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Abstract. Using techniques related to the (C,F )-actions we construct explicitly
mixing rank-one (by cubes) actions T of G = Rd1 ×Zd2 for any pair of non-negative
integers d1, d2. It is also shown that h(Tg) = 0 for each g ∈ G.

0. Introduction

Mixing rank-one transformations (and actions of more general groups) have been
of interest in ergodic theory since 1970 when Ornstein constructed an example of
mixing transformation without square root [Or]. His method was used later as the
core of a number of other remarkable constructions (see [Ru1], [Ru2], [Ho], [Ju],
[Ma], [Pr], [Da3], etc.) Since then the dynamical properties of mixing rank-one
transformations have been deeply investigated. It is now well known that such
transformations are mixing of all orders [Ka], [Ry1] and have minimal self-joinings
of all orders [Ki], [Ry1]. This implies in turn that they are prime and have trivial
centralizer [Ru2]. The results on multiple mixing were extended to rank-one mixing
actions of Rd and Zd [Ry1]–[Ry3] and to rank-one mixing actions of a wide class of
discrete countable Abelian groups having an element of infinite order [JuY].

Despite this progress, not so many concrete examples of rank-one mixing ac-
tions are known. Most of them were obtained via stochastic cutting-and-stacking
techniques using “random spacers”. These include the historically first Ornstein’s
family of mixing Z-actions [Or], and the more recent examples of mixing R-actions
[Pr] and actions of infinite sums of finite groups [Da3], as well as del Junco–Madore
actions of Abelian extensions of Zd by locally finite groups [Ju], [Ma]. The lat-
ter actions were only shown to be weakly mixing but conjectured to be mixing in
[Ma]. While demonstrating the existence of mixing rank-one actions (which is a
non-trivial problem!), these works do not exhibit a specific such transformation or
action. In 1992 Adams and Friedman [AF] gave a non-random algorithm that leads
to a mixing rank-one construction. Using the ideas from that unpublished manu-
script Adams [Ad] proved in 1998 the old conjecture that the classical staircase is
mixing. That gave the first explicit example of mixing cutting-and-stacking trans-
formation. Higher dimensional mixing staircase Zd-actions were later constructed
in [AdS]. We note that the complete proof of the fact that they are mixing was
given there only in dimension d = 2. As one of the consequences of our work, we
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complete the proof for all d > 2 (see Remark 4.12 below). Recently, a more general
family of mixing “polynomial” staircase Z-actions was constructed in [CrS]. An-
other interesting non-random construction appears in a recent work [Fa] devoted
to smooth realizations of mixing rank-one flows on the 3-torus.

Our main purpose here is to construct explicitly a family of mixing rank-one
actions of Rd1 × Zd2 for all non-negative d1 and d2. It seems plausible that Orn-
tein’s stochastic method also can be adapted to produce mixing rank-one actions
of these groups. We note however that our construction is more general and the
‘randomness’ can be incorporated into it (see [CrS] and [Da3] for a detailed discus-
sion on that for Z-actions and actions of infinite sums of finite groups respectively).
Moreover, the main advantage of our approach is that the examples in our family
are ‘absolutely concrete’, i.e., the parameters in the construction are all explicitly
specified—the ‘spacer mappings’ are polynomials with known coefficients.

As a corollary we show that this family includes all the examples of mixing rank-
one Zd-actions constructed previously in [Ad], [AdS] and [CrS]. Our approach is
based on ideas that first appeared in those three works. However, in this paper
we proceed entirely in the framework of (C,F )-actions for locally compact second
countable (l.c.s.c.) Abelian groups, and in fact we develop a large part of the
theory in the more general context of these actions. In particular, we encounter
here some new problems that are specific to higher dimensions and the continuity of
the groups. Recall that the (C,F )-construction of finite measure-preserving actions
of discrete countable amenable groups appeared in [Ju] as an algebraic counterpart
of the “geometrical” cutting-and-stacking method developed for Z-actions. Later it
was used (in a modified form) by the authors in the framework of infinite measure-
preserving and non-singular countable Abelian group actions, as a convenient tool
for modeling examples and counterexamples with various properties of weak mixing
and multiple recurrence (see [Da1], [Da2], [DaS]).

Let G be a non-compact l.c.s.c. Abelian group and T = (Tg)g∈G a measurable
action of G on a standard probability space (X,B, µ).

Definition 0.1. T is said to be mixing if for all subsets A,B ∈ B we have

(0-1) lim
g→∞

µ(TgA ∩B) = µ(A)µ(B).

A sequence gn →∞ in G is called mixing if (0-1) holds along gn as n→∞.

Notice that an action is mixing whenever each sequence converging to infinity in
G contains a mixing subsequence.

Definition 0.2.

(i) A Rokhlin tower or column for T is a triple (Y, f, F ), where Y ∈ B, F is a
relatively compact subset of G and f : Y → F is a measurable mapping such
that for any Borel subset H ⊂ F and an element g ∈ G with g + H ⊂ F ,
one has f−1(g +H) = Tgf

−1(H).
(ii) We say that T is of funny rank-one if there exists a sequence of Rokhlin

towers (Yn, fn, Fn) such that limn→∞ µ(Yn) = 1 and for any subset B ∈ B,
there is a sequence of Borel subsets Hn ⊂ Fn such that

lim
n→∞

µ(B4f−1
n (Hn)) = 0.
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(iii) If G = Rd1 × Zd2 , T is of funny rank-one and, in addition, the subsets Fn
from (ii) are as follows

Fn = {(t1, . . . , td1+t2) ∈ G | 0 ≤ ti < an for all i = 1, . . . , d1 + d2}

for some an ∈ R, n = 1, 2, . . . , then we say that T is of rank-one (or rank-one
by cubes).

It is easy to see that any funny rank-one action is ergodic.
Note that what we call funny rank-one is called rank-one by del Junco and

Yassawi in case G is discrete and countable and G 6= Z [JuY].
The paper is organized as follows. In Section 1 we extend the concept of (C,F )-

action introduced for countable discrete groups (see [Ju], [Da1]) to the class of
l.c.s.c. Abelian ones. It is distinguished a special family of such actions whose mix-
ing properties will be under investigation in subsequent sections. In Section 2 we
introduce a concept of uniformly mixing sequence and prove a fundamental lemma
(Lemma 2.2) linking the uniform mixing along some special sequences with Cesàro
means for the ‘spacer mappings’. Then we find a sufficient condition for the total
ergodicity of the actions under considerations. We also start to check the uniform
mixing property for some special sequences. In particular, we show that if a se-
quence is of ‘moderate growth’ relative to a fixed Følner sequence in G then (under
some extra conditions on G and the action) it is uniformly mixing (Lemma 2.9).
Section 3 is devoted to the actions with restricted growth—the property which was
phrased explicitly in [CrS] for G = Z but used already in [Ad] and [AdS] in an
implicit form. We note that our definition of restricted growth differs from that
introduced in [CrS] (the latter does not extend from Z- to arbitrary l.c.s.c. Abelian
group actions). However they are equivalent for polynomial staircase actions. Theo-
rem 3.5 provides a sufficient condition for the (C,F )-actions with restricted growth
to be mixing. We also included here a couple of statements (Lemmas 3.9–3.11)
facilitating verification of this condition for the Rd1×Zd2-actions to be constructed
in the next section. Section 4 contains the main results of the paper: Theorems 4.9,
4.10, 4.11 and 4.13 which provide families of mixing rank-one actions of Rd with
d > 1, R, Zd and Rd1 × Zd2 respectively. Every such action is determined com-
pletely by a sequence of positive integers (rn)∞n=1 (corresponding to the sequence of
‘cuts’ in the cutting-and-stacking construction) and a sequence (sn)∞n=1 of ‘mono-
tonic’ polynomials of d1 + d2 variables (corresponding to the sequence of ‘spacer’s
maps’ on the n-th step). The sequences are chosen in the following way: (rn)∞n=1 is
any sequence of sub-exponential growth with limn→∞ rn =∞ and (sn)∞n=1 consists
of some specially selected quadratic polynomials from Example 4.2. Moreover, if
d1 6= 1 (and only in this case) then (sn)∞n=1 can be chosen constant. If d1 = 1 then
(sn)∞n=1 can be chosen consisting of two alternating polynomials. Furthermore, us-
ing our techniques plus the Hilbertian van der Corput trick we can also treat a more
complicated case where (sn)∞n=1 consists of polynomials of degree > 2 (see Propo-
sition 4.14). Example 4.15 provides a family of rank-one mixing transformations
including the polynomial staircases from [CrS]. In the final section (Section 5) we
show that the actions constructed in § 4 have ‘very weak’ stochastic properties—the
entropy of any individual transformation from such actions is zero. This fact holds
for any rank-one (by cubes) action. However, it is no longer true for a more general
class of actions of rank-one ‘by rectangles’ (see [Ru1] for a counterexample).
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1. (C,F )-actions of locally compact Abelian groups

In this section we introduce the (C,F )-actions of l.c.s.c. Abelian groups and
specify a subclass of them (see Definitions 1.2 and 1.4). We explain how the classical
cutting-and-stacking transformations are included into this subclass (Remark 1.6).
The aim of the paper is to show that this subclass contains mixing actions.

Let G be a l.c.s.c. Abelian group. Denote by λG a (σ-finite) Haar measure
on it. Given two subsets E,F ⊂ G, by E + F we mean their algebraic sum, i.e.
E + F = {e + f | e ∈ E, f ∈ F}. The algebraic difference E − F is defined in a
similar way. We hope that the reader will not confuse it with the set theoretical
difference E \ F . If E is a singleton, say E = {e}, then we will write e + F for
E + F . If (E − E) ∩ (F − F ) = {0} then E and F are called independent. For an
element g ∈ G and a subset E ⊂ G, we set E(g) = E ∩ (E − g).

To define a (C,F )-action of G we need two sequences (Fn)n≥0 and (Cn)n>0 of
subsets in G such that the following hold

F0 ⊂ F1 ⊂ F2 ⊂ · · · is a Følner sequence in G,(1-1)

Cn is finite and #Cn > 1,(1-2)

Fn + Cn+1 ⊂ Fn+1,(1-3)

Fn and Cn+1 are independent.(1-4)

We put Xn := Fn ×
∏
k>n Ck, endow Xn with the standard product Borel σ-

algebra and define a Borel embedding Xn → Xn+1 by setting

(1-5) (fn, cn+1, cn+2, . . . ) 7→ (fn + cn+1, cn+2, . . . ).

Then we have X1 ⊂ X2 ⊂ · · · . Hence X :=
⋃
nXn endowed with the natural Borel

σ-algebra, say B, is a standard Borel space. Given a Borel subset A ⊂ Fn, we
denote the set

{x ∈ X | x = (fn, cn+1, cn+2 . . . ) ∈ Xn and fn ∈ A}
by [A]n and call it an n-cylinder. It is clear that the σ-algebra B is generated by
the family of all cylinders.

Now we are going to define a measure on (X,B). Let κn stand for the equidis-
tribution on Cn and νn := (#C1 · · ·#Cn)−1λG � Fn on Fn. We define an infinite
product measure µn on Xn by setting

µn = νn × κn+1 × κn+2 × · · · ,
n ∈ N. Then the embeddings (1-5) are all measure preserving. Hence a σ-finite
measure µ on X is well defined by the restrictions µ � Xn = µn, n ∈ N. To put it
in other way, (X,µ) = inj limn(Xn, µn). Since

µn+1(Xn+1) =
νn+1(Fn+1)

νn+1(Fn + Cn+1)
µn(Xn) =

λG(Fn+1)
λG(Fn)#Cn+1

µn(Xn),

it follows that µ is finite if and only if

(1-6)
∞∏
n=0

λG(Fn+1)
λG(Fn)#Cn+1

<∞, i.e.
∞∑
n=0

λG(Fn+1 \ (Fn + Cn+1))
λG(Fn)#Cn+1

<∞.
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For the rest of the paper we will assume that (1-6) is satisfied. Moreover, we choose
(i.e. normalize) λG in such a way that µ(X) = 1.

To construct a measure-preserving action of G on (X,µ), we fix a filtration
K1 ⊂ K2 ⊂ · · · of G by compact subsets. Thus

⋃∞
m=1Km = G. Given n,m ∈ N,

we set

D(n)
m := ((Fn −Km) ∩ Fn)×

∏

k>n

Ck ⊂ Xn and

R(n)
m := ((Fn +Km) ∩ Fn)×

∏

k>n

Ck ⊂ Xn.

It is easy to verify that

D
(n)
m+1 ⊂ D(n)

m ⊂ D(n+1)
m and R

(n)
m+1 ⊂ R(n)

m ⊂ R(n+1)
m .

We define a Borel mapping

Km ×D(n)
m 3 (g, x) 7→ T (n)

m,gx ∈ R(n)
m

by setting for x = (fn, cn+1, cn+2, . . . ),

T (n)
m,g(fn, cn+1, cn+2 . . . ) := (g + fn, cn+1, cn+2, . . . ).

Now let Dm :=
⋃∞
n=1D

(n)
m and Rm :=

⋃∞
n=1R

(n)
m . Then a Borel mapping

Km ×Dm 3 (g, x) 7→ Tm,gx ∈ Rm

is well defined by the restrictions Tm,g � D(n)
m = T

(n)
m,g for g ∈ Km and n ≥ 1. It

is easy to see that Dm ⊃ Dm+1, Rm ⊃ Rm+1 and Tm,g � Dm+1 = Tm+1,g for all
m. It follows from (1-1) that µn(D(n)

m ) → 1 and µn(R(n)
m ) → 1 as n → ∞. Hence

µ(Dm) = µ(Rm) = 1 for all m ∈ N. Finally we set X̂ :=
⋂∞
m=1Dm ∩

⋂∞
m=1Rm

and define a Borel mapping

T : G× X̂ 3 (g, x)→ Tgx ∈ X̂

by setting Tgx := Tm,gx for some (and hence any) m such that g ∈ Km. It is clear
that µ(X̂) = 1.

Proposition 1.1. T = (Tg)g∈G is a free Borel measure preserving action of G on
a conull subset of the standard probability space (X,B, µ). It is of funny rank-one.

Proof. It suffices to verify only the latter claim. According to Definition 0.2 we
have to find a sequence of Rokhlin towers ‘appoximating’ the dynamical system.
Let sn denote the projection of Xn = Fn ×Cn+1 × · · · onto the first coordinate. It
is easy to see that the sequence (Xn, sn, Fn) is as desired. �

Throughout the paper we will not distinguish between two measurable sets (or
mappings) which agree almost everywhere. It is easy to see that T does not depend
on the choice of filtration (Km)∞m=1.
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Definition 1.2. T is called the (C,F )-action of G associated with (Cn, Fn)n.

We will often use the following simple properties of (X,µ, T ): for Borel subsets
A,B ⊂ Fn,

[A ∩B]n = [A]n ∩ [B]n,(1-7)

[A]n = [A+ Cn+1]n+1 =
⊔

c∈Cn+1

[A+ c]n+1,(1-8)

Tg[A]n = [A+ g]n if A+ g ⊂ Fn,(1-9)

µ([A]n) = #Cn+1 · µ([A+ c]n+1) for every c ∈ Cn+1,(1-10)

µ([A]n) ≤ λG(A)
λG(Fn)

,(1-11)

where the sign t means the union of mutually disjoint sets.
Recall that an action T of G on (X,B, µ) is partially rigid if there exists δ > 0

with
lim inf
g→∞

µ(TgB ∩B) ≥ δµ(B) for all B ∈ B.

It is clear that partial rigidity is incompatible with the mixing. For the (C,F )-
actions, there is a simple condition that implies the rigidity.

Proposition 1.3. If lim infn→∞#Cn < ∞ then T is partially rigid and hence is
not mixing.

Proof. Let ni < n2 < · · · be a sequence of indices with #Cn1 = #Cn2 = · · · . Select
ci 6= c′i in Ci and set gi := ci − c′i. Then gi /∈ Fni − Fni by (1-4). On the other
hand, it follows from (1-1) that

⋃∞
i=1(Fni − Fni) = G. Hence gi → ∞ as i → ∞.

Take a cylinder B ∈ B. We can represent it eventually (i.e. for all large enough i)
as B = [Bi]ni , where Bi is a Borel subset of Fni . If follows from (1-7)—(1-10) that

µ(TgiB ∩B) = µ(Tgi [Bi−1 + Cni ]ni ∩ [Bi−1 + Cni ]ni)

≥ µ(Tgi [Bi−1 + c′i]ni ∩ [Bi−1 + ci]ni)

= µ([Bi−1 + ci]ni) =
1

#Cni
µ([Bi−1]ni−1)

=
1

#Cn1

µ(B).

Since the cylinders generate a dense subalgebra in B, we are done. �
Now we isolate a special subfamily of (C,F )-actions to show in the sequel that

it contains mixing actions.
Let H be a discrete countable group, and let φn, sn and cn+1 be three mappings

from H to G such that φn is a homomorphism, sn(0) = 0 and cn+1 := φn + sn,
n ∈ N. Suppose that

(Hn)n≥0 is a Følner sequence in H, 0 ∈ Hn and(1-12)

φn(H) is a lattice in G.(1-13)

Now we define Fn ⊂ G to be a Borel fundamental domain for φn(H) (i.e. a subset
which meets every φn(H)-coset exactly once) and put Cn+1 := cn+1(Hn), n ≥ 0.
Assume that (1-1)–(1-4) are all satisfied.
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Definition 1.4. We call the corresponding (C,F )-action T of G on the probability
space (X,B, µ) the action associated with (Hn, φn, sn, Fn)n.

In view of Proposition 1.3, we will always assume that limn→∞#Hn =∞.
Notice also that if sn are all trivial, i.e. sn(h) = 0 for all h ∈ Hn then the

action of G associated with (Hn, φn, sn, Fn) has pure point spectrum with rational
eigenvalues only. This simple fact will not be used in this paper. We leave its proof
to the reader.

In the statements of our main results here it will be assumed that the mappings
sn are polynomials of degree > 1.

Definition 1.5 [Le]. For any h ∈ H, the h-derivative of s is a mapping ∂hs :
H → G given by ∂hs(k) = s(k + h) − s(k). Let d be a nonnegative integer. Then
s is called a polynomial of degree ≤ d if for any h1, . . . , hd+1 ∈ H \ {0}, we have
∂h1 · · · ∂hd+1s = 0. The minimal d with this property is called the degree of s.

It is easy to see that every polynomial of degree 0 is constant. As was shown
in [Le], a polynomial of degree one is a non-constant affine mapping (i.e. a ho-
momorphism plus a constant). A polynomial from Zd to Rl is an l-tuple of usual
polynomials in d variables with real coefficients. A polynomial from Zd to Zl is
an l-tuple (p1, . . . , pl) of usual polynomials in d variables with rational coefficients
such that pi(Zd) ⊂ Z for all i = 1, . . . , l.

Remark 1.6. Here we are going to explain how the (C,F )-construction for Z-actions
is related to the classical cutting-and-stacking construction. Recall that the latter
one defines ergodic measure-preserving transformations on intervals in R (or on
[a,+∞)) furnished with Lebesgue measure via an inductive procedure. A column
is an ordered collection of intervals, called levels, of the same length. The number of
levels is called the height of the column. The associated column mapping is defined
by translation of each level to the level above it (i.e. next in the order). Hence
the column mapping is defined from all but the top level onto all but the bottom
level. Suppose now that we are given a sequence (rn)∞n=1 of positive integers and
a sequence of arrays of non-negative integers (σn(j), j = 0, 1, . . . , rn − 1)∞n=1. Then
we define inductively a sequence of columns as follows. Let the initial column Y0

consists of one level of length 1. Suppose that on the n-th step we have a column
Yn consisting of levels I(i, n), 0 ≤ i < an. Cut every I(i, n) into rn sublevels
Ik(i, n), 0 ≤ k < rn, numbered from left to right. Then we obtain rn subcolumns
Yn,k := {Ik(i, n) | i = 0, . . . , an − 1}, 0 ≤ k < rn, of Yn of the same height. Now
place σn(k) spacers (i.e. the intervals of the same length as Ik(i, n)) above Yn,k and
stack the resulting subcolumns with spacers right to the top of left. This yields a
new column Yn+1 of height an+1 = anrn +

∑rn−1
k=0 σn(k) and a natural inclusion

of Yn into Yn+1. Notice that the associated (n + 1)-column mapping restricted
to Yn coincides with the n-th column mapping. Hence the associated sequence of
column mappings approaches a transformation defined on all but a measure zero
subset of the union of the initial level and the spacers added at each column. It is
easy to see that this transformation corresponds exactly to the (C,F )-action of Z
associated with (Hn, φn, sn, Fn)n if we put Hn := {0, 1, . . . , rn − 1}, φn(t) := ant,
sn(t) :=

∑t
k=0 σn(k) and Fn = {0, 1, . . . , an − 1}. If we set σn(k) = k for all

0 ≤ k < rn and n ∈ N then the corresponding cutting-and-stacking transformation
is called a staircase. If, moreover, rn = n for all n ∈ N, we obtain the classical
staircase which is finite measure-preserving. In case the sequence (σn)∞n=1 consists
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of polynomials, the corresponding transformations are called polynomial staircases
[CrS].

2. Uniformly mixing sequences

For the remaining of the paper (X,B, µ, T ) will stand for the (C,F )-action of G
associated to a sequence (Hn, φn, sn, Fn)n.

In this section we prove a fundamental Lemma 2.2 and use it to show that some
special sequences in G are uniformly mixing. As an auxiliary result for that we
exhibit a sufficient condition for the total ergodicity of T . A connection between
the uniform mixing and total ergodicity is established in Corollary 2.6.

Definition 2.1. A sequence (gn)∞n=1 of elements from G is called uniformly mixing
for T if

(2-1) sup
A⊂Fn

|µ(Tgn [A]n ∩B)− µ([A]n)µ(B)| → 0 as n→∞

for every subset B ∈ B.

It is easy to see that if a sequence is uniformly mixing then it is mixing.
Notice that a somewhat different definition for uniform mixing was given in [CrS]

in case G = Z. To state it precisely we assume that the sequence (Hn, φn, sn, Fn)n
is chosen as described in Remark 1.6. Then a sequence of positive integers (gn)∞n=1

was called uniformly mixing in [CrS] if

∑

f∈Fpn
|µ(Tgn [f ]pn ∩B)− µ([f ]pn)µ(B)| → 0

for every subset B ∈ B, where pn is the unique positive integer such that apn ≤
gn < apn+1. We only observe that this implies the uniform mixing in the sense of
Definition 2.1 if pn ≥ n for all n.

Let L be a finite set and a : L → G a mapping. We define a linear operator
Ma,L in L2(X,µ) by setting

Ma,L(f) :=
1

#L

∑

l∈L
f ◦ Ta(l).

Let P0 stand for the projection onto the subspace of constant functions, i.e. P0(f) =∫
X
f dµ. The inner product in L2(X,µ) will be denoted by 〈·, ·〉.
Fix a sequence (hn)n≥1 of elements from H. For brevity, we will denote ∂hnsn

by s′n, n ∈ N.

Lemma 2.2. If the following conditions are satisfied

#Hn(hn)
#Hn

→ 1,(2-2)

1
#Hn

∑

h∈Hn(hn)

λG(Fn \ Fn(s′n(h)))
λG(Fn)

→ 0(2-3)

8



then for all n-cylinders A,B ⊂ X, we have

µ(Tφn(hn)A ∩B) =
1

#Hn

∑

h∈Hn(hn)

µ(A ∩ Ts′n(h)B) + o(1)

= 〈χA,Ms′n,Hn(hn)(χB)〉+ o(1),

where χA and χB are the indicators of A and B respectively and o(1) denotes a
sequence that tends to 0 and that does not depend on A and B. The same formula
holds as well for

(i) an arbitrary subset B ∈ B and A as above with o(1) depending on B only
and

(ii) arbitrary subsets A,B ∈ B with o(1) depending on both A and B.

Proof. Let An and Bn be the Borel subsets of Fn such that A = [An]n and B =
[Bn]n. For h ∈ Hn(hn), we put An,h := An ∩ Fn(−s′n(h)). Then

(2-4) An,h − s′n(h) ⊂ Fn.

We also make a simple but important observation that

(2-5)

φn(hn) + cn+1(h) = φn(hn) + φn(h) + sn(h)

= φn(h+ hn) + sn(h+ hn)− s′n(h)

= cn+1(h+ hn)− s′n(h).

It follows from (1-8), (1-9), (2-4), (1-3), (2-5) and (1-10) that

µ(Tφn(hn)A ∩B) =
∑

h∈Hn
µ(Tφn(hn)[An + cn+1(h)]n+1 ∩ [Bn]n)

=
∑

h∈Hn(hn)

(
µ(Tφn(hn)[An,h + cn+1(h)]n+1 ∩ [Bn]n)

± µ([(An \An,h) + cn+1(h)]n+1)
)

±
∑

h∈Hn\Hn(hn)

µ([Fn + cn+1(h)]n+1)

=
∑

h∈Hn(hn)

(
µ([An,h − s′n(h) + cn+1(h+ hn)]n+1 ∩ [Bn]n)

± 1
#Hn

µ([An \An,h]n)
)
±
(

1− #Hn(hn)
#Hn

)
.

Notice that for all c ∈ Cn+1 and h ∈ Hn(hn), we have by (1-7), (1-8) and (1-11),

[An,h − s′n(h) + c]n+1 ∩ [Bn]n = [((An,h − s′n(h)) ∩Bn) + c]n+1 and(2-6)

µ([(An \An,h)]n) ≤ λG(An \An,h)
λG(Fn)

≤ λG(Fn \ Fn(s′n(h)))
λG(Fn)

.(2-7)
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Hence it follows from (1-10), (2-2), (2-3), (2-6) and (2-7) that

µ(Tφn(hn)A ∩B) =
1

#Hn

∑

h∈Hn(hn)

µ([(An,h − s′n(h)) ∩Bn]n) + o(1).

Applying (1-7), (1-9) and (2-4) we obtain

µ(Tφn(hn)A ∩B) =
1

#Hn

∑

h∈Hn(hn)

µ(T−s′n(h)[An,h]n ∩ [Bn]n) + o(1)

=
1

#Hn

∑

h∈Hn(hn)

(µ(A ∩ Ts′n(h)B)± µ([An \An,h]n)) + o(1).

It remains to make use of (2-7), (2-3) and (2-2).
The final claim of Lemma 2.2 follows from the fact that the cylinders generate

a dense subalgebra in B. �

Corollary 2.3. Let (2-2) and (2-3) hold. Then the following are satisfied:

(i) The sequence (φn(hn))∞n=1 is mixing for T if and only if Ms′n,Hn(hn) → P0

in the weak operator topology.
(ii) If Ms′n,Hn(hn) → P0 in the strong operator topology then (φn(hn))∞n=1 is

uniformly mixing.

We now examine when T is totally ergodic. Recall some standard definitions.

Definition 2.4.

(i) Given a subset B ∈ B, we denote by GB the stabilizer of B, i.e. GB :=
{g ∈ G | TgB = B}.

(ii) T is called totally ergodic if for any co-compact subgroup K ⊂ G, the action
(Tg)g∈K is ergodic.

(iii) T is called weakly mixing if the diagonal action (Tg × Tg)g∈G of G is er-
godic. Equivalently, if there exist a function f ∈ L2(X,µ) and a continuous
character χ of G such that f ◦ Tg = χ(g)f a.e. then f is constant.

It is easy to see that T is totally ergodic if and only if the stabilizer of any subset
B ∈ B with 0 < µ(B) < 1 is not co-compact. Moreover, if an action is weakly
mixing then it is totally ergodic. The converse is true for G = R but it does not
hold for general groups.

Proposition 2.5. Let (2-2) and (2-3) hold. Let K be a co-compact subgroup of G
and π : G → G/K stand for the corresponding quotient map. Denote by κn the
image of the equidistributed probability on Hn(hn) under the mapping (π ◦ s′n)∗,
n ∈ N. If κn does not ∗-weakly converge to a Dirac δ-measure on G/K then K is
not the stabilizer of any measurable subset B ∈ B with 0 < µ(B) < 1.

Proof. Suppose that the contrary holds, i.e. there exists B ∈ B with 0 < µ(B) < 1
and K = GB . Then the quotient compact group G/K acts naturally on the sub-σ-
algebra F of (Tg)g∈K-invariant subsets. Denote this action by T̂ . Then T̂π(g)A :=
TgA for all g ∈ G and A ∈ F. It is clear that T̂ is free. We set an := π(φn(hn)).

10



Passing to a subsequence, if necessary, we may assume without loss of generality
that an converges to some a ∈ G. Then µ(T̂anB4T̂aB)→ 0 as n→∞. Hence

µ(B) = µ(Tφn(hn)B) = µ(Tφn(hn)B ∩ T̂anB) = µ(Tφn(h)B ∩ T̂aB) + o(1).

We then deduce from this formula and Lemma 2.2(ii) that

(2-8)

µ(B) =
1

#Hn

∑

h∈Hn(hn)

µ(B ∩ Ts′n(h)T̂aB) + o(1)

=
1

#Hn(hn)

∑

h∈Hn(hn)

µ(T̂π(s′n(h))+aB ∩B) + o(1)

=
∫

G/K

µ(T̂a+bB ∩B) dκn(b) + o(1).

Since G/K is compact, we may assume (passing to a subsequence, if necessary)
that κn converges ∗-weakly to a probability κ which is not a Dirac δ-measure by
the condition of the proposition. Hence passing to a limit in (2-8) we obtain

µ(B) =
∫

G/H

µ(T̂a+bB ∩B) dκ(b)

Hence µ(B) = µ(T̂a+bB ∩B), i.e. B = T̂a+bB, for κ-a.a. b ∈ G/K. Since T̂ is free,
we deduce that Suppκ = {−a}. Hence Suppκ is a singleton, a contradiction. �

Now we are interested in the following particular case. There exist a non-zero
k ∈ H and a polynomial s : H → G of degree 2 such that hn = k and sn = s for
all n ∈ N. Then, of course, (2-2) is satisfied. Moreover, for any non-zero t ∈ H, we
have

∂ts(h) = ψt(h) + at, at all h ∈ H
for some nontrivial homomorphism ψt : H → G and an element at ∈ G (see the
text following Definition 1.5). Hence s′n(h) = ψk(h) + ak for all h ∈ H and n ∈ N.

Corollary 2.6. Let the above assumptions and (2-3) hold. Then the following are
satisfied:

(i) If the action (Tψk(h))h∈H is ergodic then the sequence (φn(k))∞n=1 is uni-
formly mixing.

(ii) If the subgroup generated by
⋃
t∈H ψt(H) is dense in G then T is totally

ergodic.
(iii) If the subgroup generated by

⋃
t∈H ψt(H) is dense in G and ψk(H) is a

lattice in G then the sequence (φn(k))∞n=1 is uniformly mixing.

Proof. (i) follows from Corollary 2.3 and the von Neumann mean ergodic theorem
for (Tψk(h))h∈H .

(ii) Suppose that the contrary holds, i.e. there exists a co-compact subgroup
K ⊂ G and a subset B ⊂ X such that 0 < µ(B) < 1 and K = GB . Fix t ∈ H,
t 6= 0. Then κn is the translation of (π ◦ ψt)∗νn by π(at), where νn stands for
the equidistribution on Hn(k), n ∈ N. Denote by Gt the closure of the subgroup
(π ◦ψt)(H) in G/K. Since Hn(k) is a Følner sequence in H and π ◦ψt : H → G/K

11



is a homomorphism, it is easy to verify that (π ◦ ψt)∗νn converges ∗-weakly to
the Haar measure λGt which is considered now as a measure on G/K supported
on Gt. It follows from Proposition 2.5 that SuppλGt is a singleton, i.e. Gt = K.
However we deduce from the condition of the corollary that the subgroup generated
by
⋃
t∈H Gt is dense in G/K. Hence K = G which contradicts to the ergodicity of

T .
(iii) follows directly from (i) and (ii). �

Remark 2.7. We will also need the following slight extension of Corollary 2.6 which
is proved in a similar way. Assume that (2-3) holds for a constant sequence hn =
k 6= 0. Let S be a finite family of polynomials from H to G of degree 2. For all
s ∈ S and t ∈ H, we then have

∂ts(h) = ψst (h) + ast , h ∈ H,
where ψst : H → G is a homomorphism and ast is an element of G. Let (sn)∞n=1 be a
sequence of elements of S such that every element of S occurs in (sn)∞n=1 infinitely
many times. Denote by T the (C,F )-action associated with (Hn, φn, sn, Fn)n. Then
the following are satisfied.

(i) If the action (Tψsk(h))h∈H is ergodic for any s ∈ S then the sequence
(φn(k))∞n=1 is uniformly mixing.

(ii) If the subgroup generated by
⋃
s∈S

⋃
t∈H ψ

s
t (H) is dense in G then T is

totally ergodic.
(iii) If the subgroup generated by

⋃
s∈S

⋃
t∈H ψ

s
t (H) is dense in G and ψsk(H) is

a lattice in G for all s ∈ S then (φn(k))∞n=1 is uniformly mixing.
Now we return to the general case and prove two lemmas.

Lemma 2.8. Suppose that there exists a finite subset Q ⊂ H such that
(2-9) Fn + Fn ⊂ φn(Q) + Fn, for all n ∈ N.
Let gn = φn(k)+fn for some k ∈ H and fn ∈ Fn, n ∈ N. If the sequence (φn(t))∞n=1

is uniformly mixing for every t ∈ k +Q then so is the sequence (gn)∞n=1.

Proof. Since fn + Fn ⊂ φn(Q) + Fn and Fn is a fundamental domain for φn(H), a
finite partition of Fn is well defined as follows: Fn =

⊔
q∈Q Fn(fn−φn(q)). Now let

A be an n-cylinder in X and A = [An]n for some Borel subset An ⊂ Fn. Consider
the induced partition

⊔
q∈QAn,q of An, where An,q := An ∩ F (fn − φn(q)). Then

by (1-9),
Tgn [An,q]n = Tφn(k+q)Tfn−φn(q)[An,q]n = Tφn(k+q)[fn − φn(q) +Aq]n.

Hence for any subset B ∈ B,

µ(TgnA ∩B)− µ(A)µ(B) =
∑

q∈Q
(µ(Tφn(k+q)[An,q]n ∩B)− µ([An,q]n ∩B)).

It remains to use the uniform mixing of (φn(t))∞n=1, t ∈ k +Q. �
Suppose that—in addition to (2-9)—there is a finite subset Q− ⊂ H such that

(2-10) −Fn ⊂ φn(Q−) + Fn for all n ∈ N.
For a subset A ⊂ G, let A• stand for the difference A − A. Then there exists a
finite subset Q+ ⊂ H such that

(F •n + F •n) \ F •n ⊂ φn(Q+) + Fn for all n ∈ N.
We will assume that Q+ is the minimal subset with this property. It is clear that
0 /∈ Q+.
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Lemma 2.9. Let (2-9) and (2-10) hold and let for any t ∈ H \ {0}, the sequence
(φn(t))∞n=1 be uniformly mixing. Take gn ∈ (F •n + F •n) \ F •n for all n ∈ N. If for an
integer l > 0, we have

−lQ+ ∩ (Q+ · · ·+Q︸ ︷︷ ︸
l times

) = ∅

then the sequence (lgn)∞n=1 is uniformly mixing.

Proof. Since Q+ is finite, we can partition the sequence gn into finitely many sub-
sequences of the form φn(q) + fn for some fn ∈ Fn, n ∈ N, and a fixed q ∈ Q+.
Therefore it is enough to assume that gn itself enjoys this property. Then condition
(2-9) applied l − 1 times yields

lgn = φn(lq) + fn + · · ·+ fn︸ ︷︷ ︸
l times

= φn(lq) + φn(q1 + · · ·+ ql−1) + f̃n

for some q1, . . . , ql−1 ∈ Q and f̃n ∈ Fn. Since 0 /∈ lq + q1 + · · · + ql−1 + Q by the
condition of the lemma, we may apply Lemma 2.8 to complete the proof. �

3. Restricted growth condition

In this section we introduce a restricted growth condition for the (C,F )-actions
specified in Section 2. It is an analogue of a concept considered in [CrS] for G = Z.
The concept, in turn, is a counterpart of a sufficient condition introduced in [Ad]
for a staircase to be mixing. The main result here is Theorem 3.5, which pro-
vides a sufficient condition for mixing in the class of (C,F )-actions with restricted
growth. We conclude the section with some technical statements needed to verify
this condition for some special Rd1 × Zd2 -actions that will be constructed in the
next section.

Definition 3.1. We say that T satisfies the restricted growth condition if (2-3)
holds for any sequence hn ∈ H such that there exists limn→∞#Hn(hn)/#Hn > 0.

Definition 3.2. Given two sequences An, Bn ⊂ G, we write An ∼n Bn if

λG(An4Bn)
λG(Fn)

→ 0 as n→∞.

It follows from (1-11) that µ([An]n4[Bn]n) → 0 whenever An ∼n Bn and
An, Bn ⊂ Fn.

Lemma 3.3. Suppose that (2-9) and the following hold

(3-1)
1

#Hn

∑

h∈Hn

λG(Fn \ Fn(sn(h)))
λG(Fn)

→ 0 as n→∞.

Let gn := φn(hn) + fn for some hn ∈ H and fn ∈ Fn, n ∈ N. Then

Fn+1(gn) ∼n+1

⊔

h∈Hn(hn)

(cn+1(h) + Fn).
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Proof. Since

λG

(
Fn+14

⊔

h∈Hn
(φn(h) + Fn)

)
≤ λG(Fn+1 \ (Fn + Cn+1))

+
∑

h∈Hn
λG((cn+1(h) + Fn)4(φn(h) + Fn))

= λG(Fn+1 \ (Fn + Cn+1)) +
∑

h∈Hn
λG((sn(h) + Fn)4Fn),

it follows from (3-1) and (1-6) that Fn+1 ∼n+1 (φn(Hn) + Fn). For q ∈ Q, we set
Fn,q := Fn(fn − φn(q)) and F ′n,q := Fn(−fn + φn(q)). Then (2-9) yields

(3-2) Fn =
⊔

q∈Q
Fn,q =

⊔

q∈Q
F ′n,q.

It follows that

Fn+1 − gn ∼n+1

⊔

h∈Hn

⊔

q∈Q
(φn(h)− φn(hn)− fn + F ′n,q)

=
⊔

q∈Q

⊔

h∈Hn
(φn(h− hn − q) + Fn,q).

Therefore

(3-3) Fn+1 ∩ (Fn+1 − gn) ∼n+1

⊔

q∈Q

⊔

h∈Hn(hn+q)

(φn(h) + Fn,q).

Next, since λG(Fn+1) ≥ #HnλG(Fn) and

λG(
⊔
q∈Q

⊔
h∈Hn(hn+q)4Hn(hn)(φn(h) + Fn,q))

λG(Fn+1)

≤
∑
q∈Q #(Hn(hn + q)4Hn(hn))λG(Fn,q)

#HnλG(Fn)

≤
∑

q∈Q

#(Hn(hn + q)4Hn(hn))
#Hn

→ 0,

it follows from (3-3) and (3-2) that

Fn+1(gn) ∼n+1

⊔

q∈Q

⊔

h∈Hn(hn)

(φn(h) + Fn,q) =
⊔

h∈Hn(hn)

(φn(h) + Fn).

It remains to use (3-1) once more to conclude that

⊔

h∈Hn(hn)

(φn(h) + Fn) ∼n+1

⊔

h∈Hn(hn)

(cn+1(h) + Fn).

�
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Corollary 3.4. If (2-9) and (3-1) are satisfied then

(A+ Cn+1) ∩ Fn+1(gn) ∼n+1 A+ cn+1(Hn(hn))

uniformly in A ⊂ Fn. Hence

sup
A⊂Fn

µ(([An]n ∩ [Fn+1(gn)]n+1)4[An + cn+1(Hn(hn))]n+1) = o(1).

Now we are going to prove the main result of the section.

Theorem 3.5. Let T be a (C,F )-action associated with (Hn, φn, sn, Fn)n and sat-
isfying (2-9), (2-10) and the restricted growth condition. If Ms′n,Hn(hn) → P0

strongly for any sequence hn ∈ H \ {0} such that lim infn→∞#Hn(hn)/#Hn > 0
then T is mixing. (Here s′n stands for the hn-derivative of sn.)

Proof. Take any sequence gn →∞ in G. We are going to prove that it contains a
mixing subsequence. Since F •1 ⊂ F •2 ⊂ · · · and

⋃∞
n=1 F

•
n = G, we can find pn such

that gn ∈ F •pn+1 \ F •pn for all n ∈ N. It is clear that pn →∞ in G. Notice that

F •n+1 + Fn+1 ⊂ φn+1(Q+Q+Q−) + Fn+1.

Then using a similar idea as in the proof of Lemma 2.8, we partition Fpn+1 as
follows

Fpn+1 =
⊔

q∈Q+Q+Q−

Fpn+1(gn − φpn+1(q)).

Take two pn-cylinders A,B ⊂ X. Let Am and Bm be the Borel subsets of Fm such
that A = [Am]m and B = [Bm]m for all m ≥ pn. For q ∈ Q + Q + Q−, we put
Apn+1,q := Apn+1 ∩ Fpn+1(gn − φpn(q)). We have now

(3-4) Tgn [Apn+1,q]pn+1 = Tφpn+1(q)[Apn+1,q + gn − φpn+1(q)]pn+1

and Apn+1 =
⊔
q∈Q+Q+Q− Apn+1,q. For any q ∈ Q+Q+Q−, the constant sequence

hn := q, n ∈ N satisfies (2-2). Moreover, it satisfies (2-3) since T has restricted
growth (we need this to apply Corollary 2.3 later). By the condition of the theorem,
M∂qsn,Hn(q) → P0 strongly whenever q 6= 0. Therefore by Corollary 2.3(ii), the
sequence (φn(q))∞n=1 is uniformly mixing. Then it follows from (3-4) that

(3-5) sup
A is a pn-cylinder

|µ(Tgn [Apn+1,q]pn+1 ∩B)− µ([Apn+1,q]pn+1)µ(B)| → 0

for every q ∈ (Q+Q+Q−) \ {0}.
It remains to consider the case q = 0 which is more involved. Let us represent

gn as gn = φpn(hn) + fn for some (uniquely determined) hn ∈ H and fn ∈ Fpn .
Notice that hn 6= 0 because of gn /∈ F •n . Since Apn+1,0 = Apn+1 ∩ Fpn+1(gn) and
the restricted growth condition implies (3-1), it follows from Corollary 3.4 that

(3-6) sup
A in a pn-cylinder

∣∣∣∣µ([Apn+1,0]pn+1)− µ(A)
#Hpn(hn)

#Hpn

∣∣∣∣ = o(1).
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Hence, if lim infn→∞#Hpn(hn)/#Hpn = 0,

lim inf
n→∞

sup
A in a pn-cylinder

µ([Apn+1,0]pn+1) = 0.

Therefore passing to a subsequence in (pn)∞n=1 we conclude that (3-5) is also true for
q = 0. This implies that the corresponding subsequence of (gn)∞n=1 is mixing. Thus
from now on we may assume that lim infn→∞#Hpn(hn)/#Hpn > 0. It follows
from Corollary 3.4 that

µ(Tφpn (hn)[Apn+1,0]pn+1∩B) = µ(Tφpn (hn)[Apn + cpn+1(Hpn(hn))]pn+1∩B) + o(1),

where o(1) does not depend on the pn-cylinders A and B. Using that together
with the restricted growth condition and arguing almost literally as in the proof of
Lemma 2.2 we obtain

µ(Tφpn (hn)[Apn+1,0]pn+1 ∩B) =
1

#Hpn

∑

h∈Hpn (hn)

µ(T−s′n(h)[Apn ]pn ∩B) + o(1)

=
#Hpn(hn)

#Hpn

〈χA,Ms′n,Hpn (hn)(χB)〉+ o(1),

where s′n is the hpn-derivative of sn and o(1) does not depend on A and B. It is
easy to find a sequence (ĥn)∞n=1 with lim infn→∞#Hn(ĥn)/#Hn > 0, ĥn 6= 0 and
ĥpn = hn for all n ∈ N. Let ŝ′n denote the ĥn-derivative of sn. Then s′n = ŝ′pn . By
the condition of the theorem,Mbs′n,Hn(bhn) → P0 strongly. HenceMs′n,Hpn (hn) → P0

strongly. Therefore we deduce from the above and (3-6) that

(3-7)
µ(Tφpn (hn)[Apn+1,0]pn+1 ∩B) =

#Hpn(hn)
#Hpn

· µ(A)µ(B) + o(1)

= µ([An+1,0]pn+1)µ(B) + o(1),

where o(1) does not depend on A. To complete the proof, we will use once more
the ‘partition trick’. Let Aqpn := Apn ∩ Fpn(fn − φpn(q)) for q ∈ Q. Then in view
of (2-9) Apn =

⊔
q∈QA

q
pn and fn − φpn(q) + Aqpn ⊂ Fpn for all q ∈ Q. It is easy

to see that (3-7) is also true if we replace the sequence (hn)n≥1 with the sequence
(hn + q)n≥1 for any q ∈ Q. Hence applying Corollary 3.4 and (3-7) we obtain

µ(Tgn [Apn+1,0]pn+1 ∩B) = µ(Tgn [Apn + cpn+1(Hpn(hn))]pn+1 ∩B) + o(1)

=
∑

q∈Q
µ(Tφpn (hn+q)[fn − φpn(q) +Aqpn + cpn+1(Hpn(hn))]pn+1 ∩B) + o(1)

=
∑

q∈Q
µ([fn − φpn(q) +Aqpn + cpn+1(Hpn(hn))]pn+1)µ(B) + o(1)

=
∑

q∈Q
µ([Aqpn + cpn+1(Hpn(hn))]pn+1)µ(B) + o(1)

= µ([Apn + cpn+1(Hpn(hn))]pn+1)µ(B) + o(1)

= µ([Apn+1,0]pn+1)µ(B) + o(1).

This plus (3-5) imply that the sequence (gn)∞n=1 is mixing. �
The following material will be used in the next section to check the condition on

the strong convergence from Theorem 3.5.
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Definition 3.6. Let I, J be finite subsets in H and let ε be a non-negative number.
We say that I is ε-tiled by J if there exists a finite set F ⊂ H such that the following
are satisfied:

(i) J + F ⊂ I,
(ii) J and F are independent and

(iii) #(I \ (J + F )) ≤ ε#I.

Lemma 3.7. Let I be ε-tiled by J . Then for any function f ∈ L2(X,µ) and any
homomorphism α : H → G,

‖Mα,I(f)‖2 ≤ ‖Mα,J (f)‖2 + ε‖f‖2.

Proof. Since T preserves µ, it follows that

‖Mα,h+J(f)‖2 = ‖Mα,J(f) ◦ Tα(h)‖2 = ‖Mα,J(f)‖2

for every h ∈ H. Let F be as in Definition 3.6. Then

‖Mα,I(f)‖2 ≤ #J
#I

∑

h∈F
‖Mα,h+J(f)‖2 +

#(I \ (J + F ))
#I

‖Mα,I\(J+F )(f)‖2

≤ ‖Mα,J(f)‖2 + ε‖f‖2.

�

Let h ∈ H, i, j ∈ Z and 0 ≤ i < j. The subset {ih, (i+ 1)h, . . . , jh} is called an
h-interval.

Remark 3.8. Let V ⊂ H be a finite subset, I, J two h-intervals in H and l ∈ N. If
V is tiled (i.e. 0-tiled) by I then V is also l#J

#I -tiled by the lh-interval l · J .

Lemma 3.9. Let α : H → G be a homomorphism. Let (hn)n≥1 be a sequence in H
such that for some subset A ⊂ X and every l ∈ N, we have µ(Tlα(hn)A∩A)→ µ(A)2

as n→∞. Then for any sequence of hn-intervals In whose cardinality is constant,
say L, the following inequality holds eventually (i.e. for all large enough n)

‖Mα,In(χA)− µ(A)‖22 ≤
2
L
.

Proof. Since T preserves µ, without loss of generality we may assume that In =
{0, hn, . . . , (L− 1)hn}. Now the inequality follows from the formula

∥∥∥∥
1
L

L−1∑

i=0

χA ◦ Tiα(hn) − µ(A)
∥∥∥∥

2

2

=
µ(A)
L

+
1
L2

∑

i 6=j
(µ(T|i−j|α(hn)A ∩A)− µ(A)2),

which is established by a straightforward calculation. �
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Lemma 3.10. Let α : H → G be a homomorphism, (hn)n≥1 a sequence in H
and (mn)n≥1 a sequence in N. Let Vn be a finite subset of H which is tiled by an
hn-interval In. If mn/#In → 0 and µ(Tlmnα(hn)A ∩ A) → µ(A)2 as n → ∞ for
any integer l > 0 then Mα,Vn(χA)→ µ(A) in L2(X,µ).

Proof. For an ε > 0, fix an integer r > ε−1. Let Jn be a hn-interval of cardinality
r. By Lemma 3.9, ‖Mα,mnJn(χA) − µ(A)‖22 < 2ε eventually in n. It follows from
Remark 3.8 that Vn is mnr

#In
-tiled by the mnhn-interval mnJn. By Lemma 3.7,

‖Mα,Vn(χA)− µ(A)‖2 ≤ ‖Mα,mnJn(χA)− µ(A)‖2 +
mnr

#In
< 3ε

eventually in n. �
The following results will be used while prooving mixing of the (C,F )-actions

whose ‘spacer mappings’ sn are polynomials of degree > 2.

Lemma 3.11 (Hilbertian van der Corput trick). Let (vh)h∈H stand for a
bounded family of vectors in a Hilbert space. If for any k ∈ H \ {0}, we have
limn→∞ 1

#Hn

∑
h∈Hn〈vh+k, vh〉 = 0 then limn→∞ ‖ 1

#Hn

∑
h∈Hn vh‖ = 0.

Proof. In case H = Z, we refer the reader to [Be] for a short proof. Only a slight
and obvious modification of that proof is needed to adapt it to the general case. �
Corollary 3.12. Given a map t : H → G, let 〈M∂kt,HnχB , χB〉 → µ(B)2 for
every nontrivial k ∈ H and all B ∈ B. Then Mt,Hn → P0 strongly as operators in
L2(X,µ).

Proof. Fix a subset B ∈ B. For any h ∈ H, we set vh := χB ◦ Tt(h) − µ(B) ∈
L2(X,µ). Then 〈vh+k, vh〉 = 〈χB ◦ T∂kt(h), χB〉 − µ(B)2. It remains to apply
Lemma 3.11. �

4. Mixing rank-one actions of Rd1 × Zd2

In this section we prove the main results of the paper—Theorems 4.9–4.11 and
4.12.

Let d1 and d2 be non-negative integers such that d := d1 + d2 6= 0. We set
G = Rd1×Zd2 and H = Zd. For g = (g1, . . . , gd) ∈ G, we let ‖g‖∞ := max1≤i≤d |gi|.
If gi ≥ 0 for all i = 1, . . . , d we write g ≥ 0. In a similar way we define ‖h‖∞ and
h ≥ 0 for h ∈ H.

To define a mixing (C,F )-action of G we first fix a sequence of positive integers
rn > 2 which goes to infinity as n → ∞. Some restrictions on its growth will be
imposed later. Let s(1)

n : H → Rd1 be a usual polynomial with real coefficients and
s

(2)
n : H → Zd2 a usual polynomial with rational coefficients such that s(1)

n (0) = 0
and s

(2)
n (0) = 0. Then sn := (s(1)

n , s
(2)
n ) is a polynomial mapping from H to G in

the sense of Definition 1.5. Let Hn := {h ≥ 0 | ‖h‖∞ < rn}. We define a sequence
of positive reals (an)n≥0 recurrently by setting

an+1 := the integer part of anrn + max
h∈Hn

‖sn(h)‖∞
and choosing a0 arbitrarily. It is clear that an+1 ≥ a0r1 · · · rn for all n ∈ N. Since
rn →∞, the sequence (an)∞n=1 grows faster than any exponent. We finally let

Fn := {g ≥ 0 | ‖g‖∞ < an},
φn(h) := anh for h ∈ H and

Cn+1 := (φn + sn)(Hn),
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for n = 0, 1, . . . . It is easy to see that (1-1)–(1-3), (1-12) and (1-13) are satisfied.
In the case d = 1, the condition (1-4) is satisfied too if sn is non-negative and
non-decreasing on Z+, for instance if the coefficients of sn are all non-negative.
The situation is more difficult when d > 1. That is why we introduce the following
definition.

Definition 4.1. A mapping s : H → G is monotonic if for all non-negative x, y ∈ H
with ‖x− y‖∞ = 1,

max
{
s(x)i − s(y)i
xi − yi

∣∣∣∣ for all 1 ≤ i ≤ d such that xi 6= yi

}
≥ 0.

Example 4.2. Let s(x)i = (αixi + γi)(x1 + · · ·+ xd) + βix
2
i + δixi for some reals

αi, βi, γi and δi such that αi > 0, γi ≥ 0, αi + 2βi ≥ 0 and αi + βi + δi ≥ 0 for
i = 1, . . . , d. Suppose that the mapping

H 3 x 7→ s(x) = (s(x)1, . . . , s(x)d)

takes values in G. Then it is monotonic. To show this, consider two non-negative
elements x 6= y ∈ H such that ‖x − y‖∞ = 1 and set z := y − x. Without loss of
generality we may assume that z1 + · · ·+ zd ≥ 0. Then there exists a coordinate j
such that zj = 1. By a straightforward calculation,

s(x+ z)j − s(x)j =(αjxj + γj)
d∑

i=1

zi + αj ·
∑

i 6=j
(xi + zi)

+(αj + 2βj)xj + αj + βj + δj ≥ 0.

We observe that in [AdS], the following monotonic polynomial s : Zd → Zd was
used while constructing Zd-staircase actions:

s(x)i = xi(x1 + · · ·+ xd)− (x2
i + xi)/2, i = 1, . . . , d.

(By this formula we correct a misprint on page 849 of [AdS].) If, moreover d = 1, we
get s(x) = x(x − 1)/2, i.e. the polynomial corresponding to the classical staircase
shown to be mixing in [Ad].

Lemma 4.3. If sn is monotonic and

(4-1) max
x∈Hn

‖sn(x)‖∞ < an/2

then (1-4) holds.

Proof. Suppose that the contrary holds. Then there exist x 6= y ∈ Hn and f, f ′ ∈
Fn such that anx+ sn(x) + f = any + sn(y) + f ′. Since

Fn − Fn = {g ∈ G | ‖g‖∞ < an},

it follows that ‖an(x − y) + sn(x) − sn(y)‖∞ < an. If ‖x − y‖∞ ≥ 2 then we get
a contradiction with (4-1). If ‖x − y‖∞ = 1 then we get a contradiction with the
fact that sn is monotonic. �
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Now suppose that sn = s for all n ≥ 0, where s is a monotonic polynomial of
degree l > 1. Let λG stand for the direct product of the Lebesgue measure on Rd1

and the ‘counting’ measure on Zd2 . Let us check (1-6). Since λG(Fn) = adn and

λG(Fn+1 \ (Fn + Cn+1)) = (rnan + max
h∈Hn

‖s(h)‖∞ ± 1)d − (rnan)d,

we see that (1-6) is satisfied if and only if

∞∑
n=1

maxh∈Hn ‖s(h)‖∞
rnan

<∞.

Of course, there exists a strictly positive limit limn→∞maxh∈Hn ‖s(h)‖∞/rln. Thus
(1-6) holds if and only if

(4-2)
∞∑
n=1

rl−1
n

an
<∞.

It is easy to see that (2-9) and (2-10) are satisfied if we set

(4-3) Q := {h ∈ H | h ≥ 0 and ‖h‖∞ ≤ 1} and Q− := {(−1, . . . ,−1)}.

Proposition 4.4. Let (4-2) be satisfied. If

(4-4) rln/an → 0

then the (C,F )-action T associated with (Hn, φn, sn, Fn)n is well defined and it
satisfies the restricted growth condition.

Proof. Notice first that (4-4) implies (4-1) eventually. Hence (1-4) holds eventually
by Lemma 4.3. Without loss of generality we may assume that it holds for all
n. Since (1-1)–(1-3), (1-12) and (1-13) are also satisfied, it follows that the asso-
ciated (C,F )-action T of G is well defined. Take a sequence (hn)∞n=1 in H with
lim infn→∞#Hn(hn)/#Hn > 0 (in fact, it suffices to have only Hn∩ (Hn+hn) 6= ∅
eventually). It follows from (4-4) that

max
h∈Hn(hn)

‖∂hns(h)‖∞
an

≤ max
h,k∈Hn

‖s(h)− s(k)‖∞
an

→ 0.

On the other hand, for any b ∈ G with ‖b‖∞ < an, we have

λG(Fn \ (Fn + b))
λG(Fn)

≤ adn − (an − ‖b‖∞)d

adn
≤ d‖b‖∞

an
.

Hence

1
#Hn

∑

h∈Hn(hn)

λG(Fn \ Fn(∂hns(h)))
λG(Fn)

≤ max
h∈Hn(hn)

λG(Fn \ (Fn + ∂hns(h)))
λG(Fn)

→ 0,

i.e. (2-3) holds. �
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We see, in particular, that if rn is of sub-exponential growth, i.e. rn/ξ
n → 0

for some ξ > 1, then both (4-2) and (4-4) hold and hence T is well defined for any
monotonic s.

Now consider in more detail the case where s : H → G is a polynomial of degree
2. Given t ∈ H, we have ∂ts(h) = ψt(h) + at for some homomorphism ψt : H → G
and an element at ∈ G. It is easy to verify that ψt1+t2(h) = ψt1(h) + ψt2(h) for all
t1, t2 ∈ H. Hence the map H ×H 3 (t, h) 7→ ψt(h) ∈ G is a ‘bihomomorphic’ form.
Then there is γ > 0 such that

(4-5) ‖ψt(h)‖∞ ≤ γ‖t‖∞‖h‖∞ for all t, h ∈ H.

Fix a standard ‘basis’ in G (and H):

e1 := (1, 0, . . . , 0), e2 := (0, 1, 0, . . . , 0), . . . , ed := (0, . . . , 0, 1).

Then we can identify ψt with the corresponding (d×d)-matrix with real entries for
any t ∈ H.

The following statement based essentially on Theorem 3.5 provides convenient
sufficient conditions for the (C,F )-actions under consideration to be mixing. Com-
bined with Corollary 2.6 it will turn proofs of the main results into verifications of
almost purely algebraic nature.

Proposition 4.5. Let the polynomial s be monotonic and (4-2) and (4-4) hold with
l = 2. Moreover, suppose that

(i) the action (Tψk(h))h∈H is ergodic for any k ∈ H \ {0} and
(ii) max1≤i≤d ‖ψk(ei)‖∞ ≥ δ‖k‖∞ for some δ > 0 and every k ∈ H.

Then T is mixing.

Proof. By Proposition 4.4, T has restricted growth. Take a sequence (hn)∞n=1 in H
such that hn 6= 0 for all n ∈ N and

(4-6) lim inf
n→∞

#Hn(hn)/#Hn > 0.

In view of Theorem 3.5, it suffices to show that Mψhn ,Hn(hn) → P0 strongly. Sup-
pose first that hn = k for some k ∈ H and all n. Then just use (i) and apply the
mean ergodic theorem to the action (Tψk(h))h∈H to conclude thatMψk,Hn(k) → P0.
Hence it remains to consider only the sequences (hn)∞n=1 with hn → ∞ in H. Let
i(k) stand for an index at which the maximum in (ii) is attained. Then

(4-7) ‖ψhn(ei(hn))‖∞ ≥ δ‖hn‖∞

Since Hn(hn) is a parallelepiped in Zd+, there exist an element h′n ∈ H, a positive
integer r′n ≤ rn and two parallelepipeds Jn ⊂ Zi(hn)−1

+ and J ′n ⊂ Zd−i(hn)
+ such that

Hn(hn) + h′n = Jn × {0, 1, . . . , r′n − 1} × J ′n.

It follows from (4-6) that there exist two reals δ′ > 0 and δ′′ ≤ 1 such that

(4-8) r′n/rn ≥ δ′ and ‖hn‖∞/rn ≤ δ′′ eventually.
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We set Vn := Hn(hn) + h′n and gn := ψhn(ei(hn)). By (4-7), ‖gn‖∞ → ∞ (recall
that hn →∞). Find pn ∈ N with gn ∈ F •pn+1 \F •pn . Then, of course, pn →∞. Let
mn be the smallest positive integer such that mngn /∈ F •pn+1. Then

mngn = (mn − 1)gn + gn ∈ F •pn+1 + F •pn+1.

Since F •m = {g ∈ G | ‖g‖∞ < am} for all m ∈ N, we have

(4-9) apn ≤ ‖gn‖∞ < apn+1 and apn+1 ≤ mn‖gn‖∞ < 2apn+1.

Moreover, it is straightforward (see (4-3)) that

Q+ · · ·+Q︸ ︷︷ ︸
l times

= {h ∈ H | h ≥ 0 and ‖h‖∞ ≤ l} and

Q+ ∩ {h ∈ H | ‖h‖∞ = 1 and − h ≥ 0} = ∅.

Recall that Q+ denotes the minimal (finite) subset of H such that (F •n +F •n)\F •n ⊂
φn(Q+) + F •n for all n ∈ N. Hence

−lQ+ ∩ (Q+ · · ·+Q︸ ︷︷ ︸
l times

) = ∅.

By (i) and Corollary 2.6(i), the sequence (φn(k))∞n=1 is mixing for every 0 6= k ∈ H.
Thus we may apply Lemma 2.9 and conclude that the sequence (lmngn)∞n=1 is
mixing for every l ∈ N. Notice that

Mψhn ,Hn(hn) =Mψhn ,Vn
Un = UnMψhn ,Vn

,

where Un in the unitary given by Unf := f ◦Tψhn (−h′n). ThereforeMψhn ,Hn(hn) →
P0 strongly if and only if MψhnVn

→ P0 strongly as n → ∞. We set In :=
{0, ei(hn), . . . , (r′n − 1)ei(hn)}. To complete the proof it remains only to establish
that mn/#In → 0 and apply Lemma 3.10. By (4-5),

‖gn‖∞ = ‖ψhn(ei(hn))‖∞ ≤ γ‖hn‖∞

eventually in n. Using that, (4-8) and (4-9) we obtain

mn

rn
≤ 2γδ′′apn+1

‖gn‖2∞
≤ 2γδ′′

apn+1

a2
pn

for all large enough n. It follows (use also (4-8) plus (4-2))

lim
n→∞

mn

r′n
≤ 1
δ′

lim
n→∞

mn

rn
≤ 2γδ′′

δ′
lim
n→∞

apn+1

a2
pn

=
2γδ′′

δ′
lim
n→∞

rpn
apn

= 0.

(Notice that it follows from (1-6) that limn→∞ an+1/(anrn) = 1.) �
Fix a family of reals ξ1, . . . , ξm. For a nonempty subset J ⊂ {1, . . . ,m}, we let

ξJ :=
∏
i∈J ξi. We also let ξ∅ := 1.

22



Definition 4.6. If the family of reals ξJ , J runs all the subsets of {1, . . . ,m}, is
independent over Q then we say that ξ1, . . . , ξm is good.

It is clear that any subfamily of a good family is good. Moreover, given non-zero
rationals q1, . . . , qm, the family q1ξ1, . . . , qmξm is good if and only if so is ξ1, . . . , ξm.

We also let RJ := {g = (g1, . . . , gd) ∈ Rd | gi = 0 for all i /∈ J}. In a similar way
we define ZJ .

Lemma 4.7. Let ξ1, . . . , ξm be a good family. Then

det




q1,1 + ξ1 q1,2 . . . q1,m

q2,1 q2,2 + ξ2 . . . q2,m

...
...

. . .
...

q1,m q2,m . . . qm,m + ξm


 6= 0

for any qi,j ∈ Q, i, j = 1, . . . ,m.

Proof. It is enough to notice that the determinant equals to
∑
J⊂{1,...,m} rJξJ with

some coefficients rJ ∈ Q. If the determinant vanishes then rJ = 0 for all J by
the definition of a good family. However, it is easy to see that ξ{1,...,m} = 1, a
contradiction. �

We also state without proof a couple of well known facts.

Lemma 4.8.
(i) A weakly mixing action of a l.c.s.c. Abelian group is totally ergodic.
(ii) Let V and V ′ be two mutually commuting actions of l.c.s.c. Abelian groups

F and F ′ respectively. If V is weakly mixing and V ′ is ergodic then V ′ is
weakly mixing.

Now we are ready to prove the main results of the paper. We consider first the
case where d2 = 0 and d1 > 1.

Theorem 4.9. Let G = Rd, d > 1, and (4-2) and (4-3) hold. Let s be the polyno-
mial from Example 4.2 and let the parameters αi, βi satisfy the following additional
conditions: αi ∈ Q for all i = 1, . . . , d and the family α1 + 2β2, . . . , αd + 2βd is
good. Put sn := s for all n ∈ N. Then the rank-one action T of G associated with
(Hn, φn, sn, Fn)n is mixing.

Proof. It is easy to calculate that

(4-10) ψei =




α1

. . .
αi−1

αi . . . αi 2(αi + βi) αi . . . αi
αi+1

. . .
αd




,

where the entries outside the main diagonal and the i-th line are zero, i = 1, . . . , d.
We first claim that the group generated by

⋃d
i,j=1 ψei(ej) is dense in G. For a

real x ∈ R, denote the fractional part of x by 〈x〉. Identify T with the interval [0, 1)
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endowed with addition mod 1. Since ψei(ei) = 2(αi + βi)ei and αi + βi 6= 0, the
map

π : G 3 (x1, . . . , xd) 7→
(〈

x1

2(α1 + β1)

〉
, . . . ,

〈
xd

2(αd + βd)

〉)
∈ Td

is a quotient of G by the lattice generated by
⋃d
i=1 ψei(ei). We see that for i 6= 1,

π(ψe1(ei)) =
(〈

α1

2(α1 + β1)

〉
, 0, . . . , 0,

〈
αi

2(αi + βi)

〉

︸ ︷︷ ︸
i

, 0, . . . , 0
)
.

Since α1 +β1 /∈ Q and (αi+βi)/(α1 +β1) /∈ Q for i = 2, . . . , d, the group generated
by π(ψe1(ei)) is dense in the subgroup

T× {0} × · · · × {0} × T︸ ︷︷ ︸
i

×{0} × · · · × {0} ⊂ T.

Thus our first claim follows.
Now let us verify conditions (i) and (ii) from Proposition 4.5.
It follows from (4-10) that detψei 6= 0. Hence ψei(H) is a lattice in G. Then

by Corollary 2.6(iii), the sequence (φn(ei))∞n=1 is uniformly mixing. Since φn(ei) =
anei, it follows that the transformation Tei is weakly mixing for every i = 1, . . . ,m.
By Lemma 4.8(ii), the action (Tg)g∈RJ is also weakly mixing for any non-empty
subset J ⊂ {1, . . . ,m}. Now take any 0 6= t = (t1, . . . , td) ∈ H. If detψt 6= 0 then
ψt(H) is a lattice in G. By Corollary 2.6(ii), (Tψt(h))h∈H is ergodic, as desired.
Consider now the second case when detψt = 0. Since ψt = t1ψe1 + · · · + tdψed , it
follows from (4-10) that

ψt =




(α1 + 2β1)t1 + α1u α1t1 . . . α1t1
α2t2 (α2 + 2β2)t2 + α2u . . . α2t2

...
...

. . .
...

αdtd αdtd . . . (αd + 2βd)td + αdu


 ,

where u :=
∑d
i=1 ti. Let J := {i | ti 6= 0}. It follows immediately from Lemma 4.7

that there exists i /∈ J . Then for any j 6= i, the j-th element of the i-th line of ψt is
0. Crossing out the i-th line and the i-column for all i /∈ J we obtain a (#J ×#J)-
matrix M and detψt = ud−#J

∏
i/∈J αi detM . It is easy to see that Lemma 4.7 is

applicable to M . Hence detM 6= 0. Since detψt = 0, it follows that u = 0. Hence
for any j /∈ J , the entire i-th line in ψt vanishes. Therefore ψt(H) ⊂ RJ . Moreover,
ψt(H) is a lattice in RJ since detM 6= 0. By Lemma 4.8(i), the action (Tψt(h))h∈H
is ergodic. Thus, Proposition 4.5(i) holds. The other condition of that theorem is
much easier to verify. Let ‖t‖∞ = |tj | for some j. Take any l 6= j. Then we have

‖ψt(el)‖∞ ≥ αj |tj | ≥ min
1≤i≤d

αi · ‖t‖∞.

�
It is easy to understand that the above construction does not work in case G = R

since the first claim of the proof fails. However, only a slight ‘complication’ of the
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construction is needed to cover the exceptional case. We outline it briefly. Let S be
a finite family of monotonic polynomials from H to G = Rd1 ×Zd2 of degree l > 1.
Let (sn)∞n=1 be a sequence of elements of S such that every element of S occurs in
(sn)∞n=1 infinitely many times. Suppose that (4-2) and (4-4) are satisfied. Define
Hn, φn, Fn as above. Then the (C,F )-action T associated with (Hn, φn, sn, Fn)n is
well defined and it satisfies the restricted growth condition (the same proof as in
Proposition 4.4 works as well to establish this fact). Let us assume now that l = 2.
For any s ∈ S, let

∂ts(h) = ψst (h) + ast for all t, h ∈ H,
where ψst : H → H is a homomorphism and ast an element of H. Suppose, in
addition, that

(i) the action (Tψsk(h))h∈H is ergodic for any k ∈ H \ {0} and s ∈ S and
(ii) mins∈S max1≤i≤d ‖ψsk(ei)‖∞ ≥ δ‖k‖∞.

Then repeating the proof of Proposition 4.5 almost verbally one can show that T
is mixing. Now let G = Rd for any d > 0. Suppose that every polynomial from S
satisfies the conditions of Theorem 4.9. Then slightly modifying the proof of this
theorem one can establish that T is mixing whenever

(4-11) the group generated by
⋃

s∈S

d⋃

i,j=1

ψsei(ej) is dense in G.

The main point of this modification is to replace the references to Corollary 2.6
with the references to Remark 2.7. If d > 1 then (4-11) is satisfied (see the proof
of Theorem 4.9). The following theorem provides an example where (4-11) holds
in case d = 1.

Theorem 4.10. Let G = R and (4-2) and (4-3) hold with l = 2. Let

s(x) := αx2 + βx, s̃(x) := α̃x2 + β̃x at all x ∈ Z,

where α and α̃ are rationally independent positive reals and α+ β ≥ 0, α̃+ β̃ ≥ 0.
Set sn := s for even n and sn := s̃ for odd n. Then the (C,F )-action of R associated
with (Hn, φn, sn, Fn)n is mixing.

Proof. In view of the reasoning preceding the statement of the theorem it suffices
to notice that s and s̃ are both non-negative and non-decreasing on Z+ and (4-11)
is satisfied since ψse1(e1) = 2α and ψese1(e1) = 2α̃. �

Now we pass to the case G = Zd.

Theorem 4.11. Let G = Zd and (4-2) and (4-4) hold with l = 2. Let s be the
polynomial from Example 4.2 with α1 = · · · = αd = 1 and β1 = · · · = βd = −0.5.
Put sn := s for all n ∈ N. Then the rank-one action T of G associated with
(Hn, φn, sn, Fn)n is mixing.

Proof. As in the proof of Theorem 4.9 it suffices to show that the group generated
by
⋃d
i,j=1 ψei(ej) is (= dense in) G and the conditions (i) and (ii) of Proposition 4.5

are satisfied. The first claim is trivial since ψei(ei) = ei for all i = 1, . . . , d (see
(4-10)). Now take any t = (t1, . . . , td) ∈ G and set J(t) := {i | ti 6= 0}. We will
check Proposition 4.5(i) by induction in #J(t).
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If #J(t) = 1 then t = tiei for some 1 ≤ i ≤ d and a non-zero integer ti. Hence
detψt = tdi detψei 6= 0. It remains to apply Corollary 2.6(ii).

Suppose now that there exists p < d such that the action (Tψt(h))h∈H is ergodic
for any t ∈ H with 1 ≤ #J(t) ≤ p. Take any t ∈ H with #J(t) = p + 1. We
are going to show that the action (Tψt(h))h∈H is ergodic. For convenience, let us
assume that J(t) = {1, . . . , p + 1}. (In the general case one can argue in a similar
way.) Then

ψt =




∑p+1
i=1 ti t1 . . . t1 t1 . . . t1
t2

∑p+1
i=1 ti . . . t2 t2 . . . t2

...
...

. . .
...

...
. . .

...
tp+1 tp+1 . . .

∑p+1
i=1 ti tp+1 . . . tp+1

0 0 . . . 0
∑p+1
i=1 ti . . . 0

...
...

. . .
...

...
. . .

...
0 0 . . . 0 0 . . .

∑p+1
i=1 ti




.

We consider now three possible cases. Denote by A the (p+ 1)× (p+ 1)-submatrix
of ψt standing at the upper left corner.

Case 1. If
∑p+1
i=1 ti 6= 0 and detA 6= 0 then detψt = (

∑p+1
i=1 ti)

d−p−1detA 6= 0.
Hence ψt(H) is of finite index in G and we are done (just apply Corollary 2.6(ii)).

Case 2. If
∑p+1
i=1 ti 6= 0 but detA = 0 then it is easy to verify that rkA ≥ 2.

Hence rkψt ≥ d− (p+ 1) + 2 > d− p. Therefore

ψt(H) ∩ ZJ(t) 6= {0}.
On the other hand, it follows from the inductive assumption and Corollary 2.6(i)
that the sequence (φn(h))∞n=1 is mixing for T for any non-zero h ∈ Ze1 + · · ·+Zep.
Hence the transformation Th is weakly mixing for all such h (recall that φn(h) =
anh). Thus the transformation group (Tψt(h))h∈H contains a weakly mixing trans-
formation and therefore it is ergodic.

Case 3. If
∑p+1
i=1 ti = 0 then it is easy to see that ψt(H) ⊂ ZJ(t). Moreover,

detA = t1 · · · tp+1 det




0 1 1 . . . 1
1 0 1 . . . 1
...

...
...

. . .
...

1 1 1 . . . 0


 6= 0.

Hence ψt(H) is of finite index in ZJ(h). Since the transformation Te1 is weakly
mixing, the action (Tg)g∈ZJ(h) is weakly mixing by Lemma 4.8(ii). It remains to
make use of Lemma 4.8(i).

The condition (ii) of Proposition 4.5 is checked in a straightforward way (as in
the proof of Theorem 4.9). �
Remark 4.12. Note that if we put γi = δi = 0 for all i in the statement of Theo-
rem 4.10 (see the definition of s in Example 4.2) then we obtain exactly the main
result of [AdS]. However, it was proved there completely only for G = Z2. Roughly
speaking, it was assumed implicitly in [AdS] that detψt 6= 0 for all t ∈ Zd \ {0}.
While being the case for d = 2, it is no longer true for d > 2 (see Cases 2 and 3 in
the proof of Theorem 4.10).

Combining the arguments from Theorems 4.9—4.11, one can prove the following.
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Theorem 4.13. Let G = Rd1 × Zd2 and (4-2) and (4-4) hold. Let s̃n : Zd1 → Rd1

and ŝn : Zd2 → Zd2 stand for the sequences of polynomials defined in the statements
of Theorem 4.9 if d1 > 1 (or Theorem 4.10 if d1 = 1) and Theorem 4.11 respectively.
We set

sn(t1, . . . , td1+d2) := (s̃n(t1, . . . , td1), ŝn(td1+1, . . . , td1+d2))

for all (t1, . . . , td1+d2) ∈ H = Zd1 × Zd2 . Then the rank-one (C,F )-action of G
associated with (Hn, φn, sn, Fn)n is mixing.

Now we consider a more general case where the ‘spacer mapping’ s : H → G is
a polynomial of arbitrary degree l > 2. Then for any t1, . . . , tl−1 ∈ H, there exist
a homomorphism ψt1,...,tl−1 : H → G and an element at1,...,tl−1 ∈ G such that

∂t1 · · · ∂tl−1s(h) = ψt1,...,tl−1(h) + at1,...,tl−1 for all h ∈ H.

It is easy to verify that the map

H × · · · ×H︸ ︷︷ ︸
l times

3 (t1, . . . , tl) 7→ ψt1,...,tl−1(tl) ∈ G

is a ‘polyhomomorphic’ form and there exists γ > 0 such that

‖ψt1,...,tl−1‖∞ ≤ γ‖t1‖∞ · · · ‖tl‖∞ for all t1, . . . , tl ∈ H.

The following statement is a higher degree analogue of Proposition 4.5.

Proposition 4.14. Let s : H → G be a monotonic polynomial of degree l > 2.
Assume that (4-2) and (4-4) hold. Set sn := s for all n and denote by T the
(C,F )-action of G associated with (Hn, φn, sn, Fn)n. Suppose that

(i) the action (Tψt1,...,tl−1 (h))h∈H is ergodic for any family t1, . . . , tl−1 ∈ H \{0}
and

(ii) max1≤i≤d ‖ψt1,...,tl−1(ei)‖∞ ≥ δ‖t1‖∞ · · · ‖tl−1‖∞ for some δ > 0 and all
t1, . . . , tl−1 ∈ H \ {0}.

Then T is mixing.

Proof. (Cf. with the proof of Proposition 4.5.) By Proposition 4.4, T has restricted
growth. Take a sequence (hn)∞n=1 in H \ {0} such that (4-6) holds. In view of
Theorem 3.5, it suffices to show that Ms′n,Hn(hn) → P0 strongly, where s′n is the
hn-derivative of s. Applying Corollary 3.12 l − 2 times, we obtain that the latter
holds whenever

(4-12) Mψt1,...,tl−2,hn ,Hn(hn) → P0 strongly for any family t1, . . . , tl−2 ∈ H \ {0}.

Suppose first that hn = k for some k ∈ H and all n. Then just use (i) and apply
the mean ergodic theorem to the action (Tψt1,...,tl−2,k(h))h∈H to deduce (4-11).

It remains to consider the second case where hn → ∞ in H. Notice first that
sinceM∂ks,Hn(k) → P0 strongly, it follows from Corollary 2.3(ii) that the sequence
(φn(k))∞n=1 is uniformly mixing for every k ∈ H \ {0}. The rest of the argument is
almost a literal repetition of that from the proof of Proposition 4.5. �

As an application we construct a family of mixing (C,F )-actions with polynomial
‘spacer map’ of higher degree in the simplest case when G = Z.
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Example 4.15. Let G = Z. Suppose that the sequence (rn)∞n=1 is of sub-exponen-
tial growth and limn→∞ rn =∞. Then, as was noticed above, (4-2) and (4-4) hold.
Let p : Z→ Z be a polynomial of degree l > 0 which non-decreases on Z+. Assume
also that p(0) = 0. Suppose that the image of p is not contained in any proper
subgroup of Z. For instance, if p(Z) 3 1 then p enjoys this property. Define a
polynomial s : Z→ Z by setting

s(t) := p(0) + p(1) + · · ·+ p(t− 1) for t > 0.

Clearly, s is of degree l + 1 and s non-decreases on Z+. Let sn := s for all n ∈ N.
Denote by T the corresponding Z-action. We will show that it is mixing. To this
end it suffices to verify that the conditions (i) and (ii) of Proposition 4.14 hold for
T . It is obvious that (ii) holds. The condition (i) will follow from the fact that T is
totally ergodic. To establish the latter we are going to apply Proposition 2.5. Let
hn = 1 for all n ∈ N. Then ∂hns(t) = s(t + 1) − s(t) = p(t) at all t ≥ 0. If T is
not totally ergodic then by Proposition 2.5 there exist k > 0 and j ∈ {0, . . . , k− 1}
such that

#{i ∈ {1, . . . , rn − 1} | p(i) ≡ j mod k}
rn − 1

→ 1 as n→∞.

Hence if n is large enough we can find 0 < i < rn − 2− l such that

p(i) ≡ p(i+ 1) ≡ · · · ≡ p(i+ l) mod k.

Since p(0) = 0 and l is the degree of p, it follows from [Le, Corollary 1.17] that
p(Z) ⊂ kZ, a contradiction.

In particular, putting rn = n and p(t) = tl, t ∈ Z, we obtain the family of
polynomial staircases first proved to be mixing in [Ad] (when l = 1) and [CrS]
(when l > 1).

5. Entropic properties of rank-one actions

Let G = Rd1 × Zd2 with arbitrary d1, d2 ≥ 0 and T a (C,F )-action of G on a
probability space (X,B, µ). We will assume that

Fn = {g ∈ G | g ≥ 0 and ‖g‖∞ < an}
for a sequence an ∈ R+. This implies that T is rank-one by cubes. It is well known
that the entropy of any rank-one Z-action is zero. This fact extends easily to the
rank-one (by cubes) actions of any group G. However in case of higher dimensional
groups, say G = Z2, there exist rank-one (by rectangles) actions S = (Sg)g∈G of G
such that the transformation S(1,0) is Bernoulli (see [Ru1]). Then one has h(S) = 0
but h(S(1,0)) > 0. We show now that this is impossible for rank-one (by cubes)
actions.

Theorem 5.1. Let T be a rank-one (by cubes) action of G. Then h(Tg) = 0 for
each g ∈ G.

Proof. We consider only the case G = Rd (in the general case one can argue in a
similar way). Let (Mn)∞n=1 be a sequence of positive reals such that

(5-1) lim
n→∞

Mn

an
= 0 and lim

n→∞
log an
Mn

= 0.
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Fix g ∈ G \ {0} and take a family v1, . . . , vd of mutually orthogonal (with respect
to Eucleadian inner product in Rd) vectors such that v1 = g. Consider the finest
partition F of G into parellelepipeds whose vertices belong to the lattice generated
by v1, . . . , vd. Let Fn be a maximal subset of F such that the atoms ig+A, A runs
Fn and 0 ≤ i < Mn, are mutually disjoint aand all of the are contained in Fn. It
follows from the first limit in (5-1) that

(5-2)
#Fn ·Mn · λG(A)

λG(Fn)
→ 1.

Let Pn be a finite partition of X consisting of the n-cylinders [A]n, where A runs
Fn and the complement Bn to the union of these n-cylinders. Then

(5-3) H(Pn) = −#Fnµ([A]n) log µ([A]n)− µ(Bn) logµ(Bn),

where A is an atom of Fn. Since µ(X \Xn)→ 0 and (5-2) holds, it is easy to show
that the second term in the right hand side of (5-3) goes to 0. Substituting (1-11)
to (5-3) and making use of (5-2) we now obtain

H(Pn) ≤ #Fn λG(A)
λG(Fn)

log
λG(Fn)
λG(A)

+ o(1) ≤ 2d
Mn

log
an

λG(A)
+ o(1)

(notice that λG(Fn) = adn). It follows from the second limit in (5-1) that H(Pn)→ 0
as n→∞. Denote byQn the finite partition

∨Mn−1
i=0 T igPn of X. It is easy to deduce

from the definition of Pn that the sequence (Qn)∞n=1 generates B, i.e. for any B ∈ B
and n ∈ N, there exists a Qn-measurable subset Qn such that µ(B4Qn) → 0 as
n→∞. Hence

h(Tg) = lim
n→∞

h(Tg,Qn) = lim
n→∞

h(Tg,Pn) ≤ lim
n→∞

H(Pn) = 0.

�
We see, in particular, that for all mixing actions T constructed in Theorems 4.9–

4.11 and 4.13, h(Tg) = 0 for all g ∈ G.
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