Introduction to Languages and Grammars

Alphabets and Languages

```
An <u>alphabet</u> is a finite non-empty set.

Let S and T be alphabets.

S \cdot T = \{ s t | s \epsilon S, t \epsilon T \}

(We'll often write ST for S \cdot T.)

\lambda = empty string, string of length one

S<sup>0</sup> = {\lambda }

S<sup>1</sup> = S

S<sup>n</sup> = S<sup>(n-1)</sup> \cdot S, n > 1

S<sup>+</sup> = S<sup>1</sup> U S<sup>2</sup> U S<sup>3</sup> U . . .

S<sup>*</sup> = S<sup>0</sup> U S<sup>+</sup>

A <u>language</u> L over an alphabet S is a subset of S<sup>*</sup>.
```

How Many Languages Are There?

- How many languages over a particular alphabet are there? Uncountably infinitely many!
- Then, any finite method of describing languages can not include all of them.
- Formal language theory gives us techniques for defining some languages over an alphabet.

Why should I care about ?

- Concepts of syntax and semantics used widely in computer science:
- Basic compiler functions
- Development of computer languages
- Exploring the capabilities and limitations of algorithmic problem solving

Methods for Defining Languages

• Grammar

- Rules for defining which strings over an alphabet are in a particular language
- Automaton (plural is automata)
 - A mathematical model of a computer which can determine whether a particular string is in the language

Definition of a Grammar

- A grammar G is a 4 tuple $G = (N, \Sigma, P, S)$, where
 - N is an alphabet of nonterminal symbols
 - Σ is an alphabet of <u>terminal symbols</u>
 - N and Σ are disjoint
 - S is an element of N; S is the <u>start symbol</u> or <u>initial</u> <u>symbol</u> of the grammar
 - P is a set of productions of the form $\alpha \rightarrow \beta$ where
 - α is in (N U Σ)* N (N U Σ)*
 - β is in (N U Σ)*

Definition of a Language Generated by a Grammar

We define => by $\gamma \alpha \delta => \gamma \delta \beta$ if $\alpha -> \beta$ is in P, and γ and δ are in (N U Σ)*

=>+ is the transitive closure of =>

=>* is the reflexive transitive closure of =>

The <u>language</u> L <u>generated by grammar</u> $G = (N, \Sigma, P, S)$, is defined by

 $L = L(G) = \{ x | S *=> x \text{ and } x \text{ is in } \Sigma^* \}$

Classes of Grammars (The Chomsky Hierarchy)

- Type 0, Phrase Structure (same as basic grammar definition)
- Type 1, Context Sensitive
 - (1) $\alpha \rightarrow \beta$ where α is in (N U Σ)* N (N U Σ)*,
 - β is in (N U Σ)+, and length(α) \leq length(β)
 - (2) $\gamma A \delta \rightarrow \gamma \beta \delta$ where A is in N, β is in (N U Σ)⁺, and
 - γ and δ are in (N U Σ)*
- Type 2, Context Free
 - A -> β where A is in N, β is in (N U Σ)^{*}
- Linear
 - A-> x or A -> x B y, where A and B are in N and x and y are in Σ^*
- Type 3, Regular Expressions
 - (1) left linear A -> B a or A -> a, where A and B are in N and a is in Σ
 - (2) right linear A -> a B or A -> a, where A and B are in N and a is in Σ

Comments on the Chomsky Hierarchy (1)

- Definitions (1) and (2) for context sensitive are equivalent.
- Definitions (1) and (2) for regular expressions are equivalent.
- If a grammar has productions of all three of the forms described in definitions (1) and
 (2) for regular expressions, then it is a linear grammar.
- Each definition of context sensitive is a restriction on the definition of phrase structure.
- Every context free grammar can be converted to a context sensitive grammar with satisfies definition (2) which generates the same language except the language generated by the context sensitive grammar cannot contain the empty string λ .
- The definition of linear grammar is a restriction on the definition of context free.
- The definitions of left linear and right linear are restrictions on the definition of linear.

Comments on the Chomsky Hierarchy

- Every language generated by a left linear grammar can be generated by a right linear grammar, and every language generated by a right linear grammar can be generated by a left linear grammar.
- Every language generated by a left linear or right linear grammar can be generated by a linear grammar.
- Every language generated by a linear grammar can be generated by a context free grammar.
- Let L be a language generated by a context free grammar. If L does not contain λ , then L can be generated by a context sensitive grammar. If L contains λ , then L-{ λ } can be generated by a context sensitive grammar.
- Every language generated by a context sensitive grammar can be generated by a phrase structure grammar.

Example : A Left Linear Grammar for Identifiers

- S -> S a
- S -> S b
- S -> S 1
- S -> S 2
- S -> a
- S -> b

- S => a
- S => S 1 => a 1
- S => S 2 => S b 2
 => S 1 b 2 => a 1 b 2

Example : A Right Linear Grammar for Identifiers

- S -> a T T -> 1 T
- S -> b T T -> 2 T
- $S \rightarrow a$ $T \rightarrow a$
- S -> b T -> b
- T -> a T T -> 1
- T -> b T T -> 2

- S => a
- S => a T => a 1
- S => a T => a 1 T
 => a 1 b T => a 1 b 2

Example: A Right Linear Grammar for $\{a^n b^m c^p | n, m, p > 0\}$

- A -> a A
- A -> b B
- $B \rightarrow b B$
- B -> c C
- B -> c
- C -> c C
- C -> c

- S => a A => a a A
 - => a a a A
 - => a a a b B
 - => a a a b c C
 - => a a a b c c

Example : A Linear Grammar for { $a^n b^n | n > 0$ }

- S -> a S b
- S -> a b

S => a S b=> a a S b b=> a a a S b b b=> a a a a b b b b

Example : A Linear Grammar for $\{a^n b^m c^m d^n | n > 0\}$ (Context Free Grammar)

- S -> a S b
- S -> a T b
- T -> c T d
- T -> c d

S => a S b=> a a S b b=> a a a T b b b=> a a a c T d b b b

=> a a a c c d d b b b

Another Example : A Context Free Grammar for $\{a^n b^n c^m d^m | n > 0\}$

- S -> R T
- R -> a R b
- R -> a b
- T -> c T d
- T -> c d

S => R T

- = a R b T
- => a a R b b T
- => a a a b b b T
- => a a a b b b c T d
- => a a a b b b c c d d

A Context Free Grammar for Expressions

- $S \rightarrow E$
- $E \rightarrow E + T$
- E -> E T
- E -> T
- T -> T * F
- T -> T / F
- T -> F

F -> (E) F -> a F -> b F -> c F -> c F -> d F -> e • S => E => E + T - => E - T + T - => T - T + T - => F - T + T - => a - T + T - => a - T + T - => a - T * F + T - => a - F * F + T - => a - b * F + T - => a - b * c + T - => a - b * c + F- => a - b * c + F

A Context Sensitive Grammar for $\{a^n b^n c^n | n > 0\}$

- S -> a S B C
- S -> a B C
- a B -> a b
- b B -> b b
- C B -> B C
- b C -> b c
- c C -> c c

- S => a S B C
 - = a a B C B C
 - = a a b C B C
 - = a a b B C C
 - => a a b b C C
 - => a a b b c C
 - => a a b b c c

The Chomsky Hierarchy and the Block Diagram of a Compiler

Automata

- Turing machine (Tm)
- Linear bounded automaton (lba)
- 2-stack pushdown automaton (2pda)
- (1-stack) pushdown automaton (pda)
- 1 turn pushdown automaton
- finite state automaton (fsa)

Recursive Definition

Primitive regular expressions: \emptyset , λ , α Given regular expressions r_1 and r_2

Example
$$(a+b) \cdot a^*$$

$$L((a+b) \cdot a^{*}) = L((a+b)) L(a^{*})$$

= $L(a+b) L(a^{*})$
= $(L(a) \cup L(b)) (L(a))^{*}$
= $(\{a\} \cup \{b\}) (\{a\})^{*}$
= $\{a, b\} \{\lambda, a, aa, aaa, ...\}$
= $\{a, aa, aaa, ..., b, ba, baa, ...\}$

Example $(a+b) \cdot a^*$

$$L((a+b) \cdot a^{*}) = L((a+b)) L(a^{*})$$

= $L(a+b) L(a^{*})$
= $(L(a) \cup L(b)) (L(a))^{*}$
= $(\{a\} \cup \{b\}) (\{a\})^{*}$
= $\{a,b\} \{\lambda,a,aa,aaa,...\}$
= $\{a,aa,aaa,...,b,ba,baa,...\}$

• Regular expression $r = (aa)^*(bb)^*b$

$$L(r) = \{a^{2n}b^{2m}b: n, m \ge 0\}$$

Regular expression r = (0+1) * 00 (0+1) *

L(r) = { all strings with at least two consecutive 0 }

• Regular expression $r = (1+01)*(0+\lambda)$

L(r) = { all strings without two consecutive 0 }

Equivalent Regular Expressions

• Definition:

Regular expressions r_1 and r_2 are equivalent if $L(r_1) = L(r_2)$

 $L = \{ all strings without \\ two consecutive 0 \} \\ r_1 = (1+01) * (0+\lambda)$

 $r_2 = (1*011^*)*(0+\lambda) + 1*(0+\lambda)$

$$L(r_1) = L(r_2) = L \square$$

 r_1 and r_2 are equivalent regular expr.

Linear Grammars

Grammars with at most one variable at the right side of a production

Examples:

$$S \to aSb \qquad S \to Ab$$

$$S \to \lambda \qquad A \to aAb$$

$$A \to \lambda$$

Number of a in string w

Another Linear Grammar

$$L(G) = \{a^n b^n : n \ge 0\}$$

Right-Linear Grammars

• All productions have form: $A \rightarrow xB$ or $A \rightarrow x$ • Example: $S \rightarrow abS$ string of $S \rightarrow a$ terminals

Left-Linear Grammars

All productions have form:

Example: $S \rightarrow Aab$ $A \rightarrow Aab \mid B$ $B \rightarrow a$ string of terminals

 $A \rightarrow Bx$

or

 $A \rightarrow x$

Regular Grammars

A regular grammar is any right-linear or left-linear grammar

Examples: G_1 G_2 $S \rightarrow abS$ $S \rightarrow Aab$ $S \rightarrow a$ $A \rightarrow Aab \mid B$ $B \rightarrow a$

Observation

Regular grammars generate regular languages G_2 Examples: G_1 $S \rightarrow Aab$ $S \rightarrow abS$ $A \rightarrow Aab \mid B$ $S \rightarrow a$ $B \rightarrow a$ $L(G_1) = (ab) * a$ $L(G_2) = aab(ab) *$

Closure under language operations

- Theorem. The set of regular languages is closed under the all the following operations. In other words if L₁ and L₂ are regular, then so is:
 - Union: $L_1 \cup L_2$
 - Intersection: $L_1 \cap L_2$
 - Complement: $L_1^c = \Sigma^* \setminus L_1$
 - Difference: $L_1 \setminus L_2$
 - Concatenation: L₁L₂
 - Kleene star: L₁*
Regular expressions versus regular languages

- We defined a *regular language* to be one that is accepted by some DFA (or NFA).
- We can prove that a language is regular by this definition if and only if it corresponds to some regular expression. Thus,
 - 1) Given a DFA or NFA, there is some regular expression to describe the language it accepts
 - 2) Given a regular expression, we can construct a DFA or NFA to accept the language it represents

Application: Lexical-analyzers and lexical-analyzer generators

- Lexical analyzer:
 - Input: Character string comprising a computer program in some language
 - Output: A string of symbols representing *tokens* elements of that language
- Ex in C++ or Java :
 - Input: if (x == 3) y = 2;
 - Output (sort of): if-token, expression-token, variablename-token, assignment-token, numeric-constant token, statement-separator-token.

Lexical-analyzer generators

- Input: A list of tokens in a programming language, described as regular expressions
- Output: A lexical analyzer for that language
- Technique: Builds an NFA recognizing the language tokens, then converts to DFA.

Regular Expressions: Applications and Limitations

- Regular expressions have many applications:
 - Specification of syntax in programming languages
 - Design of lexical analyzers for compilers
 - Representation of patterns to match in search engines
 - Provide an abstract way to talk about *programming problems* (language correpsonds to inputs that produce output *yes* in a yes/no programming problem)
- Limitations
 - There are lots of reasonable languages that are *not* regular hence lots of programming problems that can't be solved using power of a DFA or NFA

Example A context-free grammar $G: S \rightarrow aSb$ $S \rightarrow \lambda$

A derivation:

 $S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aabb$

$S \to aSb$ $S \to \lambda$

$L(G) = \{a^n b^n : n \ge 0\}$

Describes parentheses: (((())))

Example

A context-free grammar $G: S \to aSa$ $S \to bSb$ $S \to \lambda$

A derivation:

 $S \Rightarrow aSa \Rightarrow abSba \Rightarrow abba$

$L(G) = \{ww^{R}: w \in \{a, b\}^{*}\}$

Example

A context-free grammar $G: S \to aSb$ $S \to SS$ $S \to \lambda$

A derivation:

$S \Rightarrow SS \Rightarrow aSbS \Rightarrow abS \Rightarrow ab$

A context-free grammar $G: S \to aSb$ $S \to SS$ $S \to \lambda$

A derivation:

 $S \Rightarrow SS \Rightarrow aSbS \Rightarrow abS \Rightarrow abaSb \Rightarrow abab$

Definition: Context-Free Languages

G

A language Lis context-free

if and only if there is a

context-free grammar

with L = L(G)

Derivation Order

1. $S \rightarrow AB$ 2. $A \rightarrow aaA$ 4. $B \rightarrow Bb$ 3. $A \rightarrow \lambda$ 5. $B \rightarrow \lambda$ Leftmost derivation: 1 2 3 4 5 $S \Rightarrow AB \Rightarrow aaAB \Rightarrow aaB \Rightarrow aaBb \Rightarrow aab$

Rightmost derivation:

$$1 \qquad 4 \qquad 5 \qquad 2 \qquad 3$$
$$S \Rightarrow AB \Rightarrow ABb \Rightarrow Ab \Rightarrow aab \Rightarrow aab$$

$S \rightarrow aAB$ $A \rightarrow bBb$ $B \rightarrow A \mid \lambda$ Leftmost derivation: $S \Rightarrow aAB \Rightarrow abBbB \Rightarrow abAbB \Rightarrow abbBbbB$ $\Rightarrow abbbb B \Rightarrow abbbb$ **Rightmost** derivation: $S \Rightarrow aAB \Rightarrow aA \Rightarrow abBb \Rightarrow abAb$ $\Rightarrow abbBbb \Rightarrow abbbb$

Sometimes, derivation order doesn't matter Leftmost: $S \Rightarrow AB \Rightarrow aaAB \Rightarrow aaB \Rightarrow aaBb \Rightarrow aab$ Rightmost: $S \Rightarrow AB \Rightarrow ABb \Rightarrow Ab \Rightarrow aaAb \Rightarrow aab$ S Same derivation tree R B aA ba

$E \to E + E \mid E * E \mid (E) \mid a$

a + a * a

$E \rightarrow E + E \mid E * E \mid (E) \mid a$ a + a * a $E \Longrightarrow E * E \Longrightarrow E + E * E \Longrightarrow a + E * E$ E $\Rightarrow a + a * E \Rightarrow a + a * a$ * E leftmost derivation +E a E \mathcal{A}

The grammar $E \rightarrow E + E \mid E * E \mid (E) \mid a$ is ambiguous:

string a + a * a has two derivation trees

A context-free grammar G is ambiguous

if some string $w \in L(G)$ has:

two or more derivation trees

Copyright © 2006 Addison-Wesley. All rights reserved.

In other words:

A context-free grammar G is ambiguous

if some string $w \in L(G)$ has:

two or more leftmost derivations (or rightmost)

Ambiguity is bad for programming languages

• We want to remove ambiguity

$E \Rightarrow E + T \Rightarrow T + T \Rightarrow F + T \Rightarrow a + T \Rightarrow a + T * F$ $\Rightarrow a + F * F \Rightarrow a + a * F \Rightarrow a + a * a$

Unique derivation tree

Copyright © 2006 Addison-Wesley. All rights reserved.

The grammar $G: E \rightarrow E + T$ $E \rightarrow T$ $T \rightarrow T * F$ $T \to F$ $F \rightarrow (E)$ $F \rightarrow a$ is non-ambiguous:

Every string $w \in L(G)$ has a unique derivation tree

Another Ambiguous Grammar

$IF_STMT \rightarrow if EXPR$ then STMT

if EXPR then STMT else STMT

If expr1 then if expr2 then stmt1 else stmt2

- Some context free languages
- have only ambiguous grammars

Example:
$$L = \{a^{n}b^{n}c^{m}\} \cup \{a^{n}b^{m}c^{m}\}\$$

 $S \rightarrow S_{1} \mid S_{2} \qquad S_{1} \rightarrow S_{1}c \mid A \qquad S_{2} \rightarrow aS_{2} \mid B$
 $A \rightarrow aAb \mid \lambda \qquad B \rightarrow bBc \mid \lambda$

The string $a^n b^n c^n$

has two derivation trees

Simplification of Context Free Grammar

A Substitution Rule Equivalent grammar $S \rightarrow aB$ $S \rightarrow aB \mid ab$ $A \rightarrow aaA$ $A \rightarrow aaA$ Substitute $A \rightarrow abBc$ $B \rightarrow b$ $A \rightarrow abBc \mid abbc$ $B \rightarrow aA$ $B \rightarrow aA$ $B \rightarrow b$

Nullable Variables

 λ – production :

Nullable Variable:

 $A \Longrightarrow \ldots \Longrightarrow \lambda$

 $A \rightarrow \lambda$

Removing Nullable Variables

Example Grammar:

 $S \rightarrow aMb$

 $M \rightarrow aMb$

 $M \to \lambda$

Nullable variable

Final Grammar

$$S \rightarrow aMb$$

 $M \rightarrow aMb$
 $M \rightarrow \lambda$
 $M \rightarrow aMb$
 $M \rightarrow aMb$

Unit-Productions

Unit Production: $A \rightarrow B$

(a single variable in both sides)

Removing Unit Productions

Observation:

 $A \rightarrow A$

Is removed immediately

Example Grammar:

Some derivations never terminate...

$S \Rightarrow A \Rightarrow aA \Rightarrow aaA \Rightarrow \dots \Rightarrow aa \dots aA \Rightarrow \dots$

A production $A \rightarrow x$ is useless if any of its variables is useless

Removing Useless Productions

Example Grammar:

$$S \rightarrow aS | A | C$$
$$A \rightarrow a$$
$$B \rightarrow aa$$
$$C \rightarrow aCb$$

First: find all variables that can produce strings with only terminals

Keep only the variables that produce terminal symbols: $\{A, B, S\}$ (the rest variables are useless)

Remove useless productions

 $S \rightarrow aS \mid A$

 $A \rightarrow a$

 $B \rightarrow aa$

 $S \rightarrow aS \mid A \mid \mathcal{K}$

 $A \rightarrow a$

 $B \rightarrow aa$

Second: Find all variables reachable from S

S

R

Keep only the variables reachable from S (the rest variables are useless)

Final Grammar

Remove useless productions

Removing All

- Step 1: Remove Nullable Variables
- Step 2: Remove Unit-Productions
- Step 3: Remove Useless Variables

Each productions has form:

$$S \rightarrow AS$$

$$S \to a$$
$$A \to SA$$

$$A \rightarrow b$$

Chomsky Normal Form

Not Chomsky Normal Form

Convertion to Chomsky Normal Form

Normal Form

Introduce variables for terminals: T_a, T_b, T_c $S \rightarrow ABT_a$ $A \rightarrow T_a T_a T_b$ $S \rightarrow ABa$ $B \rightarrow AT_c$ $A \rightarrow aab$ $T_a \rightarrow a$ $B \rightarrow Ac$ $T_b \rightarrow b$ $T_c \rightarrow c$

Introduce intermediate variable: V_1

 $S \rightarrow ABT_{a}$ $A \rightarrow T_a T_a T_b$ $B \rightarrow AT_c$ $T_a \rightarrow a$ $T_b \rightarrow b$ $T_c \rightarrow c$

 $S \rightarrow AV_1$ $V_1 \rightarrow BT_a$ $A \rightarrow T_a T_a T_b$ $B \rightarrow AT_c$ $T_a \rightarrow a$ $T_b \rightarrow b$ $T_c \rightarrow c$

 V_{2} Introduce intermediate variable: $S \rightarrow AV_1$ $S \rightarrow AV_1$ $V_1 \rightarrow BT_a$ $V_1 \rightarrow BT_a$ $A \rightarrow T_a V_2$ $A \rightarrow T_a T_a T_b$ $V_2 \rightarrow T_a T_b$ $B \rightarrow AT_c$ $B \rightarrow AT_c$ $T_a \rightarrow a$ $T_a \rightarrow a$ $T_b \rightarrow b$ $T_h \rightarrow b$ $T_c \rightarrow c$ $T_c \rightarrow c$

Final grammar in Chomsky Normal Form: $S \rightarrow AV_1$ $V_1 \rightarrow BT_a$ $A \rightarrow T_a V_2$ Initial grammar $V_2 \rightarrow T_a T_b$ $S \rightarrow ABa$ $B \rightarrow AT_c$ $A \rightarrow aab$ $T_a \rightarrow a$ $B \rightarrow Ac$ $T_b \rightarrow b$

 $T_c \rightarrow c$

In general:

From any context-free grammar (which doesn't produce λ) not in Chomsky Normal Form

we can obtain: An equivalent grammar in Chomsky Normal Form

First remove:

Nullable variables

Unit productions

Then, for every symbol a:

Add production $T_a \rightarrow a$

In productions: replace a with T_a

New variable: T_a

Replace any production $A \to C_1 C_2 \cdots C_n$ with $A \to C_1 V_1$ $V_1 \to C_2 V_2$

 $V_{n-2} \to C_{n-1}C_n$

New intermediate variables: $V_1, V_2, ..., V_{n-2}$

Observations

 Chomsky normal forms are good for parsing and proving theorems

 It is very easy to find the Chomsky normal form for any context-free grammar

Examples:

 $S \to cAB$ $A \to aA \mid bB \mid b$ $B \to b$

Greinbach Normal Form $S \to abSb$ $S \to aa$

Not Greinbach Normal Form

Observations

 Greinbach normal forms are very good for parsing

It is hard to find the Greinbach normal form of any context-free grammar

Properties of CFL

Language

Grammar

 $S \rightarrow S_1 \mid S_2$

 $L_1 = \{a^n b^n\} \qquad S_1 \to a S_1 b \mid \lambda$

 $L_2 = \{ww^R\}$ $S_2 \rightarrow aS_2 a | bS_2 b | \lambda$

Union

 $L = \{a^n b^n\} \cup \{w w^R\}$

In general:

For context-free languages L_1 , L_2 with context-free grammars G_1 , G_2 and start variables S_1 , S_2

The grammar of the union $L_1 \cup L_2$ has new start variable Sand additional production $S \rightarrow S_1 \mid S_2$

Language

Grammar

 $S \rightarrow S_1 S_2$

 $L_1 = \{a^n b^n\} \qquad S_1 \to a S_1 b \mid \lambda$

 $L_2 = \{ww^R\}$ $S_2 \rightarrow aS_2 a | bS_2 b | \lambda$

Concatenation

$$L = \{a^n b^n\} \{w w^R\}$$

In general:

For context-free languages L_1 , L_2 with context-free grammars G_1 , G_2 and start variables S_1 , S_2

The grammar of the concatenation L_1L_2 has new start variable Sand additional production $S \rightarrow S_1S_2$

Star Operation

L is context free $\implies L^*$ is context-free

Copyright © 2006 Addison-Wesley. All rights reserved.

1-119

ExampleLanguageGrammar
$$L = \{a^n b^n\}$$
 $S \to aSb \mid \lambda$ Star Operation

 $L = \{a^n b^n\}^*$

 $S_1 \rightarrow SS_1 \mid \lambda$

Copyright © 2006 Addison-Wesley. All rights reserved.

In general:

For context-free language Lwith context-free grammar Gand start variable S

The grammar of the star operation L^* has new start variable S_1 and additional production $S_1 \rightarrow SS_1 \mid \lambda$

$L_1 = \{a^n b^n c^m\}$	$L_2 = \{a^n b^m c^m\}$
Context-free:	Context-free:
$S \rightarrow AC$	$S \rightarrow AB$
$A \to aAb \lambda$	$A \to aA \mid \lambda$
$C \to c C \lambda$	$B \to bBc \mid \lambda$

Intersection

 $L_1 \cap L_2 = \{a^n b^n c^n\}$ **NOT** context-free

 $L_2 = \{a^n b^m c^m\}$ $L_1 = \{a^n b^n c^m\}$ Context-free: Context-free: $S \rightarrow AB$ $S \rightarrow AC$ $A \rightarrow aA \mid \lambda$ $A \rightarrow aAb \mid \lambda$ $C \rightarrow cC \mid \lambda$ $B \rightarrow bBc \mid \lambda$ Complement $L_1 \cup L_2 = L_1 \cap L_2 = \{a^n b^n c^n\}$ **NOT** context-free

Summary

Who is Noam Chomsky Anyway?

- Philosopher of Languages
- Professor of Linguistics at MIT
- Constructed the idea that language was not a learned "behavior", but that it was cognitive and innate; versus stimulusresponse driven
- In an effort to explain these theories, he developed the Chomsky Hierarchy

Chomsky Hierarchy

Language	Grammar	Machine	Example
Regular Language	Regular Grammar • Right-linear grammar • Left-linear grammar	Deterministic or Nondeterministic Finite-state acceptor	a*
Context-free Language	Context-free grammar	Nondeterministic Pushdown automaton	anbn
Context- sensitive	Context-sensitive grammar	Linear-bounded automaton	a ⁿ b ⁿ c ⁿ
Recursively enumerable	Unrestricted grammar	Turing machine	Any computable function

Chomsky Hierarchy

- Comprises four types of languages and their associated grammars and machines.
- Type 3: Regular Languages
- Type 2: Context–Free Languages
- Type 1: Context–Sensitive Languages
- Type 0: Recursively Enumerable Languages
- These languages form a strict hierarchy