[image: image1.png]An array is an ordered list of data

The entire array
has a single name

scores

0

1

2

3 4

5

6

Each value has a numeric index

7

8 9

79.5

87

94

82.5

67

98

87.5

81

74

91

An array of size N is indexed from zero to N-1

This array holds 10 values that are indexed from 0 to 9

Java 211 – Yosef Mendelsohn

ARRAYS
Often, we may want to organize a group of data together. For example, supposing we wish to gather 100 scores on a final exam together. We could declare 100 different variables each with their own name, but this is hardly an elegant solution. Instead, we can use a construct called an ‘array’ which allows us to group multiple values (of any data type) under a single variable name. For example, to declare an array of 100 exam scores together, I could do the following:

//declaring an array of 100 integers

int[] scores;
//creating an array reference

scores = new int[100]; //creating the array object

[image: image3.png]

Note: In Java, arrays are objects. In other words, the identifier ‘scores’ is NOT a primitive data type of int. Instead, it is a an object that holds a group (array) of integers. This concept will become increasingly important – and useful – as we become more advanced in our use of arrays.

The array called ‘scores’ defined earlier can now hold 100 integer values. To insert values into the scores array I could type the following

scores[0] = 89;

scores[1] = 93;

scores[2] = 71;

…

scores[99] = 83;
Notice how the first element of the array is called scores[0] (spoken as “scores sub zero”), and the last element of the array is called scores[99]. The point is that arrays range from 0 to the declared size of the array minus one. So an array of declared size 85 has indexes ranging from 0 to 84.

Recall also that arrays are objects. This is why we needed to use the ‘new’ operator to create the array.

So an array is simply a list of values grouped under one identifier. All the elements of the array must be of the same data type.

[image: image2.png]A particular value in an array is referenced using the
array name followed by the index in brackets

scores[2] 79.5| 87| 94 |82.5| 67|98 [87.5| 81| 74| 91

01 2 3 4 5 6 7 89

The expression scores[2] refers to the number
94, the third element in the array

Arrays can store any type of data: You can have an array of ANY type you want. Eg: An array of int, double, char, String, etc. You can even have an array of arrays (of arrays). Okay, that last one’s just mean… but it is perfectly legal!

double[] gymnasticScores = new double[10];

char[] letterGrades = new char[25];

String[] studentNames = new String[25];

Arrays and loops: Because arrays are lists of values, we frequently want to iterate through the list. For example, we may want to output every value in the array to the screen. Or we may wish to check to see if a certain value is present in the array. Or we may wish to check how many times a certain value is present in the array. The possibilities are endless.

For this reason, arrays go hand-in-hand with loops. For example, to output all elements of the scores array described above, we could use a loop such as this one:

for (int j=0; j<100; j++)

System.out.println(scores[j]);
This type of behavior, where you iterate through an entire array doing things such as outputting values, looking for specific values, checking things, etc, etc, etc is extremely common when working with arrays. You MUST become very comfortable iterating through arrays using loops such as this one.

Let’s trace through an example: BasicArray.java.

Off-by-one Errors

In programming, a frequent source of errors are off-by-one errors. Arrays are one of the most common areas where such errors occur.

For example, assume that the array ‘scores’ has been declared and is filled with valid values. Yet there is still an error in the code below. Can you spot it?

for (int j=0; j<=100; j++)

System.out.println(scores[j]);

Bounds Checking

The index operator ‘[]’ allows you to directly reference any element of the array. But what happens if you enter an index that is not valid? For example, suppose you do the following:

int[] scores = new int[20];

for (int j=0; j<20; j++)

scores[j] = 0;

System.out.println(scores[30]);
In some languages such as C++, this can lead to unpredictable and potentially dangerous results. However, Java does “automatic bounds checking”. This means that Java checks to make sure that you are remaining within the boundaries of your array. So for the scores array above, if you attempt to access an index that is not between 0 and 19, you will generate a special kind of error called an ArrayIndexOutOfBoundsException. (We will talk about exceptions later).

The ‘length’ field
Every array object has a (public) constant associated with it called ‘length’. This constant tells you the declared size of the array. For example, if you declare an array as follows:

int[] scores = new int[20];

The following statement:

System.out.println(scores.length);

would output 20.

Note: Do NOT confuse the length field of an array with the method length() that we use with Strings. I realize this is confusing, but it is an important distinction that you need to remember.

For now, remember that to find out the length of an array called ‘arr’ you can use arr.length;
To find the length of a string called str you can use str.length();

Notice that the string version has parentheses (because it is a method).

Question: What is the index range of every array in terms of the ‘length’ constant?

Answer: from 0 to length-1

Examples

See ReverseNumbers.java (uses a class called Keyboard which we is from a library that we will not use. Can you modify the program to use the Scanner class?)

See ArrayTest.java
See LetterCount.java (if time permits)

Alternate syntax for declaring arrays

An array reference can be declared using either of the following two methods:

int[] scores;

int scores[];

The first method is preferable since it is clear that the data type of ‘scores’ is an integer array. Consider the following:

int grade1[], grade2, grade3[];

There is potential for confusion here. Is ‘grade2’ supposed to be an integer or an integer array? To be safe:

Array brackets should be associated with the element’s data type.

(I.E. They should not be associated with the identifier).

Initializer Lists
This is an alternate technique for instantiating arrays. The items are separated by commas and delimited by braces. The ‘new’ operator is not used.

int[] scores = {67, 94, 59, 82, 58};

//Creates an array of size 5

//(Index ranges from 0 to 4)

char[] letterGrades = {‘A’, ‘B’, ‘D’, ‘D’, ‘A’, ‘C’};
// letterGrades.length = 6

You can use initializer lists ONLY at the time that you declare the array.

Notice also that when you use an initializer list, the ‘new’ operator is not used.

Constants

Recall that you will occasionally have a variable that should not, in fact, vary! For example, we may want to keep track of a constant such as PI which is always 3.14 and never changes. Remember that in programming, it is always a good idea to write “protection” into your code whenever possible. One form of protection is to tell Java that you do not wish a certain variable to change; that is, you wish it to be a constant. Here is the syntax:

 final double PI = 3.14;

The word ‘final’ is what declares PI as a constant. If you at any point in your program were to try to change the value of a constant, you would get a compiler error.

Notice also that the identifier PI is capitalized. This is another important naming convention that you must respect.

The identifier for a constant should always be capitalized.

Constants are sometimes used when dealing with arrays, typically, to store the declared size of the array. Using constants in this manner increases both readability of your program, and also makes it easier to implement changes later.

That being said, for now you will, pretty much without exception, use the ‘length’ field.

Practice: ArrayExamples.java
for-each Loop:

This is yet another ‘shortcut’ loop that allows you to iterate through an array. This loop does not use an explicit counter. It is intended to go through every item in a collection. (Sometimes you may not want to do that!) The loop basically says “do the following for every item in the set/array”, as opposed to saying “do the following for ‘x’ number of items in the set/array”.
There is one very importat limitation to the for-each loop: you will not be able to make changes to the array. That is, you can use the loop to iterate (move through) the array and examine every single item, however, you will not be able to modify the array itself.

The foreach loop is shorter, convenient, and helps avoid off-by-one errors. The syntax is as follows:

for (type identifier : set/array)

{

 //code to execute

}

Here are a couple of examples:

Output every String in an array called ‘names’:

for (String item : names)

{

 System.out.println(item);

}

Think of the colon as the word “in”. So you would interpret the previous for each loop (the first line) as: for each ‘item’ in ‘names’
Calculate the sum of all values in an array of integers called ‘sales’:

int sum=0;

for (int number : sales)

{

 sum = sum+number;

}

Note: If you wanted to calculate the average of all the sales in the above array, you would still need to use the ‘length’ field:

double average = sum / sales.length;

Reading Input into a Dialog Box

Let’s examine another useful pre-defined method. This one comes courtesy of a class called JOptionPane which lives in a package called javax.swing . (This will make more sense later on…)

The method showInputDialog is a pre-defined method that creates a dialog box to read input from the user. The method returns a String.

Just as with the methods in the class Math such as sqrt(), pow(), exp(), sin(), etc, etc, etc, you need to tell Java where to locate this method. This method can be found in a class called JOptionPane. So, we have to precede the method call with the class name.

As mentioned above, the method returns a String, so we need to do something with that returned value. Here is the method in action:

String name;

name = JOptionPane.showInputDialog(“What is your name? “);

· The above line will draw a dialog box on the screen and prompt the user for their name.

· Whatever value the user types into the dialog box will be stored inside the string ‘name’.

If you look at the Java API for this method (found in the JOptionPane class), you can confirm for yourself that the method returns a String.

The method showInputDialog belongs to a class called JOptionPane. This class is in a package called javax.swing (note the ‘x’). So to use the JOptionPane, we must import the package:

import javax.swing.JOptionPane;
Lastly, for reasons that we will discuss later, you must include the statement:

System.exit(0); at the end of your program when using this method. For now, I’ll just tell you that whenever you use graphical elements such as JOptionPane in your programs, you need this command to properly exit your program.

Checklist for JOptionPane:

· Include the proper ‘import’ statement at the top

· Don’t forget that showInputDialog returns a String (If you wish another data type, you will need to convert using parseInt)

· Include the exit satement at bottom

Converting a String to an Int (with a capital ‘I’!):

Speaking of Strings, note how we said that the information entered by the user and returned by the method is String. What if we were instead asking the user for something such as their age? Although the method showInputDialog returns a String, all is not lost. This scenario does come up in programming fairly frequently and Java has a built in method that tries to convert Strings to integers (when possible).

The method called parseInt() accomplishes just that. This is a static method, and can be found in a class called ‘Integer’. (Note: The Integer class is in the java.lang package, so we do not need any import statements). Here is the code:

String s;

int num;

s = JOptionPane.showInputDialog(“Enter a number: “);

//The above line will open up a dialog box and

//store the value entered as a string into the

//variable ‘s’.

num = Integer.parseInt(s);

//1. Converts the value stored inside ‘s’ into an integer.

//2. Places that value into num.

Sample working program using JOptionPane.showInputDialog to read an int

import javax.swing.*; //required in order to use JOptionPane
public class TestJOptionPane
{

public static void main(String[] args)

{

String s;

int num;

s = JOptionPane.showInputDialog("Enter an integer number: ");

num = Integer.parseInt(s);
// convert String to an int

System.out.println(“You entered the number “ + num + “.”);

System.exit(0);

 } //end of method main()

} //end of class TestJOptionPane

