Introduction to
Languages and
Grammars

Alphabets and Languages

An alphabet is a finite non-empty set.

Let S and T be alphabets.
S-T={st|seS,teT}
(We’ll often write ST for S-T.)
A = empty string, string of length one
SO={1}
St =S

How Many Languages Are There?

How many languages over a particular alphabet are there?
Uncountably infinitely many!

- Then, any finite method of describing languages can not
include all of them.

Formal language theory gives us techniques for defining
some languages over an alphabet.

Why should | care about ?

- Concepts of syntax and semantics used
widely in computer science:

- Basic compiler functions
- Development of computer languages

- Exploring the capabilities and limitations of
algorithmic problem solving

Methods for Defining Languages

- Grammar

- Rules for defining which strings over an
alphabet are in a particular language

- Automaton (plural is automata)
- A mathematical model of a computer which can

Definition of a Grammar

- Agrammar G is a 4 tuple G = (N, X, P, S), where
- N is an alphabet of nonterminal symbols
- X is an alphabet of terminal symbols

- N and X are disjoint

- Sis an element of N; S is the start symbol or initial
symbol of the grammar

Definition of a Language Generated by a
Grammar

We define => by
yod=> yopif
o ->pB isinP, and
vy and d arein (N U ©)*

=>+ is the transitive closure of =>

Classes of Grammars
(The Chomsky Hierarchy)

Type 0, Phrase Structure (same as basic grammar definition)
Type 1, Context Sensitive
- (H)a->PBwhere aisin (NUZX)* N (N U X)*,
- Bisin (N U X)+, and length(a) < length(p)
- (2)YAS-> yBdwhere AisinN,Bisin(NUX)* and
- yand é arein (N U X)*
Type 2, Context Free
- A->BwhereAisinN, Bisin(NUZY)

Comments on the
Chomsky Hierarchy (1)

Definitions (1) and (2) for context sensitive are equivalent.
Definitions (1) and (2) for regular expressions are equivalent.

If a grammar has productions of all three of the forms described in definitions (1) and
(2) for regular expressions, then it is a linear grammar.

Each definition of context sensitive is a restriction on the definition of phrase structure.

Every context free grammar can be converted to a context sensitive grammar with
satisfies definition (2) which generates the same language except the language
generated by the context sensitive grammar cannot contain the empty string A.

The definition of linear grammar is a restriction on the definition of context free.

Comments on the Chomsky Hierarchy

Every language generated by a left linear grammar can be generated by a right linear
grammar, and every language generated by a right linear grammar can be generated by
a left linear grammar.

Every language generated by a left linear or right linear grammar can be generated by a
linear grammar.

Every language generated by a linear grammar can be generated by a context free
grammar.

Let L be a language generated by a context free grammar. If L does not contain A, then

L can be generated by a context sensitive grammar. If L contains A, then L-{A} can be
generated by a context sensitive grammar.

Example : A Left Linear Grammar for Identifiers

- S->Sa - S=>a
- S->Sb
- S->S1 - S=>S1=>al

- S->S2

Example : A Right Linear Grammar for Identifiers

- S->aT T->1T - S=>a
- S->bT T->2T
- S->a T->a
- S->D T->b
- T->aT T->1

Example:
A Right Linear Grammar for {a" b™ c? | n, m, p > 0}

. S->aA S=>aA=>aaA
'A‘>EA —>aaaA

- A->DB

b =>aaabB

S B-s>cC =>aaabcC

Example : A Linear Grammar for{a"b" | n >0}

- S->aShb S=>aShb

- S->ab =>aaShbb
=>aaaSbbb
=>aaaabbbb

Example : A Linear Grammar for {a" bm cm d" | n > 0}
(Context Free Grammar)

- S->aShb S=>aShb

- S->aThb =>aaShbb

- T->cTd =>aaalbbb

- T->cd =>aaaclTdbbb

=>aaaccddbbb

Another Example :
A Context Free Grammar for {a" b cmdm | n > 0}

- S->RT S=>RT
- R->aRb =>aRbT
- R->ab =>aaRbbT

- T->cTd =>aaabbbT

A Context Free Grammar for Expressions

. S->E - S=>E=>E+T
F->(E - =>E-T+T
- E->E+T F->(a) s T-TaT
- E->E-T E->h - =>F-T+T
- =>a-T+T
e F->c - =>a-T*F+T

A Context Sensitive Grammar for {a" bn c" | n >0}

- S->aSBC S=>aSBC

- S->aBC =>aaBCBC
- aB->ab =>aabCBC
- bB->bb =>aabBCC
- CB->BC =>aabbCC

The Chomsky Hierarchy and the Block Diagram of a

et _Jowed

Source tokenk
1‘c’mguag’eScanner » Parser
program

Symbol
Table
Manage

tree

Symbol Table

Compiler
Int.
Inter-
code
| mediate "Optimizer < Code
Code p ' Generator
Generator
Error
Handler

program

Automata

.+ Turing machine (Tm)

- Linear bounded automaton (Iba)

. 2-stack pushdown automaton (2pda)
. (1-stack) pushdown automaton (pda)

Recursive Definition

Primitive regular expressions: &, A, O
Given regular expressions /{ and r,

n+r

Example (a+b)-a*

L((a+b)-a*) = L((a+b)) L(a*)
(a+b) L(a*)
L(a)u L(b)) (L(a))*
(layuib}) (la})*

={a,b}{4,a,aa,aaa.,...|

=1{a,aa,aaa,...,b,ba,baa,...}

B

Example (a+b)-a*
)-a*) =L((a+b)) L(a*)
(a+b) L(a*)
L(a)w L(b))(L(a))*

(b)) (ap)*
={a,b}{4,a,aa,aaa.,...|

=1{a,aa,aaa,...,b,ba,baa,...}

Q
+
S

L((

B

Example

. Regular expression 1 = (aa)*(bb)* b

Example

Regular expression ¥ =(0+1)*00 (0+1)*

Example

. Regular expression7 =(1+01)*(0+ 1)

Equivalent Regular Expressions

. Definition:

Regular expressions 1§ and 1

Example

L = { all strings without
two consecutive O }

n=>0+0D)*0+A)

Linear Grammars

Grammars with
at most one variable at the right side

of a production

A Non-Linear Grammar

Grammar G : S — 85
S—>A
S — aSb

Another Linear Grammar

S— A
A—>aBl A
B — Ab

Grammar G :

Right-Linear Grammars

- All productions have form: A — xB
or

A—>x

Left-Linear Grammars

A — Bx
or

A—>x

All productions have form:

Regular Grammars

A regular grammar is any
right-linear or left-linear grammar

Examples: Gl

G

Observation

Regular grammars generate regular
languages
guag Gz
Examples:

Gy S — Aab

Closure under language operations

- Theorem. The set of regular languages is
closed under the all the following

operations. In other words if L, and L, are
regular, then so is:

- Union: L, U L,
- Intersection: L, N L

Regular expressions versus regular
languages

- We defined a regular language to be one that is
accepted by some DFA (or NFA).

- We can prove that a language is regular by this
definition if and only if it corresponds to some
regular expression. Thus,

- 1) Given a DFA or NFA, there is some regular expression

Application: Lexical-analyzers and
lexical-analyzer generators

- Lexical analyzer:

- Input: Character string comprising a computer program in
some language

- Output: A string of symbols representing tokens -
elements of that language

- Ex in C++ or Java:

Lexical-analyzer generators

- Input: A list of tokens in a programming
language, described as regular expressions

- Output: A lexical analyzer for that language

- Technique: Builds an NFA recognizing the
language tokens, then converts to DFA.

Regular Expressions: Applications and
Limitations

Regular expressions have many applications:

- Specification of syntax in programming languages

- Design of lexical analyzers for compilers

- Representation of patterns to match in search engines

- Provide an abstract way to talk about programming
problems (language correpsonds to inputs that produce
output yesin a yes/no programming problem)

Limitations

CFL

Context-Free Languages

{a"b"} (ww")

Context-Free Languages

RN

Context-Free Pushdown
Grammars

Example

A context-free grammar G: § —s qSh
S— A

S — aSbh
S—A

Example

A context-free grammar G: S — ada
S = bSh

S—A

S — alSa
S — bSh

Example

A context-free grammar G: S — aSb
S — 88

S—A

A context-free grammar G: S — aSb
S — 88

S—A

Definition: Context-Free Languages

A language [is context-free

if and only if there is a

Derivation Order

1. S—SAB 2. A—>aaA 4. B— Bb

3. Ao A 5. B> A
Leftmost derivation:

S — aAB
A — bBb

B—AIA
Leftmost derivation:

S = aAB = abBbB = abAbB = abbBbbB
— abbbbB = abbbb

Rightmost derivation:
S = aAB = aA = abBb = abAb

— abbBbb = abbbb

S — AB A—>aaAl A B—>BblA

S = AB = aaAB = aaABb

/@

S — AB A—>aaAl A B—>BblA

S = AB = aaAB = aaABb = aaBb

/@

S — AB A—>aaAl A B—>BblA

S = AB = aaAB = aaABb — aaBb = aab

Derivation Tree

_—

S — AB A—>aaAl A B—>BblA

S = AB = aaAB = aaABb — aaBb = aab

Derivation Tree

_—

Sometimes, derivation order doesn't matter

Leftmost:
S = AB = aaAB = aaB = aaBb = aab

Rightmost:
S = AB = ABb = Ab = aaAb = aab

E—->E+FE | ExE | (E) | a

a-+a*xa

EFE=F+FE=>a+FE=>a+E*E
> at+a*xE=>a+a*a

E—->E+FE | ExE | (E) | a

a-+a*xa

F=ExE=F+ExE=a+FE*E
—at+ta*E=>a+a*a

E—->E+FE | ExE | (E) | a

a+a*a

Two derivation trees

Thegrammar E > E+FE | ExE | (E) | a
is ambiguous:

string a+a*a has two derivation trees

Definition:

A context-free grammar G is ambiguous

if some string we L(G) has:

In other words:

A context-free grammar G is ambiguous

if some string we L(G) has:

- Ambiguity is bad for programming Tanguages

We fix the ambiguous grammar:
E—->E+EFE | ExE | (E) | a

New non-ambiguous grammar: E — E+T
E—>T

EFE=FE+T=>T+T=>F+1T =a+T =a+T*F

—>a+F*F=>a+a*F =>a+a*a

Unique derivation tree

The grammar G: E > E+T
E—-T
T —>Tx*F
I — F
F—(FE)

Another Ambiguous Grammar

IF STMT — if EXPR then STMT
| if EXPR then STMT else STMT

If exprl then if expr2 then stmtl else stmt2

.

Inherent Ambiquity

- Some context free languages
- have only ambiguous grammars

Example: L={a"b"c™} U {a"b"c™

The string a”'b"c"

has two derivation trees

Simplification of Context Free Grammar

A Substitution Rule

Equivalent
grammar

R S —aBlab

A — aaA

A Substitution Rule
S —>aBlab

A — aaA
A — abBclabbc
B — adA

Substitute

In general:
A — xBz

B%yl

Nullable Variables

A — production : A—> A

Removing Nullable Variables

Example Grammar:

S — aMb
M — aMb

Final Grammar

S — aMb

S — aMb

Substitute S —>ab

Unit-Productions

Unit Production: A— B

Removing Unit Productions

Observation:

A— A

Example Grammar:

S —>dA
A—>a

S —>dA
A—>a

S > adAlaB

Substitute A—>a

S > aAlaB S > adAlaB

A—>a Remove A—>a

S > aAlaB

S > adAlaBlaA
A—>a

Remove repeated productions

Final grammar
S%aAIaBIb:{ S = aAlaB

Useless Productions

S — aSh
S—A
S— A

Useless Production

Another grammar:

S—o A
A —dA
Ao A

In gener'alz contains only
terminals

i S=..oDxAy=> .. .= w

\
we L(G)

A production A — x is useless
if any of its variables is useless

S — aSb

S—>A4 Productions

Variables @ useless

Removing Useless Productions

Example Grammar:

S—aS1AIC
A—>a

First: find all variables that can produce
strings with only terminals

S —aSIAlC Roundl: {A,B}

Keep only the variables
that produce terminal symbols: {A,B,S}

(the rest variables are useless)

S —aS1AIE

Second: Find all variables
reachable from §

Use a Dependency Graph

Keep only the variables

reachable from S
(the rest variables are useless)

Final Grammar
S—aSlA

S—aSlA

Removing All

- Step 1: Remove Nullable Variables

Chomsky Normal Form for CFG

Each productions has form:

A — BC or A—>a

Examples:

S — AS S —> AS

S —>a Se

A— SA A— SA

Convertion to Chomsky Normal Form

S — ABa
A — aab
B — Ac

- Example:

Introduce variables for terminals: 1,,1p,1,

S — ABIT,

S s ABu A—-T,T.1T,
B— AT

Introduce intermediate variable: Vj

S —> AV,
S — ABIT, Vi = BT
a
A->TT.1, ASTTT,
a-d
B — AT,

B — AT,

Introduce intermediate variable: V5

S —> AV,
S —> AV, v

lﬁBTa
17 % A—1TV
A—T,T,T, a2

> V2 —> Ta Tb

Final grammar in Chomsky Normal Form:
S — AV,

Vi = BI1,

A—> TaV2
Initial grammar

V2 —> Ta Tb

In general:

From any context-free grammar
(which doesn't produce A)
not in Chomsky Normal Form

The Procedure

First remove:

Nullable variables

Then, for every symbol a:

Add production 1, —a

Replace any production A — C,C,---C,

with A > C\V,
Vi—> GV,

Observations

» Chomsky normal forms are good
for parsing and proving theorems

Greinbach Normal Form

All productions have form:

A%aVle---Vk k=0

Examples:

S —>cAB
A—aAlbBlb
B—b

S — abSb
S > aa

Observations

* Greinbach normal forms are very good
for parsing

Properties of CFL

Union

Context-free languages
are closed under: Union

Example

Language Grammar
L ={a"b"} S, —>aS;hl A

R

In general:

For context-free languages Ly, L
, Gy
1» 92

with context-free grammars G

and start variables [y

Concatenation

Context-free languages
are closed under: Concatenation

Example

Language Grammar
L ={a"b"} S, —>aS;hl A

R

In general:

For context-free languages Ly, L

with context-free grammars G
and start variables [y

1, Gy
1> 99

Star Operation

Context-free languages
are closed under: Star-operation

Example

Cm Iguage Grammar

L={a"p") S —aShl| A

In general:

For context-free language L
with context-free grammar (;
and start variable q

Intersection

Context-free languages
are not closed under: intersection

L. is context free

Example

L ={a"b"c"} L, ={a"b"c"™)}
Confext-free: Context-free:
S > AC S —> AB

A—aAbl A A—>aAlA

Complement

Context-free languages
are not closed under: complement

Example

L ={a"b"c"} L, ={a"b"c"™)}
Confext-free: Context-free:
S > AC S —> AB

A—aAbl A A—>aAlA

The intersection of
a context-free language and
a regular language

IS a context-free language

Summary

The Chomsky Hierarchy

Non-recursively enumerable

Recursively-enumerable

- Rearsie "

Who is Noam Chomsky Anyway?

- Philosopher of Languages
- Professor of Linguistics at MIT

- Constructed the idea that language was not
a learned “behavior”, but that it was
cognitive and innate; versus stimulus-
response driven

- In an effort to explain these theories, he
developed the Chomsky Hierarchy

Chomsky Hierarchy

Language |Grammar Machine Example

Regular Grammar Deterministic or
Regular Right-linear Nondeterministic -
Language SrElinnelr Finite-state

Left-linear acceptor

grammar
Context-free Context-free Nondeterministic anpn
Language grammar Pushdown

automaton

Context- Context-sensitive | Linear-bounded anbncn
sensitive grammar automaton
Recursively Unrestricted Turing machine | Any computable

enumerable

grammar

function

Chomsky Hierarchy

- Comprises four types of languages and
their associated grammars and machines.

Type 3: Regular Languages

ype 2: Context-Free Languages

ype 1: Context-Sensitive Languages

ype 0: Recursively Enumerable Languages
"hese languages form a strict hierarchy

