
Introduction to Introduction to Introduction to Introduction to
Languages and Languages and Languages and Languages and
GrammarsGrammarsGrammarsGrammars

Alphabets and Languages

An alphabet is a finite non-empty set.

Let S and T be alphabets.

S • T = { s t | s ε S, t ε T }
(We’ll often write ST for S•T.)

λ = empty string, string of length one

S0 = {λ }

S1 = S

Sn = S(n-1) • S, n > 1

S+ = S1 U S2 U S3 U . . .

S* = S0 U S+

A language L over an alphabet S is a subset of S*.

How Many Languages Are There?

• How many languages over a particular alphabet are there?

Uncountably infinitely many!

• Then, any finite method of describing languages can not
include all of them.

• Formal language theory gives us techniques for defining
some languages over an alphabet.

Why should I care about ?

• Concepts of syntax and semantics used
widely in computer science:

• Basic compiler functions

• Development of computer languages

• Exploring the capabilities and limitations of
algorithmic problem solving

Methods for Defining Languages

• Grammar

– Rules for defining which strings over an
alphabet are in a particular language

• Automaton (plural is automata)

– A mathematical model of a computer which can
determine whether a particular string is in the
language

Definition of a Grammar

• A grammar G is a 4 tuple G = (N, Σ, P, S), where

– N is an alphabet of nonterminal symbols

– Σ is an alphabet of terminal symbols

– N and Σ are disjoint

– S is an element of N; S is the start symbol or initial
symbol of the grammar

– P is a set of productions of the form α -> β where

• α is in (N U Σ)* N (N U Σ)*

• β is in (N U Σ)*

Definition of a Language Generated by a
Grammar

We define => by

γ α δ => γ δ β if

α -> β is in P, and

γ and δ are in (N U Σ)*

=>+ is the transitive closure of =>

=>* is the reflexive transitive closure of =>

The language L generated by grammar G = (N, Σ, P, S), is defined by

L = L(G) = { x | S *=> x and x is in Σ* }

Classes of Grammars

(The Chomsky Hierarchy)
• Type 0, Phrase Structure (same as basic grammar definition)

• Type 1, Context Sensitive

– (1) α -> β where α is in (N U Σ)* N (N U Σ)*,

• β is in (N U Σ)+, and length(α) ≤ length(β)

– (2) γ A δ -> γ β δ where A is in N, β is in (N U Σ)+, and

• γ and δ are in (N U Σ)*

• Type 2, Context Free

– A -> β where A is in N, β is in (N U Σ)*

• Linear

– A-> x or A -> x B y, where A and B are in N and x and y are in Σ*

• Type 3, Regular Expressions

– (1) left linear A -> B a or A -> a, where A and B are in N and a is in Σ

– (2) right linear A -> a B or A -> a, where A and B are in N and a is in Σ

Comments on the
Chomsky Hierarchy (1)

• Definitions (1) and (2) for context sensitive are equivalent.

• Definitions (1) and (2) for regular expressions are equivalent.

• If a grammar has productions of all three of the forms described in definitions (1) and
(2) for regular expressions, then it is a linear grammar.

• Each definition of context sensitive is a restriction on the definition of phrase structure.

• Every context free grammar can be converted to a context sensitive grammar with
satisfies definition (2) which generates the same language except the language
generated by the context sensitive grammar cannot contain the empty string λ.

• The definition of linear grammar is a restriction on the definition of context free.

• The definitions of left linear and right linear are restrictions on the definition of linear.

Comments on the Chomsky Hierarchy

• Every language generated by a left linear grammar can be generated by a right linear
grammar, and every language generated by a right linear grammar can be generated by
a left linear grammar.

• Every language generated by a left linear or right linear grammar can be generated by a
linear grammar.

• Every language generated by a linear grammar can be generated by a context free
grammar.

• Let L be a language generated by a context free grammar. If L does not contain λ, then
L can be generated by a context sensitive grammar. If L contains λ, then L-{λ} can be
generated by a context sensitive grammar.

• Every language generated by a context sensitive grammar can be generated by a phrase
structure grammar.

Example : A Left Linear Grammar for Identifiers

• S -> S a

• S -> S b

• S -> S 1

• S -> S 2

• S -> a

• S -> b

• S => a

• S => S 1 => a 1

• S => S 2 => S b 2

=> S 1 b 2 => a 1 b 2

Example : A Right Linear Grammar for Identifiers

• S -> a T
• S -> b T
• S -> a
• S -> b
• T -> a T
• T -> b T

• S => a

• S => a T => a 1

• S => a T => a 1 T

=> a 1 b T => a 1 b 2

T -> 1 T
T -> 2 T
T -> a
T -> b
T -> 1
T -> 2

Example:
A Right Linear Grammar for {an bm cp | n, m, p > 0}

• S -> a A

• A -> a A

• A -> b B

• B -> b B

• B -> c C

• B -> c

• C -> c C

• C -> c

S => a A => a a A

=> a a a A

=> a a a b B

=> a a a b c C

=> a a a b c c

Example : A Linear Grammar for { an bn | n >0 }

• S -> a S b

• S -> a b

S => a S b

=> a a S b b

=> a a a S b b b

=> a a a a b b b b

Example : A Linear Grammar for {an bm cm dn | n > 0}
(Context Free Grammar)

• S -> a S b

• S -> a T b

• T -> c T d

• T -> c d

S => a S b

=> a a S b b

=> a a a T b b b

=> a a a c T d b b b

=> a a a c c d d b b b

Another Example :
A Context Free Grammar for {an bn cm dm | n > 0}

• S -> R T

• R -> a R b

• R -> a b

• T -> c T d

• T -> c d

S => R T

=> a R b T

=> a a R b b T

=> a a a b b b T

=> a a a b b b c T d

=> a a a b b b c c d d

A Context Free Grammar for Expressions

• S -> E

• E -> E + T

• E -> E - T

• E -> T

• T -> T * F

• T -> T / F

• T -> F

• S => E => E + T

– => E - T + T

– => T - T + T

– => F - T + T

– => a - T + T

– => a - T * F + T

– => a - F * F + T

– => a - b * F + T

– => a - b * c + T

– => a - b * c + F

– => a - b * c - d

F -> (E)

F -> a

F -> b

F -> c

F -> d

F -> e

A Context Sensitive Grammar for {an bn cn | n >0}

• S -> a S B C

• S -> a B C

• a B -> a b

• b B -> b b

• C B -> B C

• b C -> b c

• c C -> c c

S => a S B C

=> a a B C B C

=> a a b C B C

=> a a b B C C

=> a a b b C C

=> a a b b c C

=> a a b b c c

The Chomsky Hierarchy and the Block Diagram of a
Compiler

Scanner Parser

Inter-

mediate

Code

Generator

Optimizer
Code

Generator

Symbol

Table

Manager

Error

Handler

Source

language

program

tokens tree
Int.

code
Object

language

program

Error

messages

Symbol Table

Type 3 Type 2

Type 1

Automata

• Turing machine (Tm)

• Linear bounded automaton (lba)

• 2-stack pushdown automaton (2pda)

• (1-stack) pushdown automaton (pda)

• 1 turn pushdown automaton

• finite state automaton (fsa)

Recursive Definition

αλ,,∅

()1

1

21

21

*

r

r

rr

rr

⋅

+

Are regular expressions

Primitive regular expressions:

2r1rGiven regular expressions and

Example () *aba ⋅+

()()*abaL ⋅+ ()() ()*aLbaL +=

() ()*aLbaL +=

() ()() ()()*aLbLaL ∪=

{ } { }() { }()*aba ∪=

{ }{ },...,,,, aaaaaaba λ=

{ },...,,,...,,, baababaaaaaa=

Example () *aba ⋅+

()()*abaL ⋅+ ()() ()*aLbaL +=

() ()*aLbaL +=

() ()() ()()*aLbLaL ∪=

{ } { }() { }()*aba ∪=

{ }{ },...,,,, aaaaaaba λ=

{ },...,,,...,,, baababaaaaaa=

Example

• Regular expression () () bbbaar **=

() }0,:{ 22 ≥= mnbbarL
mn

Example

Regular expression *)10(00*)10(++=r

)(rL = { all strings with at least

two consecutive 0 }

Example

• Regular expression)0(*)011(λ++=r

)(rL = { all strings without

two consecutive 0 }

Equivalent Regular Expressions

• Definition:

Regular expressions and

are equivalentequivalentequivalentequivalent if

1r 2r

)()(21 rLrL =

Example

L = { all strings without

two consecutive 0 }

)0(*)011(1 λ++=r

)0(*1)0(**)011*1(2 λλ +++=r

LrLrL ==)()(21
1r 2rand

are equivalent

regular expr.

Linear Grammars

Grammars with

at most one variable at the right side

of a production

Examples:

λ→

→

→

A

aAbA

AbS

λ→

→

S

aSbS

A Non-Linear Grammar

bSaS

aSbS

S

SSS

→

→

→

→

λ

Grammar :G

)}()(:{)(wnwnwGL ba ==

Number of in stringa w

Another Linear Grammar

Grammar :

AbB

aBA

AS

→

→

→

λ|

}0:{)(≥= nbaGL
nn

G

Right-Linear Grammars

• All productions have form:

• Example:

xBA →

xA →

or

aS

abSS

→

→ string of

terminals

Left-Linear Grammars

All productions have form:

Example:

BxA →

aB

BAabA

AabS

→

→

→

|

xA →
or

string of

terminals

Regular Grammars

A regular grammar is any

right-linear or left-linear grammar

Examples:

aS

abSS

→

→

aB

BAabA

AabS

→

→

→

|

1G
2G

Observation

Regular grammars generate regular
languages

Examples:

aS

abSS

→

→

aabGL *)()(1 =

aB

BAabA

AabS

→

→

→

|

*)()(2 abaabGL =

1G

2G

Closure under language operations

• Theorem. The set of regular languages is
closed under the all the following
operations. In other words if L1 and L2 are
regular, then so is:
– Union: L1 ∪ L2

– Intersection: L1 ∩ L2

– Complement: L1
c = Σ* \ L1

– Difference: L1 \ L2

– Concatenation: L1L2

– Kleene star: L1*

Regular expressions versus regular
languages

• We defined a regular language to be one that is
accepted by some DFA (or NFA).

• We can prove that a language is regular by this
definition if and only if it corresponds to some
regular expression. Thus,

– 1) Given a DFA or NFA, there is some regular expression
to describe the language it accepts

– 2) Given a regular expression, we can construct a DFA or
NFA to accept the language it represents

Application: Lexical-analyzers and
lexical-analyzer generators

• Lexical analyzer:
– Input: Character string comprising a computer program in

some language

– Output: A string of symbols representing tokens –
elements of that language

• Ex in C++ or Java :

– Input: if (x == 3) y = 2;

– Output (sort of): if-token, expression-token, variable-
name-token, assignment-token, numeric-constant token,
statement-separator-token.

Lexical-analyzer generators

• Input: A list of tokens in a programming
language, described as regular expressions

• Output: A lexical analyzer for that language

• Technique: Builds an NFA recognizing the
language tokens, then converts to DFA.

Regular Expressions: Applications and
Limitations

• Regular expressions have many applications:
– Specification of syntax in programming languages
– Design of lexical analyzers for compilers
– Representation of patterns to match in search engines
– Provide an abstract way to talk about programming

problems (language correpsonds to inputs that produce
output yes in a yes/no programming problem)

• Limitations
– There are lots of reasonable languages that are not

regular – hence lots of programming problems that
can’t be solved using power of a DFA or NFA

CFL

•

Regular Languages

}{ nn
ba }{ R

ww

Context-Free Languages

Context-Free Languages

Pushdown

Automata

Context-Free

Grammars

stack

automaton

Example

A context-free grammar :

λ→

→

S

aSbS

aabbaaSbbaSbS ⇒⇒⇒

G

A derivation:

λ→

→

S

aSbS

=)(GL

(((())))

}0:{ ≥nba
nn

Describes parentheses:

λ→

→

→

S

bSbS

aSaS

abbaabSbaaSaS ⇒⇒⇒

A context-free grammar :G

A derivation:

Example

λ→

→

→

S

bSbS

aSaS

=)(GL }*},{:{ bawww
R ∈

λ→

→

→

S

SSS

aSbS

ababSaSbSSSS ⇒⇒⇒⇒

A context-free grammar :G

A derivation:

Example

λ→

→

→

S

SSS

aSbS

abababaSbabSaSbSSSS ⇒⇒⇒⇒⇒

A context-free grammar :G

A derivation:

Definition: Context-Free Languages

A language is context-free

if and only if there is a

context-free grammar

with

L

G

)(GLL =

Derivation Order

ABS →.1

λ→

→

A

aaAA

.3

.2

λ→

→

B

BbB

.5

.4

aabaaBbaaBaaABABS
54321

⇒⇒⇒⇒⇒

Leftmost derivation:

aabaaAbAbABbABS
32541

⇒⇒⇒⇒⇒

Rightmost derivation:

λ|AB

bBbA

aABS

→

→

→

Leftmost derivation:

abbbbabbbbB

abbBbbBabAbBabBbBaABS

⇒⇒

⇒⇒⇒⇒

Rightmost derivation:

abbbbabbBbb

abAbabBbaAaABS

⇒⇒

⇒⇒⇒⇒

ABS → λ|aaAA → λ|BbB →

aaABbaaABABS ⇒⇒⇒

S

BA

a a A B b

ABS → λ|aaAA → λ|BbB →

aaBbaaABbaaABABS ⇒⇒⇒⇒

S

BA

a a A B b

λ

ABS → λ|aaAA → λ|BbB →

aabaaBbaaABbaaABABS ⇒⇒⇒⇒⇒

S

BA

a a A B b

λ λ

Derivation Tree

aabaaBbaaABbaaABABS ⇒⇒⇒⇒⇒

yield

aab

baa

=

λλ

S

BA

a a A B b

λ λ

Derivation Tree

ABS → λ|aaAA → λ|BbB →

aabaaBbaaBaaABABS ⇒⇒⇒⇒⇒

aabaaAbAbABbABS ⇒⇒⇒⇒⇒

S

BA

a a A B b

λ λ

Same derivation tree

Sometimes, derivation order doesn’t matter

Leftmost:

Rightmost:

aEEEEEE |)(|| ∗+→

aaa ∗+

E

EE

EE

+

a

a a

∗

aaaEaa

EEaEaEEE

*+⇒∗+⇒

∗+⇒+⇒+⇒

leftmost derivation

aEEEEEE |)(|| ∗+→

aaa ∗+

E

EE

+

a a

∗

EE a

aaaEaa

EEaEEEEEE

∗+⇒∗+⇒

∗+⇒∗+⇒∗⇒

leftmost derivation

aEEEEEE |)(|| ∗+→

aaa ∗+

E

EE

+

a a

∗

EE a

E

EE

EE

+

a

a a

∗

Two derivation trees

The grammar aEEEEEE |)(|| ∗+→

is ambiguous:

E

EE

+

a a

∗

EE a

E

EE

EE

+

a

a a

∗

string aaa ∗+ has two derivation trees

Copyright © 2006 Addison-Wesley. All rights reserved. 1-61

Definition:

A context-free grammar is ambiguous

if some string has:

two or more derivation trees

G

)(GLw∈

In other words:

A context-free grammar is ambiguous

if some string has:

two or more leftmost derivations

G

)(GLw∈

(or rightmost)

E

EE

+

∗

EE

E

EE

EE

+

∗

6222 =∗+

2

2 2 2 2

2

8222 =∗+

4

2 2

2

6

2 2

24

8

Copyright © 2006 Addison-Wesley. All rights reserved. 1-64

• We want to remove ambiguity

• Ambiguity is bad for programming languages

We fix the ambiguous grammar:

aEEEEEE |)(|| ∗+→

New non-ambiguous grammar:

aF

EF

FT

FTT

TE

TEE

→

→

→

∗→

→

+→

)(

Copyright © 2006 Addison-Wesley. All rights reserved. 1-66

aF

EF

FT

FTT

TE

TEE

→

→

→

∗→

→

+→

)(

aaaFaaFFa

FTaTaTFTTTEE

∗+⇒∗+⇒∗+⇒

∗+⇒+⇒+⇒+⇒+⇒

E

E T+

T ∗ F

F

a

T

F

a

a

aaa ∗+

Copyright © 2006 Addison-Wesley. All rights reserved. 1-67

E

E T+

T ∗ F

F

a

T

F

a

a

aaa ∗+

Unique derivation tree

The grammar :

aF

EF

FT

FTT

TE

TEE

→

→

→

∗→

→

+→

)(

is non-ambiguous:

Every string has

a unique derivation tree

G

)(GLw∈

Copyright © 2006 Addison-Wesley. All rights reserved. 1-69

Another Ambiguous Grammar

IF_STMT if EXPR then STMT→

| if EXPR then STMT else STMT

If expr1 then if expr2 then stmt1 else stmt2

IF_STMT

expr1 then

elseif expr2 then

STMT

stmt1

if

IF_STMT

expr1 then else

if expr2 then

STMT stmt2if

stmt1

stmt2

Copyright © 2006 Addison-Wesley. All rights reserved. 1-71

Inherent Ambiguity

• Some context free languages

• have only ambiguous grammars

Example: }{}{ mmnmnn
cbacbaL ∪=

λ|

|11

aAbA

AcSS

→

→

λ|

|22

bBcB

BaSS

→

→21 | SSS →

The string nnn
cba

has two derivation trees

S

1S

S

2S

1S c
2Sa

Simplification of Context Free Grammar

Copyright © 2006 Addison-Wesley. All rights reserved. 1-74

A Substitution Rule

bB

aAB

abBcA

aaAA

aBS

→

→

→

→

→

Substitute

Equivalent

grammar

aAB

abbcabBcA

aaAA

abaBS

→

→

→

→

|

|

bB →

A Substitution Rule

Equivalent

grammar
abaAcabbcabBcA

aaAA

aaAabaBS

||

||

→

→

→

aAB

abbcabBcA

aaAA

abaBS

→

→

→

→

|

|

Substitute
aAB →

In general:

1yB

xBzA

→

→

Substitute

zxyxBzA 1|→
equivalent

grammar

1yB →

Copyright © 2006 Addison-Wesley. All rights reserved. 1-77

Nullable Variables

:production−λ λ→A

Nullable Variable: λ⇒⇒KA

Copyright © 2006 Addison-Wesley. All rights reserved. 1-78

Removing Nullable Variables

Example Grammar:

λ→

→

→

M

aMbM

aMbS

Nullable variable

Copyright © 2006 Addison-Wesley. All rights reserved. 1-79

λ→M

λ→

→

→

M

aMbM

aMbS
Substitute

abM

aMbM

abS

aMbS

→

→

→

→

Final Grammar

Copyright © 2006 Addison-Wesley. All rights reserved. 1-80

Unit-Productions

BA →Unit Production:

(a single variable in both sides)

Copyright © 2006 Addison-Wesley. All rights reserved. 1-81

Removing Unit Productions

Observation:

AA →

Is removed immediately

Copyright © 2006 Addison-Wesley. All rights reserved. 1-82

Example Grammar:

bbB

AB

BA

aA

aAS

→

→

→

→

→

Copyright © 2006 Addison-Wesley. All rights reserved. 1-83

bbB

AB

BA

aA

aAS

→

→

→

→

→

Substitute

BA →

bbB

BAB

aA

aBaAS

→

→

→

→

|

|

Copyright © 2006 Addison-Wesley. All rights reserved. 1-84

Remove

bbB

BAB

aA

aBaAS

→

→

→

→

|

|

bbB

AB

aA

aBaAS

→

→

→

→ |

BB →

Copyright © 2006 Addison-Wesley. All rights reserved. 1-85

Substitute
AB →

bbB

aA

aAaBaAS

→

→

→ ||

bbB

AB

aA

aBaAS

→

→

→

→ |

Copyright © 2006 Addison-Wesley. All rights reserved. 1-86

Remove repeated productions

bbB

aA

aBaAS

→

→

→ |

bbB

aA

aAaBaAS

→

→

→ ||

Final grammar

Copyright © 2006 Addison-Wesley. All rights reserved. 1-87

Useless Productions

aAA

AS

S

aSbS

→

→

→

→

λ

KKK ⇒⇒⇒⇒⇒⇒ aAaaaaAaAAS

Some derivations never terminate...

Useless Production

Copyright © 2006 Addison-Wesley. All rights reserved. 1-88

bAB

A

aAA

AS

→

→

→

→

λ

Another grammar:

Not reachable from S

Useless Production

In general:

if wxAyS ⇒⇒⇒⇒ KK

then variable is usefulA

otherwise, variable is uselessA

)(GLw∈

contains only

terminals

A production is useless

if any of its variables is useless

xA →

DC

CB

aAA

AS

S

aSbS

→

→

→

→

→

→

λ Productions

useless

useless

useless

useless

Variables

useless

useless

useless

Copyright © 2006 Addison-Wesley. All rights reserved. 1-91

Removing Useless Productions

Example Grammar:

aCbC

aaB

aA

CAaSS

→

→

→

→ ||

First: find all variables that can produce

strings with only terminals

aCbC

aaB

aA

CAaSS

→

→

→

→ || },{ BA

AS →

},,{ SBA

Round 1:

Round 2:

Keep only the variables

that produce terminal symbols:

aCbC

aaB

aA

CAaSS

→

→

→

→ ||

},,{ SBA

aaB

aA

AaSS

→

→

→ |

(the rest variables are useless)

Remove useless productions

Second: Find all variables

reachable from

aaB

aA

AaSS

→

→

→ |

S A B

Use a Dependency Graph

not

reachable

S

Keep only the variables

reachable from S

aaB

aA

AaSS

→

→

→ |

aA

AaSS

→

→ |

Final Grammar

(the rest variables are useless)

Remove useless productions

Copyright © 2006 Addison-Wesley. All rights reserved. 1-96

Removing All

• Step 1:Step 1:Step 1:Step 1: Remove Nullable Variables

• Step 2:Step 2:Step 2:Step 2: Remove Unit-Productions

• Step 3:Step 3:Step 3:Step 3: Remove Useless Variables

Copyright © 2006 Addison-Wesley. All rights reserved. 1-97

Chomsky Normal Form for CFG

Each productions has form:

BCA →

variable variable

aA →or

terminal

Copyright © 2006 Addison-Wesley. All rights reserved. 1-98

Examples:

bA

SAA

aS

ASS

→

→

→

→

Not Chomsky

Normal Form

aaA

SAA

AASS

ASS

→

→

→

→

Chomsky

Normal Form

Copyright © 2006 Addison-Wesley. All rights reserved. 1-99

Convertion to Chomsky Normal Form

• Example:

AcB

aabA

ABaS

→

→

→

Not Chomsky

Normal Form

AcB

aabA

ABaS

→

→

→

Introduce variables for terminals:

cT

bT

aT

ATB

TTTA

ABTS

c

b

a

c

baa

a

→

→

→

→

→

→

cba TTT ,,

Introduce intermediate variable:

cT

bT

aT

ATB

TTTA

ABTS

c

b

a

c

baa

a

→

→

→

→

→

→

cT

bT

aT

ATB

TTTA

BTV

AVS

c

b

a

c

baa

a

→

→

→

→

→

→

→

1

1

1V

Introduce intermediate variable:

cT

bT

aT

ATB

TTV

VTA

BTV

AVS

c

b

a

c

ba

a

a

→

→

→

→

→

→

→

→

2

2

1

1

2V

cT

bT

aT

ATB

TTTA

BTV

AVS

c

b

a

c

baa

a

→

→

→

→

→

→

→

1

1

Final grammar in Chomsky Normal Form:

cT

bT

aT

ATB

TTV

VTA

BTV

AVS

c

b

a

c

ba

a

a

→

→

→

→

→

→

→

→

2

2

1

1

AcB

aabA

ABaS

→

→

→

Initial grammar

Copyright © 2006 Addison-Wesley. All rights reserved. 1-104

From any context-free grammar

(which doesn’t produce)

not in Chomsky Normal Form

we can obtain:

An equivalent grammar

in Chomsky Normal Form

In general:

λ

Copyright © 2006 Addison-Wesley. All rights reserved. 1-105

The Procedure

First remove:

Nullable variables

Unit productions

Then, for every symbol :a

In productions: replace with a aT

Add production aTa →

New variable: aT

Replace any production
nCCCA L21→

with

nnn CCV

VCV

VCA

12

221

11

−− →

→

→

K

New intermediate variables: 221 ,,, −nVVV K

Copyright © 2006 Addison-Wesley. All rights reserved. 1-108

Observations

• Chomsky normal forms are good

for parsing and proving theorems

• It is very easy to find the Chomsky normal

form for any context-free grammar

Copyright © 2006 Addison-Wesley. All rights reserved. 1-109

Greinbach Normal Form

All productions have form:

kVVVaA L21→

symbol variables

0≥k

Copyright © 2006 Addison-Wesley. All rights reserved. 1-110

Examples:

bB

bbBaAA

cABS

→

→

→

||

Greinbach

Normal Form

aaS

abSbS

→

→

Not Greinbach

Normal Form

Copyright © 2006 Addison-Wesley. All rights reserved. 1-111

Observations

• Greinbach normal forms are very good

for parsing

• It is hard to find the Greinbach normal

form of any context-free grammar

Copyright © 2006 Addison-Wesley. All rights reserved. 1-112

Properties of CFL

Copyright © 2006 Addison-Wesley. All rights reserved. 1-113

Context-free languages

are closed under: Union

1L is context free

2L is context free

21 LL ∪

is context-free

Union

Example

λ|11 baSS →

λ|| 222 bbSaaSS →

Union

}{1
nn

baL =

}{2
R

wwL =

21 | SSS →}{}{ Rnn
wwbaL ∪=

Language Grammar

In general:

The grammar of the union

has new start variable

and additional production 21 | SSS →

For context-free languages

with context-free grammars

and start variables

21, LL

21, GG

21, SS

21 LL ∪

S

Copyright © 2006 Addison-Wesley. All rights reserved. 1-116

Context-free languages

are closed under: Concatenation

1L is context free

2L is context free

21LL

is context-free

Concatenation

Example

λ|11 baSS →

λ|| 222 bbSaaSS →

Concatenation

}{1
nn

baL =

}{2
R

wwL =

21SSS →}}{{ Rnn
wwbaL =

Language Grammar

In general:

The grammar of the concatenation

has new start variable

and additional production 21SSS →

For context-free languages

with context-free grammars

and start variables

21, LL

21, GG

21, SS

21LL

S

Copyright © 2006 Addison-Wesley. All rights reserved. 1-119

Context-free languages

are closed under: Star-operation

L is context free *
L is context-free

Star Operation

Copyright © 2006 Addison-Wesley. All rights reserved. 1-120

λ|aSbS →}{ nn
baL =

λ|11 SSS →*}{ nn
baL =

Example

Language Grammar

Star Operation

In general:

The grammar of the star operation

has new start variable

and additional production

For context-free language

with context-free grammar

and start variable

L

G

S

*L

1S

λ|11 SSS →

Copyright © 2006 Addison-Wesley. All rights reserved. 1-122

Context-free languages

are not closed under: intersection

1L is context free

2L is context free

21 LL ∩

not necessarily

context-free

Intersection

Example

}{1
mnn

cbaL =

λ

λ

|

|

cCC

aAbA

ACS

→

→

→

Context-free:

}{2
mmn

cbaL =

λ

λ

|

|

bBcB

aAA

ABS

→

→

→

Context-free:

}{21
nnn

cbaLL =∩ NOT context-free

Intersection

Copyright © 2006 Addison-Wesley. All rights reserved. 1-124

Context-free languages

are not closed under: complement

L is context free L not necessarily

context-free

Complement

}{2121
nnn

cbaLLLL =∩=∪

NOT context-free

Example

}{1
mnn

cbaL =

λ

λ

|

|

cCC

aAbA

ACS

→

→

→

Context-free:

}{2
mmn

cbaL =

λ

λ

|

|

bBcB

aAA

ABS

→

→

→

Context-free:

Complement

The intersection of

a context-free language and

a regular language

is a context-free language

1L context free

2L regular

21 LL ∩

context-free

Copyright © 2006 Addison-Wesley. All rights reserved. 1-127

Summary

Non-recursively enumerable

Recursively-enumerable

Recursive

Context-sensitive

Context-free

Regular

The Chomsky Hierarchy

Who is Noam Chomsky Anyway?

• Philosopher of Languages

• Professor of Linguistics at MIT

• Constructed the idea that language was not
a learned “behavior”, but that it was
cognitive and innate; versus stimulus-
response driven

• In an effort to explain these theories, he
developed the Chomsky Hierarchy

Chomsky Hierarchy

Any computable

function

Turing machineUnrestricted
grammar

Recursively

enumerable

annnnbnnnncnnnnLinear-bounded

automaton

Context-sensitive

grammar

Context-
sensitive

annnnbnnnnNondeterministic

Pushdown
automaton

Context-free
grammar

Context-free

Language

a*

Deterministic or

Nondeterministic

Finite-state

acceptor

Regular Grammar

• Right-linear
grammar

• Left-linear
grammar

Regular

Language

ExampleExampleExampleExampleMachineMachineMachineMachineGrammarGrammarGrammarGrammarLanguageLanguageLanguageLanguage

Chomsky Hierarchy

• Comprises four types of languages and
their associated grammars and machines.

• Type 3: Regular Languages

• Type 2: Context-Free Languages

• Type 1: Context-Sensitive Languages

• Type 0: Recursively Enumerable Languages

• These languages form a strict hierarchy

