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Abstract. For any convex polyhedron W in Rm, p 2 (1;1), and N � 1,

there are constants 
1 (W;p;m) and 
2 (W;p;m) such that


1N
m(p�1) �

Z
Tm

������
X

k2NW
e (k � x)

������
p

dx � 
2Nm(p�1):

Similar results hold for more general regions. These results are various special
cases of the inequalities


1N
m(p�1) �

Z
Tm

������
X

k2NB
e (k � x)

������
p

dx � 
2� (N) ;

where � (N) = Np(m�1)=2 when p 2
�
1; 2m

m+1

�
, � (N) = Np(m�1)=2 log N

when p = 2m
m+1

, and � (N) = Nm(p�1) when p > 2m
m+1

where B is a bounded

subset of Rm with non-empty interior.

1. Introduction

1.1. One dimension. In one dimension there is a very well known estimate

(1.1)








X
jkj�N

e (kx)








1

=

Z
T1

������
X
jkj�N

e (kx)

������ dx =
Z 1

0

������
X
jkj�N

e (kx)

������ dx w 4

�2
lnN ,

where e (x) = e2�ix.[Z] This integral is called the Lebesgue constant. In higher
dimensions there are as many Lebesgue constants as there are generalizations of an
interval of integers, f�N;�N + 1; : : : ; Ng.

Fix N and consider the operator D de�ned by mapping a Lebesgue inte-
grable function f : T1 ! C to its N -th trigonometric partial sum sN (x) =P

jkj�N f̂ (k) e (kx). This operatorD is realized by convolving f with
P

jkj�N e (kx).

In short,

D : f ! sN :
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If we endow both the preimage and the image of f with the L1
�
T1
�
norm, then the

operator norm of D, kDkL1!L1 , is de�ned to be supkfk1=1 ksNk1. The Hausdor�-
Young inequality tells us that

ksNk1 =








X
jkj�N

e (kx) � f








1

�








X
jkj�N

e (kx)








1

kfk1 :

Using 2��[��;�] in place of f and letting � !1 shows that



Pjkj�N e (kx)





1
is the

operator norm of D. Thus the operator norm is equal to the Lebesgue constant,

kDkL1!L1 =








X
jkj�N

e (kx)








1

:

This is the main reason for the importance of �nding a good estimate for the
Lebesgue constant. If we consider the same operation D, but consider D as a
mapping from f 2 L1 to sN 2 Lp, p � 1, then things proceed about the same as
when p was 1. Young's inequality gives

ksNkp =








X
jkj�N

e (kx) � f








p

�








X
jkj�N

e (kx)








p

kfk1 ;

where k�kp =
�R
T1 j�j

p
dx
�1=p

and again using 2��[��;�] we arrive at a formula for
the operator norm of D,

kDkL1!Lp =








X
jkj�N

e (kx)








p

:

Because of this formula, the following lemma is also of interest.

Lemma 1.

(1.2)

Z 1

0

j
N�1X
k=0

e (kx) jpdu = �pNp�1 +

8<: Op
�
Np�3� if p > 3

O (logN) if p = 3
Op (1) if 1 < p < 3

;

where the constant �p =
2
�

R1
0

�� sinu
u

��p du; if p = 2k is a positive even integer, then
(1.3) �2k =

�
2k � 1
k

�
(2k � 1)!

where the central Eulerian number

�
2k � 1
k

�
may be de�ned to be

(1.4)
k�1X
�=0

(�1)�
�
2k

�

�
(k � �)2k�1 :

Most of this lemma appears elsewhere; one place is in the reference [AAJRS].
Only the formula (1.3) will be explained below.
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1.2. Lebesgue constants for polyhedrons. If we let W = [�1; 1], then
W � R, an interval, may be thought of as a one dimensional convex polygon,
and f�N;�N + 1; : : : ; Ng may be thought of as NW \ Z =

�
y 2 Z : yN 2W

	
, a

dilate of W by the scaling factor N . Let f 2 L1 (Tm). An m-dimensional convex
polyhedronW gives rise to a sequence of partial sums fsNg according to the formula

sN (f) (x) =
X

k2NW\Zm
f̂ (k) e (k � x)

where k 2 Zm, x 2 Tm, and f̂ (k) =
R
Tm f (x) e (�k � x) dx. Just as in the one

dimensional situation, we again �nd that for N �xed and D de�ned by

D : f ! sN

we have for p � 1,

(1.5) kDkL1!Lp =






 X
k2NW\Zm

e (kx)







p

:

Let

DNW (x) =
X

k2NW\Zm
e (kx) :

There naturally occur two problems: good estimates for
R
Tm jDNW (x)j dx and good

estimates for
R
Tm jDNW (x)jp dx for p > 1. The �rst problem has been very nicely

solved by Belinsky.

Theorem 1. For any convex m-dimensional polyhedron W in Rm and N � 1,
there are constants 
1 and 
2 such that


1 (W ) log
m (1 +N) � kDNW k1 =

Z
Tm
jDNW (x)j dx � 
2 (W ) logm (1 +N) :

From now on we assume that p > 1 and focus on the question of getting good
estimates for Z

Tm
jDNW (x)jp dx:

First note that if W = [�1; 1]m, then

DNW (x) =
X

k2NW\Zm
e (k1x1) e (k2x2) � � � e (kmxm) =

mY
j=1

NX
kj=�N

e (kjxj)

so Z
Tm
jDNW (x)jp dx =

mY
j=1

Z 1

0

������
NX

kj=�N
e (kjxj)

������
p

dxj

=

 Z 1

0

�����
NX

k=�N
e (kx)

�����
p

dx

!m
(1.6)

= �mp 2
m(p�1)Nm(p�1) + o

�
Nm(p�1)

�
This motivated the following theorem.
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Theorem 2. For any p > 1 and convex m-dimensional polyhedron W in Rm
and N � 1, there are constants 
1 and 
2 such that

(1.7) kDNW kpp =
Z
Tm
jDNW (x)jp dx � 
p2 (W;m; p)Nm(p�1)

and

(1.8) 
p1 (W;m; p)N
m(p�1) � kDNW kpp :

In short,


1N
m(1� 1

p ) � kDNW kp � 
2N
m(1� 1

p ):

If the dimension is m = 2, then inequality (1.7) has already been established,
�rst for p = 1[YY], and then for all p > 1.[A] The constants were more precise
and the proofs were much more direct, but the proofs were number theoretic and
di�cult, and we do not know how to extend them to higher dimensions. Part of
the argument given here will show that the result of [A] easily leads to the reverse
inequality (1.8) also when m = 2. Another interesting proof for m = 2 and p = 1
is in [NP].

1.3. Lebesgue constants for more general sets. We will also consider the
more general case when W is allowed to have a more general shape, for example,
when W is replaced by a set B � Rm that is bounded and has non-empty interior.
When p = 1, the expected lower bound estimate of 
 logm (1 +N) is valid, but the
corresponding upper value is larger. For example, when B is an m dimensional ball
of radius N , then it turns out that

(1.9)

Z
Tm

������
X
jkj�N

e (k � x)

������ dx � N m
2 �

1
2

where A � N� means that A=N� is bounded above and below.
Concerning the upper bounds in this generality, we have two results:

Theorem 3. For each m � 2; p � 2, and bounded set B � Rm with non-empty
interior, there is a constant 
2 such that the upper bound estimateZ

Tm
jDNB (x)jp dx � 
p2Nm(p�1)

holds,

and

Theorem 4. For each m � 2; p 2 (1; 2], and bounded set B � Rm with non-
empty interior, there is a constant 
1 such that the lower bound estimateZ

Tm
jDNB (x)jp dx � 
p1Nm(p�1)

holds.

There remain two cases for general sets that we have not resolved:

(1) The question of an upper estimate for

kDNBkp =
 Z

Tm

����� X
k2NB\Zm

e (k � x)
�����
p

dx

!1=p



Lp LEBESGUE CONSTANTS FOR POLYHEDRA 5

when p 2 (1; 2) and
(2) the question of a lower estimate for the same integral when p > 2.

We can only provide partial results in these two cases. Looking at the cal-
culation (1.6) above, in both cases we would like to get an estimate of the form
cNm(1�1=p). In case (1), this is not true. We calculate below that if B is the m-

dimensional unit ball so that NB = fx 2 Rm : jxj � Ng, then for p 2
�
1; 2m

m+1

�
and

this choice ofB, we get the larger sharp lower estimate of 
1N
m�1
2 = 
1N

m(1�1=p)+�,

where � = m
�
1
p �

m+1
2m

�
is positive since 1=p 2

�
m+1
2m ; 1

�
. Interestingly, the expo-

nent of N is constant as p varies from 1 to 2m
m+1 .

Theorem 5.



DNfjxj�1g

p �
8><>:

1N

m�1
2 = 
1N

m(1�1=p)+� for 1 � p < 2m
m+1


1N
m(1�1=p) ln1=pN for p = 2m

m+1


1N
m(1�1=p) for 2m

m+1 < p � 2
;

where � = m
�
1
p �

m+1
2m

�
, 
1 = 
1 (m; p).

To what extent this new candidate for an upper bound is actually extremal for
all bounded sets with non-empty interior remains an open question.

In case (2), we get the hoped for sharp (since B may be the cuboid [�1; 1]m, see
(1.6) above) best lower estimate of cNm(1�1=p), but only by additionally assuming
a small amount of regularity for the boundary of B. For this, we get inspiration
from the paper of Li
yand[L]. (See also [I], [Sh], and [Y].) Let ANW be the union
of all cubes of side 1 whose centers are at the points of NW \Zm. We say that W
satis�es the MN�condition (the M is for Minkowski) if

(1.10) lim
N!1

jANW 4NW j
Nm

= 0;

where the symmetric di�erence operator is de�ned by A4B = (A nB) [ (B nA).
In other words, the measure of ANW 4 NW is o (Nm). If W is bounded with
nonempty interior, then there are on the order of Nm points in NW , and so we can
then express that MN -condition by saying that the measure of ANW 4NW must
be \little oh" of the number of lattice points in NW .

Theorem 6. If the bounded set B � Rm has non-empty interior and if B
satis�es the MN -condition, then for p � 2 there holds the lower bound estimate


1N
m(1�1=p) � kDNBkp

for some constant 
1 (B;m; p).

Another open question is whether the boundary condition (1.10) is necessary.
The most optimistic set of conjectures might be that for bounded B with nonempty
interiors, Nm(1�1=p) is the size of the lower estimate for all p; 1 < p <1, and also
the size of the upper estimate for p 2

�
2m
m+1 ;1

�
, while Nm(1�1=p)+m( 1p�

m+1
2m ) =

N
m�1
2 is the size of the upper estimate when p 2

�
1; 2m

m+1

�
and N

m�1
2 ln

m+1
2m N

is the size of the upper estimate when p = 2m
m+1 . In other words, the sphere is

extremal for p 2
�
1; 2m

m+1

i
and the cuboid is extremal for p > 2m

m+1 .
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Our intuition for this conjecture is that spheres and rectangles are extremal with
respect to curvature, the former being everywhere curved and the latter nowhere
curved. So it is at least plausible that for each value of p one or the other should
provide the largest or smallest Lebesgue constant growth rate.

In the L1 case, results for all convex sets in all dimensions are already known.
See chapter 6 of [L] for this.

A small result of fairly great generality that does not seem to be well known
is the M. Riesz Projection Theorem for a general half space. This theorem is the
obvious generalization of the very well known fact that the Riesz transform of an
Lp (Tm) function is also in Lp.

Theorem 7. Fix � 2 Rm and b 2 R. The associated hyperplane

L = fx 2 Rm : x � � = dg

divides Zm into two halfspaces,

H+ = fk 2 Zm : k � � � dg and H� = fk 2 Zm : k � � < dg :

Then if f 2 Lp (Tm), p > 1, we have




 X
k2H+

f̂ (k) e (k � x)






p

� p2

p� 1 kfkp and





 X
k2H�

f̂ (k) e (k � x)






p

� p2

p� 1 kfkp :

One might think that replacing fk : k1 � 0g by fk : � � k � dg would lead to
a serious number-theoretic problem. Fortunately, it does not. See the proof of
Theorem 7 below.

We will prove all results but one in the next section. The last section will
consist of the proof of Theorem 5.

In several of proofs we implicitly assume that the origin is interior to the poly-
hedron W or the bounded set B. The general case may be reduced to the case
where the origin is interior to the polyhedron or bounded set by making an initial
translation. Such a translation may introduce an error term of lower order, but will
not a�ect the �nal result. We will omit the details.

2. Most of the proofs

We begin with a discussion of Lemma 1. As we already mentioned, everything
except the evaluation of �2k appears in reference [AAJRS]. To evaluate �2k, let
N (x) be the characteristic function of [0; 1) and N2k = N1 � N1 � � � � � N1 be the
2k-fold convolution of N1. The function Nm (x) is called the mth order cardinal

B-spline. Then dN2k (x) = �cN1 (x)�2k, so setting x = k in the double inversion

relation N2k (x) =
�dN2k (!)�_ (x) shows that

N2k (k) =
1

�

Z 1

�1

�
sinx

x

�2k
dx =

2

�

Z 1

0

���� sinxx
����2k dx;

whereas on page 191 of [C] a direct computation shows N2k (k) to be equal to the
sum (1.4) divided by (2k � 1)!. Finally, the identi�cation of the sum (1.4) as the
central Eulerian number appears in reference [GKP].
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Remark 1. The left hand side of relation (1.2) can also be evaluated exactly
by expanding and using orthogonality when p = 2k and this leads to the polynomial
relation

(N�1)kX
�=0

aNk (�)
2
=

�
2k � 1
k

�
(2k � 1)! N

2k�1 +O
�
N2k�3�

where the aNk (�) are de�ned by

�
1 + x+ x2 + � � �+ xN�1

�k
=

(N�1)kX
�=0

aNk (�)x
� :

This is immediate from the above result and the calculation 
N�1X
�=0

e (�x)

!k N�1X
�=0

e (��x)
!k

=

(N�1)kX
�=0

aNk (�) e (�x)

(N�1)kX
�=0

aNk (�) e (��x)

=

(N�1)kX
�=0

aNk (�)
2
+
X
j 6=0

Cje (jx) :

Actually it appear that
R 1
0

���PN�1
�=0 e (�x)

���2k dx is in general an odd polynomial in
N of degree 2k � 1. Relations (1.2) and (1.3) provide a formula for the leading
coe�cient of this polynomial. It might be interesting to �nd formulas for the other
coe�cients.

We turn to establishing the upper bound inequality (1.7). If W is a convex
m-dimensional polyhedron in Rm and N � 1, then W is a bounded set with a
non-empty interior. A bounded subset B � Rm with non-empty interior has two
geometric properties. Namely, there are constants d (B) and D (B) so that

(2.1) dNm � jNB \ Zmj ;

and

(2.2) NB � D [�N;N ]m = [�DN;DN ]m :

We will use three lemmas, all of which are essentially from the proof of Theorem 1
on pages 404 and 405 of [TB].

For x 2 Tm, and f 2 L (Tm), we de�ne the m-dimensional de la Vall�ee-Poussin
mean to be

(2.3) �2N (f) =
X

S2P (M)

X
N<jkj j�2N;j2S
jkj j�N;j2MnS

0@Y
j2S

2N + 1� jkj j
N � 1

1A f̂ (k) e (k � x) ;
where P (M) is the power set of M = f1; 2; : : : ;mg. The spectrum of a trigono-
metric polynomial

P
cke (k � x) is the set of k 2 Zm for which ck 6= 0.

Lemma 2. Let �2N (f) be the m-dimensional de la Vall�ee-Poussin mean of
f 2 L (Tm) and let W satisfy conditions (2.1) and (2.2). Then

(1) The cardinality of the spectrum of �2DN (f) is O (N
m),
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(2)

(2.4) sNW (f) = sNW (�2DN (f)) ;

and
(3) for all p � 1,

(2.5) k�2DN (f)kp � 3
m kfkp :

Proof. To make sense of �2DN , D must be an integer, so if necessary simply
replace D by dDe. Then (1) is immediate from the de�nition of �2DN . For (2),
note from the de�nition of � that when all jkj j � DN , S = ? and the multiplier

of f̂ (k) e (k � x) is 1. We now establish (3). For f 2 L (T), the de la Vall�ee-Poussin
mean �2n (f) is de�ned to be

P
jkj�n f̂ (k) e (kx)+

P
n<jkj�2n

�
2n+1�jkj
n+1

�
f̂ (k) e (kx).

From this we see that

(2.6) �2n (f) =
2n+ 1

n+ 1
�2n (f)�

n

n+ 1
�n (f) ;

where the Ces�aro mean �n (f) corresponds to convolution with a positive kernel kn.

For p � 1, k�n (f)kp � kknk1 kfkp =
�R 1

0
kn

�
kfkp = kfkp. From this and (2.6) it

follows that

(2.7) k�2n (f)kp � 3 kfkp :

De�ne � j2DN (f); f 2 L (Tm) to be the de la Vall�ee-Poussin mean of f thought of as a
function of xj with the other m�1 coordinates of x �xed. We �nd that �2DN (f) =
�m2DN (�

m�1
2DN (: : : (�

1
2DN (f)) : : : )). This and inequality (2.7) lead to (3). �

Lemma 3. Let p 2 (0; 2] and let T (x) ; x 2 Tm, be a trigonometric polynomial
with spectrum of cardinality n. Then for q > p,

kTkq � 
 (m; p; q)n
1
p�

1
q kTkp :

This is proved on page 131 of [TB]. We refer to it as the change of norm lemma.
It is a sort of reverse H�older's inequality since kTkp � kTkq is almost immediate
from H�older's inequality.

Lemma 4. Let K be an arbitrary polyhedron in Rm. Then there is a constant

 depending only on K, such that for all n 2 N and for all p 2 (1;1) there holds

ksNK (f)kp � 

�
1 +

4p2

p� 1

�m
kfkp :

This is part of Corollary 2.4.5 on page 56 of [TB]. This is proved carefully, but
we would like to �ll in a detail at one point. The �rst step of the proof is to show
that if f 2 Lp (Tm) and if H is a half space of Zm having a hyperplane through
the origin as its boundary(H = fk 2 Zm : k � � � 0g for some � 2 Rm) or as the
boundary of its complement(H = fk 2 Zm : k � � < 0g for some � 2 Rm), then




X

k2H
f (k) e (k � x)







p

� p2

p� 1 kfkp :

This is Theorem 2.4.3, the M. Riesz Theorem on Projections, on page 54 of [TB].
The second step is to assert that the same result holds if the bounding hyperplane
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does not pass through the origin. The third step is to decompose a general polyhe-
dron into convex polyhedra of m+ 1 sides. The last step is to intersect half spaces
in a clever way in order to get the result for a convex polyhedron of m + 1 sides.
Steps 1, 3, and, 4 are carried out carefully on pages 54{57 of [TB]. We will now
do step 2 by proving Theorem 7.

Proof. We are given f 2 Lp (Tm), p > 1, �xed � 2 Rm, and �xed b 2 R. We
must show




 X

k2H+

f̂ (k) e (k � x)






p

� p2

p� 1 kfkp and





 X
k2H�

f̂ (k) e (k � x)






p

� p2

p� 1 kfkp ;

where the hyperplane L = fx 2 Rm : x � � = dg divides Zm into the two halfspaces,
H+ = fk 2 Zm : k � � � dg and H� = fk 2 Zm : k � � < dg :We have just men-
tioned that this has already been proved in [TB] when H+ and H� are replaced by
H+
0 = fk 2 Zm : k � � � 0g and H�

0 = fk 2 Zm : k � � < 0g. The idea of this proof
is to translate the general case of H+ into the special case of H+

0 .
We will only prove that for f 2 Lp (Tm) ; p � 2, there holds the inequality

(2.8)


f+



p
� p kfkp ;

where f+ (x) =
P

k2H+ f̂ (k) e (k � x). This result was already proved in [TB] when
H+ is replaced by H+

0 . The standard interpolation argument appearing in [TB]
will then produce the �rst part of our conclusion; also the case of H� can be treated
in a very similar way.

Without loss of generality we may assume j�j = 1. Reversing � if necessary, we
may also assume that d > 0. First assume that f has only a �nite spectrum, i.e.,
that f is a trigonometric polynomial. Move the halfspace H+

0 in the direction of � a
distance of d to make it coincide withH+. Then move it a little further if no point of
the spectrum of f lies on the boundary hyperplane until its edge �rst touches a point
which is in the spectrum of f . Let ` be any such point. Observe that this maneu-
ver might not have been possible if the spectrum of f had been in�nite since there
could have been no spectrum points on the boundary hyperplane, but an in�nite se-
quence of spectrum points approaching that hyperplane. Let g (x) = e (�` � x) f (x).
Since jgj = jf j, g 2 Lp, so by the result in [TB],

P
m���0 ĝ (m) e (m � x) has con-

trolled Lp norm,



Pm���0 ĝ (m) e (m � x)





p
� p kgkp. But letting m = k � `, this

last sum becomes e (�` � x)
P

k���`�� ĝ (k � `) e (k � x) = e (�` � x) f+ (x). Finally,
je (�` � x)j = 1 and kf+ (x)kp � p kfkp follows.

But the inequality constant is independent of the spectrum size and the trigono-
metric polynomials are dense in Lp, so the general case of in�nite spectrum follows
by approximating f by a sequence of trigonometric polynomials. We give the de-
tails. De�ne the square (C; 1) means to be this trigonometric polynomial

�n (f) =
1

(n+ 1)
m

nX
i1=0

� � �
nX

im=0

si1:::im (f) ;

where

si1:::im (f) =

i1X
k1=�i1

� � �
imX

km=�im

f̂ (k) e (k � x) :
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Since p � 2, in particular f 2 L2, so from
P

k���c

���f̂ (k)���2 � P���f̂ (k)���2, it follows
that f+ 2 L2. It is well known [Z, Vol. II, Theorem 3.18] that since f+ 2 L2,

(2.9) �n
�
f+
�
! f+ a.e. as n!1.

Applying the �nite spectrum inequality (2.8) to �n (f), we get

�n �f+�

p = 


(�n (f))+


p
� p k�n (f)kp
� p kfkp ;

where the last step was explained in the proof of part (3) of Lemma 2 above. Now
let n ! 1, using (2.9), the last inequality, and Fatou's lemma to get inequality
(2.8) without any constraint on the spectrum of f . The case of H� is exactly the
same. �

We may now pass to the proof of inequality (1.7).

Proof. Let f 2 L (Tm) and let W be a convex polyhedron. From equation
(1.5), to prove inequality (1.7), it su�ces to �nd a constant C(m; p;W ) so that
ksNW (f)kp � CNm(1�1=p) kfk1. Pick an integer D so large that condition (2.2)

holds for B = W . Apply �rst (2.4), then Lemma 4, then Lemma 3, and �nally
(2.5)

ksNW (f)kp = ksNW (�2DN (f))kp

� 

�
1 +

4p2

p� 1

�m
k�2DN (f)kp

� C

�
1 +

4p2

p� 1

�m
Nm(1�1=p) k�2DN (f)k1

� 3mC

�
1 +

4p2

p� 1

�m
Nm(1�1=p) kfk1

= 
2 (W;m; p)N
m(1�1=p) kfk1 :

�

The following simple lemma allows us to convert an upper bound estimate for
an Lp

0
norm of a Dirichlet kernel into a lower bound estimate of the Lp norm of

that kernel.

Lemma 5. If S is any �nite subset of Zm of cardinality n, jSj = n, and if

D = D (S) =
X
k2S

e (k � x) ;

then

(2.10) kDkp �
n

kDkp0

where 1 � p � 1 and p and p0 are conjugate exponents, 1p +
1
p0 = 1.
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Proof. Apply Plancherel's equation to get

n =
X
k2S

12 =

Z
Tm

�����X
k2S

e (k � x)
�����
2

dx =

Z
Tm
jDDj dx

and then H�older's inequality:Z
Tm
jDDj dx �

�Z
Tm
jDjp dx

�1=p�Z
Tm
jDjp

0
dx

�1=p0
= kDkp kDkp0 :

�

We can now give a quick proof of the lower bound inequality (1.8).

Proof. For every p0 in (1;1) we have

kDNW kp0 � 
2 (W;m; p)N
m(1�1=p0):

From inequality (2.1), Lemma 5, and this, we get

kD (NW \ Zm)kp �
dNm

kD (NW \ Zm)kp0

� dNm


2 (W;m; p)Nm(1�1=p0)

=
d


2 (W;m; p)
N
m
�

1
p0

�

= 
1 (W;m; p)N
m(1�1=p);

where 
1 is de�ned to be d=
2. This establishes the lower bound inequality (1.8). �
This completes our work on polyhedra. We move on to the proof of Theorem

3. The only geometric properties of bounded sets with non-empty interiors that we
will need will be inequalities (2.1) and (2.2).

Proof. Since
1

p
=
1

2
+

1
2p
p+2

� 1;

Young's inequality gives

(2.11) kD (NB \ Zm) � T2DN (f)kp � kD (NB \ Z
m)k2 kT2DNfk 2p

p+2
;

where the requirement that 2p
p+2 � 1 follows from p � 2. Since T2DN (f) has at

most O (Nm) terms, we have the change of norm inequality

kT2DN (f)k 2p
p+2

� C kT2DN (f)k1 (N
m)

1
1�

1
2p
p+2

= C (Nm)
1
2�

1
p kT2DN (f)k1 :(2.12)

We also use property (2.5) of the delayed means

(2.13) kT2DN (f)k1 � 3
m kfk1 :

The �nal item is Plancherel's Theorem,

(2.14) kD (NB \ Zm)k2 =
 X
k2NB\Zm

1

!1=2
� CN m

2 :



12 J. MARSHALL ASH AND LAURA DE CARLI

Putting together inequalities (2.11) to (2.14) gives

kD (NB \ Zm) � fkp � kD (NB \ Z
m)k2 kT2DN (f)k 2p

p+2

� kD (NB \ Zm)k2 C (N
m)

1
2�

1
p kT2DN (f)k1

� CN m
2 3mNm( 12�

1
p ) kfk1

= 
2N
m(1� 1

p ) kfk1 :

�

Theorem 4 is immediate from this and Lemma 5:

Proof. We are assuming that p 2 (1; 2] so that p0 2 [2;1) and that B is
bounded with non-empty interior. We simply repeat the proof of inequality (1.8)
given above, except that p0 is constrained to [2;1) and W is replaced by B. �

We next prove Theorem 6.

Proof. We are assuming that B is bounded, has non-empty interior and sat-
is�es the MN -condition. We need to show that for every p � 2, the Lp (Tm) norm
of DNB (x) is bounded below by 
1N

m(1�1=p). We take inspiration from the paper
of Li
yand [L]. Let ANB be a union of cubes of side 1 whose center is at points of
NB \ Zm. Let Q(z) be the cube of side 1 centered at z. The Fourier transform
of the characteristic function of Q(0), the cube of side 1 centered at the origin, isZ
Q(0)

e (�x � z) dz =
Z
Q(0)

e�2�ix�zdz =
mY
j=1

sin(�xj)

�xj
, and so the Fourier transform

of the characteristic function of Q(z) = z +Q(0) is e (�z � x)
mY
j=1

sin(�xj)

�xj
. Then,

Z
ANB

e (�u � x) du =
X

z2NB\Zm

Z
Q(z)

e (�u � x) du

=
mY
j=1

sin(�xj)

�xj

X
z2NB\Zm

e (�z � x) =
mY
j=1

sin(�xj)

�xj
DNB(x);

and we have proved the following important identity.

(2.15)

Z
ANB

e (�u � x) du =
mY
j=1

sin(�xj)

�xj
DNB(x):

By the elementary inequality
2

�
� sinx

x
� 1 which is valid when jxj � �

2 , we can

see from jaj = jaj that

(2.16) kDNBkp �
�Z

Tm

����Z
ANB

e (�u � x) du
����p dx�

1
p

=



�̂ANB





p
:

Integrating e (�u � x) over ANB and noting that ANB = NB� (NB�ANB) [
(ANB�NB) gives

�̂
ANB

(x) = �̂
NB
(x)� �̂

NB�ANB
(x) + �̂

ANB�NB
(x) :
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Take the Lp (Tm) norm of e (�u � x) and apply the triangle inequality to get

(2.17)



�̂ANB





p
� k�̂

NB
kp �




�̂NB�ANB





p
�



�̂ANBnNB





p
:

Note that we reserve k�kp for k�kLp(Tm); however, we will always write k�kLp(Rm)
without abbreviation. Since Tm � Rm, we have


�̂NB�ANB





p
=



�̂NB�ANB





Lp(Tm)

�



�̂NB�ANB





Lp(Rm)

;

and since p � 2, from the Hausdor�-Young inequality there follows


�̂NB�ANB





Lp(Rm)

�



�NB�ANB





Lp0 (Rm)

= jNB nANB j1�
1
p ;

so that

(2.18)



�̂NB�ANB





p
� jNB nANB j1�

1
p :

The same reasoning also produces

(2.19)



�̂ANB�NB





p
� jANB nNBj1�

1
p :

A change of variables yields

k�̂
NB
kp =

�Z
Tm
j�̂

NB
(x)jpdx

� 1
p

= Nm(1�1=p)
�Z

NTm
j�̂

B
(x)jp dx

� 1
p

= Nm(1�1=p)
�
k�̂

B
kLp(Rm) � k�̂BkLp(RmnNTm)

�
:

Combine this with relations (2.16), (2.17), (2.18), and (2.19) to get

(2.20) kDNBkp � N
m(1�1=p)

0BB@
k�̂

B
kLp(Rm) � k�̂BkLp(RmnNTm)

�
�
jNBnANB j

1� 1
p+jANBnNBj

1� 1
p

Nm(1�1=p)

�
1CCA :

The Hausdor�-Young inequality implies that �̂
B
2 Lp(Rm). (In fact, k�̂

B
kLp(Rm) �

jBj1�
1
p .) So by Lebesgue's dominated convergence Theorem, k�̂

B
kLp(RmnNTm)

tends to 0 as N ! 1. Because of the MN condition, both jNB n ANB j and
jANB n NBj are o (Nm), so the term in curly brackets also goes to zero when
N !1. Thus from inequality (2.20) it follows that there is a constant 
1 so that

(2.21)

�Z
Tm
jDNB(x)jpdx

� 1
p

� 
1Nm(1�1=p):

�

Remark 2. This proof showed that k�̂
NB
kp is asymptotic to cNm(1�1=p) where

c = k�̂
B
kLp(Rm). Since inequality (2.16) can be reversed (with constant (�=2)

m

instead of 1), an upper bound for the case of Lp requires no extra work. However,
this is not useful since the case for an upper bound when p � 2 was already done
without the boundary assumption MN in the proof of Theorem 3.



14 J. MARSHALL ASH AND LAURA DE CARLI

3. Proof of Theorem 5

We will only estimate the value of kDNBkp where B = fx 2 Rm : jxj � 1g from
below. More speci�cally, we will show that

kDNBkp �
(


1N
m�1
2 1 � p < 2m

m+1


1N
m�1
2 ln1=pN p = 2m

m+1

:

We will prove below this lemma.

Lemma 6. For every p 2
h
1; 2m

m+1

�
there is a positive constant c1 (p;m) so that

for all R > 1,

(3.1)

Z
RB

����Z
B

e (�v � y) dv
����p dy � cp1R�m+1

2 p+m:

If p =
2m

m+ 1
, there is a positive constant c1 (m) so that for all R > 1,

(3.2)

Z
RB

����Z
B

e (�v � y) dv
����p dy � cp1 lnR:

Let p 2
h
1; 2m

m+1

�
and assume temporarily the validity of inequality (3.1).

For a small positive � < 1=2 (to be chosen later) we have

kDNBkp =
�Z

Tm
jDNB jp dx

�1=p
�
�Z

�B

jDNB jp dx
�1=p

;

The same reasoning that led from identity (2.15) to inequalities (2.16) and (2.17)
above produces here

�Z
�B

jDNB jp dx
�1=p

�
�Z

�B

��[�NB(x)��p dx� 1
p

�
�Z

�B

j \�ANB�NB(x)jpdx
� 1

p

�
�Z

�B

j \�NB�ANB
(x)jpdx

� 1
p

:

Concatenating the last two inequalities,

kDNBkp �
�Z

�B

��[�NB(x)��p dx� 1
p

(3.3)

�
(�Z

�B

j \�ANB�NB(x)jpdx
� 1

p

+

�Z
�B

j \�NB�ANB
(x)jpdx

� 1
p

)
:

Making �rst the change of variable u = Nv; du = Nmdv and then the substitution
y = Nx; dy = Nmdx, we estimate the �rst term on the right hand side of (3.3):



Lp LEBESGUE CONSTANTS FOR POLYHEDRA 15

�Z
�B

��[�NB(x)��p dx� 1
p

=

�Z
�B

����Z
NB

e (�u � x) du
����p dx�

1
p

=

�Z
�B

Nmp

����Z
B

e (�v �Nx) dv
����p dx�

1
p

= Nm(1� 1
p )
�Z

�NB

����Z
B

e (�v � y) dv
����p dy�

1
p

� Nm(1� 1
p )
�
cp1 (�N)

�m+1
2 p+m

� 1
p

= c1N
m�1
2 �m(

1
p�

1
2 )�

1
2 :(3.4)

The last inequality follows from the estimate (3.1).
Since p < 2 we may estimate each of the last two terms in (3.3) by applying

H�older's inequality with exponents 2=p and 2= (2� p), then expanding the domain
of integration to Rn, and then applying the Plancherel equation. We get�Z

�B

j \�ANB�NB(x)jpdx
� 1

p

�
�Z

�B

j \�ANB�NB(x)j2dx
� 1

2

(vm�
m)

2�p
2p

= jANB �NBj
1
2 v
( 1p�

1
2 )

m �m(
1
p�

1
2 )

and �Z
�B

j \�NB�ANB
(x)jpdx

� 1
p

� jNB �ANB j
1
2 v
( 1p�

1
2 )

m �m(
1
p�

1
2 )

where vm = !m=m = 2�m=2= (m� (m=2)) is the volume of the m dimensional ball.
Because of the geometry of the m-sphere, we know that

(3.5) jANB �NBj
1
2 + jNB �ANB j

1
2 = O

�
N

m�1
2

�
:[S]

Thus there is a constant c2 (p;m) so that the quantity in curly brackets in inequality

(3.3) is � c2�m(
1
p�

1
2 )N

m�1
2 . From (3.3), this, and inequality (3.4) we get

kDNBkp � c1N
m�1
2 �m(

1
p�

1
2 )�

1
2 � c2�m(

1
p�

1
2 )N

m�1
2

= �m(
1
p�

1
2 )�

1
2

�
c1 � �

1
2 c2

�
N

m�1
2

= 
1N
m�1
2 :

We now choose �. Choose it so small that 
1 > 0.

If p =
2m

m+ 1
, we do not need the � scaling trick. Let � = 1. Then inequality

(3.3) becomes

kDNBkp �
�Z

B

��[�NB(x)��p dx� 1
p

�
(�Z

B

j \�ANB�NB(x)jpdx
� 1

p

+

�Z
B

j \�NB�ANB
(x)jpdx

� 1
p

)
;
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so that

(3.6a) kDNBkp �
�Z

B

��[�NB(x)��p dx� 1
p

� c02N
m�1
2 :

and using estimate (3.2) instead of estimate (3.1) allows us to replace inequality
(3.4) with �Z

B

��[�NB(x)��p dx� 1
p

�
�Z

�B

����Z
NB

e (�u � x) du
����p dx�

1
p

= c1N
m�1
2 lnN:

Putting this together with (3.6a) gives (3.2). It only remains to prove the lemma.

Proof. It is well known that

c�B (x) = Z
j�j�1

e (�x � �) dx = Jm=2 (2� jxj) jxj�m=2 ;

where J� is the standard Bessel function of order �. (See Stein & Weiss, p.170,
Thm. 4 with � = 0). So we have to estimateZ

RB

jc�B (x)jp dx = Z
RB

����Z
B

e (�v � y) dv
����p dy

= !m

Z R

0

��Jm=2 (2�r)��p r�mp=2rm�1dr:
Since Jm=2 (r) is asymptotic to O

�
rm=2

�
for small r; the integrand is bounded for

small r so a lower estimate of the form cR� with � > 0 will hold equally well for
this integral or for

I = (2�)
m�mp=2

Z R

a

��Jm=2 (2�r)��p r�mp=2+m�1dr;
where a is any �xed positive constant. In other words, to prove the lemma it su�ces
to �nd a positive c1 (p;m) for which there holds

(3.7) I �
(
cp1R

�m+1
2 p+m if 1 � p < 2m

m+1

cp1 lnR if p = 2m
m+1

:

In the integral de�ning I, substitute s = 2�r to write

(3.8) I =

Z 2�R

2�a

��Jm=2 (s)��p sm�mp=2�1ds:
A well known large variable estimate for Bessel functions is that

Jm=2 (s) =

r
2

�

cos
�
s� m+1

4 �
�

s1=2
+O

�
1

s3=2

�
: [E]

It follows from this that

(3.9) I =

r
2

�
J + E;

where

J =

Z 2�R

2�a

�����cos
�
s� m+1

4 �
�

s1=2

�����
p

sm�mp=2�1ds
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and E is on the order ofZ 2�R

2�a

���� 1s3=2
����p sm�mp=2�1ds = O �Rm�m+1

2 p�p
�

= o
�
Rm�

m+1
2 p
�

(3.10)

We will underestimate J by replacing cos
�
s� m+1

4 �
�
by 1

2 when it is greater

than or equal to 1
2 and by 0 elsewhere. Speci�cally, if

k 2
��
a+

m+ 1

8
+
1

6

�
;

�
R+

m+ 1

8
� 1
6

��
= [b; t]

where d�e denotes the least integer � � and b�c denotes the greatest integer � �,
then

Ik =

�
2�k � m+ 1

4
� � �

3
; 2�k � m+ 1

4
� +

�

3

�
� [2�a; 2�R]

and for s 2 Ik; cos
�
s� m+1

4 �
�
� 1

2 . Hence

J �
tX

k=b

Z
Ik

�
1
2

�p
sp=2

sm�mp=2�1ds

=

�
1

2

�p tX
k=b

Z
Ik

s��1ds

where � = m+1
2

�
2m
m+1 � p

�
so that �� 1 > �1. Underestimate each integrand by

its smallest value to get

J �
�
1

2

�p tX
k=b

�
2�k � m+ 1

4
� + sgn (�� 1) �

3

���1 �
2
�

3

�
:

Finally note that b is bounded, t = R� c where c is bounded, and use the integral
test estimate of comparing

P
f (k) with

R
f (k) for positive monotone f to see that

there is a positive constant d1 (p;m) so that

J �
(
d1R

� = R�
m+1
2 p+m if 1 � p < 2m

m+1

d1 lnR if p = 2m
m+1

::

Putting this estimate and estimate (3.10) into equation (3.9) allows us to complete
estimate (3.7) and thereby �nish the proof. �
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