2∆s
5,1(h) =f(4h) − 5f(3h) + 10f(2h) − 9f(h) + 9f(−h) − 10f(−2h) + 5f(−3h) − f(−4h)

2∆s
5,2(h) =f(3h) − 4f(2h) + 5f(h) − 5f(−h) + 4f(−2h) − f(−3h),

as well as the linear combination 1
6∆s

5,1(h)+ 5
6∆s

5,2(h). This has the coefficients add
up to 1 and eliminates both the term in f(3h) and the term in f(−3h), so is the sym-

metric 5th generalized Riemann difference λ5∆̃s
5(0, h; f), based at ±h,±2h,±4h,

where λ5 = 1/12 and

∆̃s
5(h) = f(4h)− 10f(2h) + 16f(h)− 16f(−h) + 10f(−2h)− f(−4h) = o(h5).

We conclude that D̃s
5f(0) = limh→0 λ5∆̃s

5(h)/h5 exists and is equal to 0.

Polynomials and generalized Riemann differences. In order to proceed with
the general proof of Lemma 3.3, we need to simplify notation at this point. The
mapping

∆A(h) =
∑
i

Aif(x+ aih) 7→ PA(y) =
∑
i

Aiy
ai

induces a linear isomorphism between the space of all differences ∆A(h), based at
half integers ai, and the space R[y1/2, y−1/2] of Laurent polynomials with real coef-
ficients in variable y1/2. This correspondence has numerous interesting properties,
as follows:

• The nth Riemann difference ∆n(h) corresponds to the polynomial

Pn(y) =

n∑
i=0

(−1)n−i
(
n

i

)
yi = (y − 1)n.

• The nth symmetric Riemann difference ∆s
n(h) corresponds to the polyno-

mial

P s
n(y) =

n∑
i=0

(−1)n−i
(
n

i

)
yi−n/2 = y−n/2(y − 1)n = (y1/2 − y−1/2)n.

• A difference ∆A(h) is an nth generalized Riemann difference if and only if n
is the highest power of y − 1 dividing PA(y). See Lemma 2 on page 134 of
the Collected Works of Marcinkiewicz and Zygmund.[MZ]
• If r is a half integer, then the Laurent polynomial corresponding to the
r-shift ∆A,r(h) of a difference ∆A(h) is PA,r(y) = yrPA(y).
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• ∆A(h) is an even difference if PA(y−1) = PA(y), and an odd difference if
PA(y−1) = −PA(y).
• An nth generalized Riemann difference ∆A(h) is symmetric if and only if
PA(y−1) = (−1)nPA(y).
• The symmetrization ∆As(h) = ∆s

A(h) of ∆A(h) corresponds to the poly-
nomial PAs(y) = P s

A(y) = {PA(y) + (−1)nPA(y−1)}/2.
• The r-dilate ∆A(rh) of a difference ∆A(h), for r integer, corresponds to

the polynomial PA(yr).
• The r-scale ∆Ar

(h) = r−n∆A(rh) of an nth generalized Riemann difference
∆A(h), for r integer, corresponds to the polynomial PAr

(y) = r−nPA(yr).

Based on these properties, we can prove the following lemma:

Lemma 3.4. Suppose m = b(n+ 1)/2c and S = {(0), a1, a2, . . . , am} is any set of
integers with 0 < a1 < a2 < · · · < am < n. Then, for each function f and point x,
the symmetric generalized Riemann derivative DS satisfies the following property:

Dsh−
n f(x) exists =⇒ DSf(x) exists.

Proof. As in the Case n = 5, without loss of generality, we may assume that f
is Dsh−

n -differentiable at 0 and Dsh−
n f(0) = 0, or ∆n,−j(h) = o(hn), for j =

1, . . . , n − 1. Then ∆s
n,j(h) = {∆n,−j(h) + ∆n,−n+j(h)}/2 = o(hn), for j =

1, . . . , bn/2c. By the above properties, the polynomial corresponding to ∆n,−j(h)
is Pn,−j(y) = y−j(y − 1)n, and the polynomial corresponding to ∆s

n,j(h) is

P s
n,j(y) =

1

2
(y−j + y−n+j)(y − 1)n =

1

2
(y

n
2−j + y−

n
2 +j)(y

1
2 − y− 1

2 )n.

On the other hand, the polynomial PS(y) corresponding to the unique nth sym-
metric generalized Riemann difference ∆S(h) is a Laurent polynomial of positive
degree t = am, with t ≤ n − 1, the degree of P s

n,1(y). Two extra properties,

PS(y−1) = (−1)nPS(y) and (y − 1)n = yn/2(y1/2 − y−1/2)n divides PS(y), make

PS(y) =
(
αt(y

t−n
2 + y−t+

n
2 ) + αt−1(yt−

n
2−1 + y−t+

n
2 +1) + · · ·

)
(y

1
2 − y− 1

2 )n.

Since this is a linear combination of the P s
n,j(y), the difference ∆S(h) is a linear

combination of the ∆s
n,j(h) = o(hn), hence ∆S(h) = o(hn), i.e., DSf(0) exists. �

The following corollary provides a reduction of the proof of Lemma 3.3.

Corollary 3.5. Suppose m = b(n+ 1)/2c, and for k = 1, . . . , bm/2c, denote

Sk = {(0), 1, 2, . . . , 2k, 2(k + 1), . . . , 2(m− k)}.
Then, for each function f and point x,

Dsh−
n f(x) exists =⇒ DSk

f(x) exists.

Proof. This is an easy consequence of Lemma 3.4, since for each k, Sk \{0} consists
of m positive integers, the largest of whom is am = 2(m− k) < n. �

By Corollary 3.5, the proof of Lemma 3.3 is reduced to the following lemma:

Lemma 3.6. Suppose m = b(n+ 1)/2c, and for k = 1, . . . , bm/2c, denote

Sk = {(0), 1, 2, . . . , 2k, 2(k + 1), . . . , 2(m− k)}.
Then, for each function f and point x,

DSk
f(x) exists, for each k = 1, . . . , bm/2c =⇒ D̃nf(x) exists.
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The proof of Lemma 3.6 is based on the following result of recursive set theory,
whose proof is omitted, due to the proof of an equivalent version of it, obtained by
adding 0 to each set in S, being a part of the proof of [ACF, Lemma 5].

Lemma 3.7. Suppose a collection S of sets, each consisting of m positive integers,
is defined by the following properties:

(i) {1, 2, . . . , 2k, 2(k + 1), 2(k + 2), . . . , 2(m− k)} ∈ S, for k = 1, . . . , bm/2c;
(ii) if S ∈ S, then 2S := {2s | s ∈ S} ∈ S;
(iii) if S, T ∈ S have |S ∩ T | = m− 1, then for each a ∈ S ∩ T , S ∪ T \ {a} ∈ S.

Then {1, 2, 4, . . . , 2m−1} ∈ S.

Proof of Lemma 3.6. Suppose n is odd. Then 0 /∈ Sk, for all k. Let f be a function
satisfying the left side of the implication, and let S be the set of all strictly increasing
ordered sets S, each consisting of m positive integers, for which DSf(x) exists. The
assumption thatDSk

f(x) exists, for each k = 1, . . . , bm/2c, makes the hypothesis (i)
in Lemma 3.7 satisfied for this S. Hypothesis (ii) is trivially satisfied, due to ∆2S(h)
being the scale by 2 of ∆S(h), making S-differentiability of f at x equivalent to 2S-
differentiability of f at x. For (iii), suppose DSf(x) and DT f(x) exist, for S, T with
|S∩T | = m, and let a ∈ S∩T . Then the linear combination α∆S(h)+β∆T (h) with
α+β = 1 that eliminates f(x+ah), by symmetry, also eliminates f(x−ah) and is an
nth symmetric generalized Riemann difference based at n+ 1 points, so it must be
∆S∪T\{a}(h). In addition, DS∪T\{a}f(x) = αDSf(x) + βDT f(x) exists, so S ∪ T \
{a} ∈ S, proving hypothesis (iii). Lemma 3.7 implies that {1, 2, 4, . . . , 2m−1} ∈ S,

translating into D̃nf(x) exists. The case when n is even is similar. �

Proof of Theorem 3.1: the unrestricted case. In the remaining part of the
section we complete the proof of the direct implication in Theorem 3.1 for general
test functions f at x.

Recall that the restricted proof relies on Theorem 2.2 and Lemma 3.3 which
are true for general functions f . The proof of Lemma 3.3 is based on proving the

linear algebra result that “∆sh−
n (x, h; f) =⇒ ∆̃s

n(x, h; f)”, which means that the

difference ∆̃s
n(x, h; f) is a linear combination of dilates by various powers of 2 of

the differences in the set ∆sh−
n (x, h; f) of all n − 1 consecutive backward shifts of

the nth forward Riemann difference ∆n(x, h; f).
The general proof of Theorem 3.1 is pretty much the same as the restricted

proof: it uses Lemma 3.8 instead of Theorem 2.2 and Lemma 3.9 instead of just
Lemma 3.3. The difference between the general proof and the restricted proof is
that the restricted proof relies only on nth symmetric differences, while the general
proof relies on both nth and n+ 1-st symmetric differences.

Let D̃nf(x) be the unique nth generalized Riemann derivative of f at x based
at x, x + h, x + 2h, . . . , x + 2n−1h. The the proof of the first of the following two
lemmas is given by Marcinkiewicz and Zygmund in [MZ].

Lemma 3.8. [MZ] For each function f and real number x,

both derivatives f(n−1)(x) and D̃nf(x) exist ⇐⇒ f(n)(x) exists.

Lemma 3.9. For each function f , real number x, and integer n at least 2,

Dsh−
n f(x) exists =⇒ D̃nf(x) exists.

Proof. By Lemmas 3.3 and 3.11, it suffices to show that ∆sh−
n (x, h; f)⇒ ∆̃s

n+1(x, h; f),
which is the result of Lemma 3.10. �
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We are now ready to provide the general proof of the direct implication in Theo-
rem 3.1. This is as easy as the restricted proof.

General Proof of Theorem 3.1. By Lemma 3.8, it suffices to show that the system

Dsh−
n f(x) implies D̃nf(x), for each f at x, which is the result of Lemma 3.9. �

Recall that the proof of Lemma 3.3 was based on proving the linear algebra result

that ∆sh−
n (x, h; f) =⇒ ∆̃s

n(x, h; f). The next lemma shows that the same result

holds true for ∆̃s
n+1(x, h; f) in place of ∆̃s

n(x, h; f), with essentially the same proof.

Lemma 3.10. For each function f , real numbers x and h, and integer n at least 2,

∆sh−
n (x, h; f) =⇒ ∆̃s

n+1(x, h; f).

Proof. For simplicity we write ∆(h) to mean ∆(x, h; f). Let ∆s′

n,j(h) := {∆n,−j(h)−
∆n,−n+j(h)}/2, for j = 1, . . . , bn/2c, be the skew-symmetrizations of the first half
of differences in the set ∆sh−

n (x, h; f). These are symmetric differences of order n+1.

By the same proof of the implication ∆sh−
n (x, h; f) =⇒ ∆̃s

n(x, h; f) in Lemma 3.3

that uses ∆s′

n,j(h) instead of ∆s
n,j(h) starting with line 3 of the proof of Lemma 3.4

one deduces that ∆̃s
n+1(x, h; f) is implied by ∆sh−

n (x, h; f). �

Lemma 3.11. For each function f , real numbers x and h, and integer n at least 2,

∆̃s
n(x, h; f) and ∆̃s

n+1(x, h; f) =⇒ ∆̃n(x, h; f).

Proof. Suppose n is odd and let m = (n+1)/2 as before. Denote y0 = x and y±k =

x± 2k−1h, for k = 1, 2, · · · . Then ∆̃n(h) is based at y0, y1, . . . , yn, ∆̃s
n(h) is based

at y−m, . . . , y−1, y1, . . . , ym and ∆̃s
n+1(h) is based at y−m, . . . , y−1, y0, y1, . . . , ym.

Define the sequence of differences δk = δk(h) of f at x and h, for k = 0, 1, . . . ,m,

as follows: Take δ0 = ∆̃s
n+1(h), δ1 = ∆̃s

n(h), and for k ≥ 2, δk is the unique nth
generalized Riemann difference based at y−m+k−1, y−m+k, . . . , y−m+k−1+n. Then

δm = ∆̃n(h).
What we need to prove is that δ0 and δ1 imply δm. For this it suffices to show

that δk and δk+1 implies δk+2, for k = 0, 1, . . . ,m−2. There are two different cases
to consider.

When k = 0, by looking at the base points sets for δ0 and δ1 that were outlined
above, we see that any linear combination of δ0 and δ1 that eliminates the base
point y−m will be a scalar multiple of an nth generalized Riemann difference based
and the n + 1 points y−m+1, . . . , ym, so it must be a scalar multiple of δ2. This
proves that δ0 and δ1 imply δ2.

Suppose k > 0. Then the base points of the nth differences δk, δk+1 and δk+1(2h)
are respectively described by the rows in the following diagram:

y−m+k−1 y−m+k · · · y−1 y0 y1 · · · y−m+k−1+n

y−m+k · · · y−1 y0 y1 · · · y−m+k−1+n y−m+k+n

y−m+k−1 y−m+k · · · y−2 y0 y2 · · · y−m+k−1+n y−m+k+n y−m+k+1+n

Any non-zero linear combination of these three differences that eliminates the base
points y−m+k−1 and y−m+k is a non-zero scalar multiple of an nth generalized
Riemann difference based at the n+ 1 points y−m+k+1, . . . , y−m+k+1+n, hence is a
non-zero scalar multiple of δk+2. Thus δk and δk+1 implies δk+2, as needed. The
case n even has a similar proof. �
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4. Third characterization of the symmetric Peano derivative

This section peels off from the characterization of the Peano derivative f(n)(x),
given in Section 3, the part that pertains to the symmetric Peano derivative fs(n)(x),

producing a rightful third characterization of the symmetric Peano derivative in
terms of symmetric generalized Riemann derivatives.

The motivation behind such a characterization comes from the following conjec-
ture which highlights the failure of an analogue of Theorem 2.2 to hold true for the

symmetric Riemann derivative Ds
nf(x) in place of D̃s

nf(x).

Conjecture 4.1. For all functions f and points x,

fs(n−2)(x) and Ds
nf(x) exist 6=⇒ fs(n)(x) exists.

Theorem 1(i) in [ACF] says that f(n−1)(x) and Ds
nf(x) 6=⇒ f(n)(x), for all

functions f and points x. The counterexample used in there does not have the
restricted condition in the first part of the proof of Theorem 3.1 that the nth Peano
derivative is equivalent to both the nth and n− 1-st symmetric derivatives. In the
hypothetical assumption that a new counterexample satisfying the above restricted
condition is found, then a stronger version of Theorem 1(i) in [ACF] will hold true.

If the stronger version of Theorem 1(i) in [ACF] is true, then the following is a
proof that Conjecture 4.1 is true for all functions f whose nth Peano derivative is
equivalent to both the nth and n− 1-st symmetric derivatives.

Restricted proof of Conjecture 4.1. Suppose that Conjecture 4.1 is false. Then the
weaker statement that f(n−1)(x) and Ds

nf(x) exist implies that f(n)(x) exist would
have to be true for all f that have the restricted condition and x, contradicting the
stronger version of Theorem 1(i) in [ACF]. �

Conjecture 4.1 is the symmetric analogue of the following conjecture from [ACF]
on Peano derivatives:

Conjecture 4.2 ([ACF]). For all functions f and points x,

f(n−1)(x) and Dnf(x) exist 6=⇒ f(n)(x) exists.

The evidence for this conjecture comes from its smallest non-trivial case of n = 3,
proved in [ACF, Theorem 1] via a clever example that does not extend to the general
case n. The relationship between Conjecture 4.2 and Conjecture 4.1 is similar but
not quite the same as the one between Lemma 1.1 and Theorem 1.3. Based on
this, if the conjecture will turn out to be true, then this would shed more light
into how the theory of symmetric Peano derivatives relates to the theory of Peano
derivatives. And the main principle in this paper was to respectively view these
two theories as theories of either sets of symmetric generalized Riemann derivatives
or sets of generalized Riemann derivatives.

The following theorem provides a third characterization of the nth symmetric
Peano derivative fs(n)(x), modulo fs(n−2)(x), in terms of symmetrizations of back-

ward shifts of the nth forward Riemann derivative Dnf(x), which are the same as
forward shifts of the nth symmetric Riemann derivative Ds

nf(x)

Theorem 4.3. For all functions f and points x,

fs(n−2)(x) and all of Ds
n,−jf(x), for j = 1, . . . , bn/2c, exist ⇐⇒ fs(n)(x) exists.
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Proof. As we have done several times so far, the reverse implication is clear. For
the direct implication, by Theorem 2.2, it suffices to show that the set consisting of

all Ds
n,−jf(x), for j = 1, . . . , bn/2c, implies D̃s

nf(x). This is the compound of the
last part of the proof of Lemma 3.4, Corollary 3.5, Lemma 3.7, and Lemma 3.6. �

We end this article with an equivalent statement of Theorem 4.3, characterizing
the nth symmetric Peano derivative fs(n)(x) as being equivalent to a set of symmetric

generalized Riemann derivatives of f at x.

Corollary 4.4. For all functions f and points x,

all Ds
k,−jf(x) exist, for k = n, n− 2, . . . and j = 1, . . . , bk/2c ⇐⇒ fs(n)(x) exists.

Proof. This follows easily from Theorem 4.3, by induction on n with step 2. �
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[FFR] H. Fejzić, C. Freiling and D. Rinne, A mean value theorem for generalized Riemann

derivatives, Proc. Amer. Math. Soc. 136 (2008), no. 2, 569–576. MR2358497

[GGR] I. Ginchev, A. Guerraggio and M. Rocca, Equivalence of Peano and Riemann deriva-
tives. Generalized convexity and optimization for economic and financial decisions

(Verona, 1998), 169–178, Pitagora, Bologna, 1999. MR1701161

[GGR1] , Equivalence of (n+1)-th order Peano and usual derivatives for n-convex func-
tions, Real Anal. Exchange 25 (1999/00), no. 2, 513–520. MR1779334

[GR] I. Ginchev, M. Rocca, On Peano and Riemann derivatives, Rend. Circ. Mat. Palermo
(2) 49 (2000), no. 3, 463–480. MR1809088

[HL] P. D. Humke and M. Laczkovich, Convexity Theorems for Generalized Riemann Deriva-

tives, Real Anal. Exchange 15 (1989/90), no. 2, 652–674. MR1059427
[HL1] , Monotonicity theorems for generalized Riemann derivatives, Rend. Circ. Mat.

Palermo (2) 38 (1989), no. 3, 437–454. M1053383



CHARACTERIZING PEANO AND SYMMETRIC DERIVATIVES 21

[Ki] A. Khintchine, Recherches sur la structure des fonctions mesurables, Fund. Math. 9

(1927), 212–279.

[MZ] J. Marcinkiewicz and A. Zygmund, On the differentiability of functions and summa-
bility of trigonometric series, Fund. Math. 26 (1936), 1–43. Also in J. Marcinkiewicz,

Collected papers, Edited by Antoni Zygmund. With the collaboration of Stanislaw Lo-

jasiewicz, Julian Musielak, Kazimierz Urbanik and Antoni Wiweger. Instytut Matem-
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