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A Unified Framework for Proof
and Disproof
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following proof seems almost like common sense.

To a person with advanced mathematical training, the

THEOREM A. The square of any odd integer is odd.

PROOF. Suppose that x is any odd integer. Then x =
2k + 1 for some integer k, and so

=2+ 1P =4k + 4k + 1 =202k + 28) + 1,
which is odd.

For many years [ have been teaching college stu-
dents the kind of abstract mathematical reasoning
embodied, in simple form, in the foregoing proof.
Such reasoning is important not only for students
majoring in mathematics but also for those concen-
trating in computer science, electrical engineering,
economics, and other disciplines.

Although much of what I teach is best left at the
college level, incorporating certain parts into the
high school curriculum is desirable. One reason to
do so is that college teachers often assume that stu-
dents with three or four years of high school mathe-
matics can read and write proofs without any
special, extra instruction. Yet for large numbers of
college students, even a proof as simple as the one
shown contains many mysteries. Here are typical
questions that students raise:

1 Ihave checked that 3%, 5%, 72, 9% and 11% are
odd. Isn’t that enough?

2. All of a sudden, this variable x appears. Where
does it come from?

3. Why does the proof begin by supposing something?

4. What prompts all those algebra steps? How
would I ever know to do them?

5. Why does the proof end where it does?

FILLING IN THE GAPS: QUESTION 1

The hardest part about teaching proofis deciding
how much to tell. For that elite group of students
who simply accept the validity of the foregoing
proof and have no difficulty constructing similar
ones, the teacher need do nothing beyond making
an occasional offhand remark. But for the majority
of students, who are genuinely puzzled and ask

questions like those just listed, something more
must be offered. Several decades of interacting with
such students has convinced me that the main fac-
tor differentiating them from the elite group is
their lack of acceptance, at an intuitive level, of a
few basic principles of logic. So in my own classes
and in the book that ! developed from my experi-
ences (Epp 1995), I try to fill the gaps in their
understanding so that the answers to questions 1-5
arise naturally.

My aim is always to seek common ground be-
tween students’ own experiences and the logical
principles that I am trying to convey. As a result,
although I find it convenient to explain some princi-
ples by using the notation of symbolic logic, I focus
mostly on English because that is the language the
students will use when they analyze mathematical
statements and develop their own mathematical
arguments. And because the acceptance of the
truth and falsity of general forms of statements is
often context dependent, I try to introduce each new
logical principle with statements whose truth and
falsity students can appreciate without difficulty.

In a class of college students, for instance, I
might pave the way for a formal definition of the
truth and falsity of a universal—*for all”—statement
by asking whether it is true or false that every stu-
dent in the class is more than twenty years old.
Normally, one person will say that he knows that it
is false, and I will ask—with a smile, because it is
“obvious” to all—how he can be so sure. He plays
along with my act and says that it is false because
he himself is not over twenty. Ah! So if just one stu-
dent in the class is not over twenty, then the general
statement that “Every student in the class is over
twenty” is false? Yes, that is right. Even if some
other students are over twenty? Yes, that is right.

Okay, but what about the statement “Every stu-
dent in the class is over fifteen years old™? Is it true
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or false? True? How can we be sure? Take a poll of
the class to verify that each individual student is
over fifteen. Ah! So for us to be able to claim cor-
rectly that a certain property holds for all members
of some set, the property must hold for every mem-
ber of the set individually. Yes, that is right.

For question 1, then, why is it not enough to check
the truth of the property in the opening theorem for
just a few odd integers? It is not enough because
the theorem claims that a certain property (having
an odd square) is true for any odd integer. If, some-
where in the infinify of all odd integers, just one
odd integer exists—perhaps so large that no human
being has even written it down!—whose square is
not odd, the theorem would be false. So we have to
know that this result cannot happen to be “mathe-
matically certain” that the theorem is true.

FILLING IN THE GAPS: GUESTION 2

The great advantage of using variables in mathe-
matics is that they allow us to give temporary names
to objects so that we can refer to them unambigu-
ously while performing all manner of complicated
computations and deductive-reasoning steps that
involve them. The French mathematician Jean
Dieudonné once referred to the “boldness” of giving
a name to an unknown quantity and then working
with it “as if it were a known quantity” (1972, 102).
And this approach is bold. It is also among the most
useful techniques for solving mathematical problems.

From the very beginning of their study of algebra,
we teach students how to use variables to stand for
unknown quantities in equations and how to
manipulate expressions involving variables. To give
students practice in using variables in the sentences
that are used in deductive reasoning, I might pick
up on the interaction discussed in the previous sec-
tion by asking the class to state some different ways
to express the idea that “Every student in the class
is over fifteen.” Typical responses would be “All stu-
dents in the class are over fifteen” and “Each stu-
dent in the class is over fifteen.” Fine, but in
mathematics we often do things a little strangely!
What about this sentence? “Given any student, if
the student is in this class, then that student is
over fifteen.” Does this sentence have the same
meaning as the others? Well, yes, although it
sounds somewhat peculiar. How about these sen-
tences? “For any student x, if x is in this class, then
x is over fifteen” or “For all students x, if x is in this
class, then x is over fifteen.” Also peculiar, but yes,
these sentences have the same meaning as the first
one.

At this point, having discussed ordinary condi-
tional statements earlier in the course, I would
define a universal conditional statement to be one of
the form “For all x in D, if H(x), then C(x),” where x
is a variable taking values in a set D and where
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Hi(x) and C(x) are properties that may or may not
be true for a given x. Property H(x) is called the
hypothesis; and Clx), the conclusion of the statement.

For instance, D could be the set of all students;
H(x), the property “x is in this class”; and C(x), the
property “x is over twenty” or “x is over fifteen.” As
we saw in the examples, for such a statement to be
true, C(x) must be true for each individual x in D
for which H(x) is true. For the statement to be false,
at least one x exists in D for which H(x) is true and
C(x) is false. Or, more formally, the negation of “For
all x in D, if H(x), then Clx)” is “There exists an x in
D such that H(x) is true and C(x) is false.”

To help students develop the ability to translate
back and forth between formal and informal modes
of expression, I give them such exercises as the
following:

a) Rewrite the statement “For all real numbers x, if
x> 2, then * > 4” in various ways, without using
a variable.
b) Rewrite the statement “The square of any odd
integer is odd” in the form “For all integers x, if
then J

Answering part (a) helps students develop their
ability to deal flexibly with the kind of universal
statements that are ubiquitous in mathematics.
And, of course, the correct response to part (b), “For
all integers x, if x is odd, then x? is odd,” is exactly
what is needed to understand the answer to ques-
tion 2. Where does the x come from? It is just a
temporary name that we give to something so that
we can refer to it repeatedly without becoming
confused.

FILLING IN THE GAPS:
QUESTIONS 3 AND 5

Sometimes the truth or falsity of a statement “For
all xin D, if H(x), then C(x)” can be determined by
checking C(x) individually for each x in D for which
H(x) is true. For example, is it true or false that
“For all even integers x, if x is less than 25, then x
can be expressed as a sum of three or fewer perfect
squares”? Since only finitely many even integers
are less than 25, we can check each one to see
whether it can be expressed in the specified way.

But when infinitely many elements exist in D for
which H(x) is true, it is impossible to check each
individually. What saves the day is the logical prin-
ciple known as universal generalization or general-
izing from the generic particular. The great
mathematician and philosopher Alfred North
Whitehead was referring to this principle when he
wrote, “Mathematics, as a science, commenced
when first someone, probably a Greek, proved
propositions about ‘any’ things or about ‘some’
things without specification of definite particular
things” (1958, 7).
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According to this principle, the following is true.

To prove a statement of the form
For all elements x in a set D, if H(x), then C(x),

(@) suppose that x is any (particular but arbi-
trarily chosen) element in D for which H(x)
is true,

and

(b) show that x makes C(x) true.

The word any in the supposition is crucial. To say
that x is any element of D for which H(x) is true
means that although we are to imagine it as one
particular element, we are not to think of it as hav-
ing any properties other than those possessed by
every other element of D that satisfies H(x). In
other words, x is a generic element of D that satis-
fies H(x).

When stated as a technique of proof, this deduc-
tive principle is often called the method of direct
proof. The outline of a direct proof depends on only
the form of the statement to be proved, not on its
content. To help students realize the significance of
this point, I ask them to state what one would sup-
pose and what one would show to prove something
nonsensical like “For all bilops x, if x is a gragon,
then x is a trexer.” The answer, of course, is that we
suppose that we have any bilop x that is a gragon,
and then we must show that x is a trexer.

I often promise students that if they learn how to
write just the outline of a proof for a universal con-
ditional statement, I will virtually guarantee them
some success on any advanced mathematics exami-
nation that they ever take. When asked to prove
such a statement, all they have to do is write what
they need to suppose and what they need to show
and then claim, “This is obvious.” With luck, their
teacher will agree, take them to task for not provid-
ing the details, and then give them partial credit.

To help students come to see proof as a process, I
suggest that they put the statement to be proved in
universal conditional form and then ask themselves
two questions: “What do I need to suppose?” and
“What must I show?” When considering theorem A,
they would rewrite

The square of any odd integer is odd
as
For all integers x, if x is odd, then x? is odd.

Then they would ask, “What do I need to suppose?”
and “What must I show?” The correct responses
would be “I need to suppose that x is any integer
that is odd” and “I must show that x? is also odd,”
which answer questions 3 and 5.

FILLING IN THE GAPS: QUESTION 4

Once students have assimilated the basic structure
of a proof and know how to figure out what they are

supposing and what they must show, it is not diffi-
cult to convince them to ask themselves, “How do I
show that?” or “How do I get from the supposition
to the conclusion?” To answer these questions, I
encourage students to ask themselves, “What do
the supposition and the conclusion mean?” In a sur-
prising number of cases, all we have to do is use the
definitions of the various terms involved to fill in
the body of the proof.

Probably the most important feature of a defini-
tion is that it has both an if and an only if direction.
For instance, the term odd is defined as follows:

An integer x is odd if, and only if, x = 2k + 1 for
some integer .

Thus any time we have an odd integer, we know
that it has a certain form—the only if direction of
the definition. And any time we have an integer of
a certain form, we know that it is odd—the if direc-
tion of the definition.

Knowing that an
integer has the leads to knowing that
form 2k + 1 for - it is odd.
some integer k

knowing that it
Knowing that an  1eads to has the form
integer is odd - 2k + 1 for some

integer .

In the proof that the square of any odd integer is
odd, the conclusion is that a certain integer, x?, is
odd. From the if direction of the definition, students
see that if they can show that

x* =2 « (some integer) + 1,

then they will be able to complete the proof. But by
the hypothesis that x is odd and the only if direc-
tion of the definition, they can deduce that

x=2k+1

for some integer k. So, by substitution, the problem
reduces to showing that

(2k +1)* =2 « (some integer) + 1,

which leads to the algebraic steps that are per-
formed in the proof and answers the last remaining
question, question 4.

WHAT ABOUT DISPROOF?

The main purpose of teaching proof is to give stu-
dents a tool for analyzing the truth or falsity of
mathematical statements. It follows that it is just
as important to teach students how to disprove
statements as how to prove them. The basic method
used to disprove most mathematical statements is
the same as that used to show the falsity of the
statement “For all students x, if x is in this class,
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then x is over twenty,” namely, find one student, x,
who is in the class but who is not over twenty.

In general, a statement of the form “For all x in
D, if H(x), then C(x)” is disproved by finding an ele-
ment x in D for which H(x) is true and C(x) is false.
Such an x is called a counterexample. For instance,
consider the statement “For all real numbers x, if
x2> 4, then x > 2.” The number -3 is a counter-
example that disproves this statement because
(-3 =9 and 9 > 4 but -3 * 2.

WHAT ABOUT PROOF
BY CONTRADICTION?

Students find proof by contradiction considerably
harder to master than direct proof, so it is especial-
ly important to link the basic idea of the method to
students’ previous experience. When [ introduce the
concept, for instance, I might begin by asking the
class, “How do you know that today is not Thanks-
giving?” Various responses usually come back: “We
would be home eating turkey,” “We would not have
class,” or “It would be Thursday.” “Ah!” I reply, “so
if it were Thanksgiving, various other things would
have to be true, and since they are not, we know it
is not Thanksgiving.” Yes, that is right. That is
what proof by contradiction is all about.

To prove by contradiction that a statement is
true,

suppose that it is false
and then

show that this supposition leads logically to a
contradiction.

Note that both fundamental methods of proof—
direct and by contradiction—start by supposing one
thing and conclude by showing something else. For
both methods a student need ask only “What am I
supposing?” and “What must I show?” realizing,
however, that the answers will be very different in
each case.

One of the most serious difficulties that students
have in actually constructing proofs by contradiction
on their own is in supposing the wrong thing. For
instance, consider the following common “proof”
that the product of any nonzero rational number
and any irrational number is irrational:

PROOF. Suppose not. Suppose that the product of any
nonzero rational number and any irrational num-
ber is rational. But 1 is a nonzero rational number
and V2 is an irrational number, and their product
is 1 « V2 = V2, which is irrational. This example
contradicts the supposition that the product is
rational. Hence the product of any nonzero ratio-
nal number and any irrational number is irrational.

The problem here is that in starting the proof by
writing the negation of—
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The product of any nonzero rational number and
any irrational number is irrational,

the student wrote—

The product of any nonzero rational number and
any irrational number is rational

instead of—

There exist a nonzero rational number and an
irrational number whose product is rational.

A teacher who knows how prone students are to
make this mistake can be sure to give lots of prac-

tice in taking negations of the various forms of

statements that arise in mathematics: those involv-
ing and, or, if-then, for all, and there exists. Even
when some other instinct overcomes them and they
write the negation incorrectly, at least the teacher
can point out the error and they will almost always
understand. When students have not had practice
negating statements, it is very difficult to convince
them that the foregoing “proof” is invalid.

A UNIFIED FRAMEWORK

Presenting proof and disproof as outlined builds a
unified framework for solving a large class of
mathematical problems. Faced with a statement
of the form “For all x in D, if H(x), then C(x),”
whose truth or falsity is unknown, we reason as
follows: Suppose that x is an element of D for
which the hypothesis H(x) is true. Must C(x) also
be true? If we show that the answer is “yes,” then
we have a direct proof. If we show that the answer
is “not necessarily,” then we have a disproof by
counterexample. If we show that it is impossible
for C(x) to be false, then we have a proof by
contradiction.

And that is it: direct proof, disproof by counter-
example, and proof by contradiction are three
aspects of the same whole. We arrive at one or
another by a thoughtful examination of the state-
ment in question, knowing what it means for a
statement of that form to be true or false.

EXPANDING THE
USE OF PROOF IN HIGH SCHOOL

High school students can develop their abilities to
prove and disprove mathematical statements in
many settings besides a geometry course and the
formal presentation of mathematical induction. Ide-
ally, proof and disproof should be a theme running
through the entire secondary mathematics curricu-
lum, with a foreshadowing of the ideas in the mid-
dle grades. Of course, teachers should start gradu-
ally, perhaps first giving students just questions
that can be answered by finding a counterexample;
next adding problems that can be solved by citing a
known property, such as the distributive law; then
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asking questions that require a direct proof; and
finally introducing proof by contradiction.

To make these ideas accessible to students of a
wide range of ability levels in my own courses, [ try
to offer a varied mix of activities in virtually every
class period: exercises in logic to lay the basis for
working in an abstract setting, concrete exploratory
exercises to give practice working with the defini-
tions involved in the various statements we discuss,
and applications exercises to elucidate the value of
what we are doing. When introducing a new form of
proof, I also present fill-in-the-blank exercises to
help students get used to the flow of the proof
before I ask them to construct proofs entirely on
their own.

Examples of problems that could be used at the
high school level follow. Similar problems can be
found in many college discrete mathematics text-
books, transition-to-higher-mathematics textbooks,
and the high school textbook Precalculus and Dis-
crete Mathematics developed as part of the Univer-
sity of Chicago School Mathematics Project
(Peressini et al. 1992).

Algebraic formulas. Is the formula (x + y)* = x* +

y* true for all real numbers x and y? For some real
numbers x and y? For no real numbers x and y?
Explain.

Properties of even and odd integers. True or
false? The sum of any two even integers is even.
Justify your answer.

Divisibility properties of integers. True or false?
For any integers a, b, and ¢, if be is divisible by a,
then b is divisible by ¢ or ¢ is divisible by «.

Properties of rational numbers. True or false?
The product of any nonzero rational number and
any irrational number is irrational.

One-to-one and onto functions. Let f(x) = x/(x* + 1).
Is f one-to-one? Is f onto the set of all real numbers?
Explain.

Properties of logarithms. If b and y are positive
real numbers with log,y = 3, what is log, (1/y)?
Why?

Increasing and decreasing functions. Let glx) =
(x — 1)/x for all real numbers x # 0. Is g increasing
for all real numbers x > 0? Justify your answer.

Properties of trigonometric functions. True or
false? For all real numbers x, sin®(x) = 1 - cos(2x).
Explain.

High school teachers can make other choices that
can affect the extent to which their students devel-
op deductive-reasoning abilities. For instance, the
equation of a straight line is commonly introduced
as a formula for students to memorize. This
approach may well be appropriate for students’ ini-
tial introduction to the topic. But later on, at least,
they could be exposed to the classic method, which

is actually based on the idea of generalizing from
the generic particular. Here is how this method
works: What makes a straight line straight is that
no matter what two distinct points are chosen on it,
the slope computed by using them is the same as
that computed by using any other two distinct
points chosen on it. This result, of course, follows
from properties of similar triangles.

Suppose that we want to find the equation of the
line with slope —2 that passes through the point (1,
3). See figure 1. We imagine (x, y) to be any other
(particular but arbitrarily chosen!) point on the line
then compute the slope by using (x, y) and (1, 3).
Since the result must equal -2, we have the equation
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Fig. 1
Finding the eguation of the line with
slope -2 that passes through (1, 3)

When both sides are multiplied by x — 1, the result
is

y—-3=-2x-1),

which is true not only when (x, y) 2 (1, 3) but also
when (x, y) = (1, 3), which we see by plugging x = 1
and y = 3 into the equation. Hence every point on
the line satisfies this equation. Conversely, every
point satisfying the equation is on the line, so this
equation is that of the given line. From a practical
point of view, this method for finding the equation
of a line i8 as easy to use as a formula. But the
thought processes used in applying it are very dif-
ferent. Each time a student uses the classic
method, he or she gains practice in reasoning
deductively and employing the “generic particular’
mode of thought that is at the heart of all abstract
mathematics.

CONCLUSION

Those of us to whom mathematical thinking comes
easily find that it is hard to realize all the many
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1 small thought processes that
our students must master to

1at engage effectively in mathe-
nit, matical abstraction. For most
8 of our students, becoming com-
fortable with the logic of math-
's ematical thought does not
happen overnight. But with
the ‘ steady support from us, they
(1, can make significant progress.
er 1 The Russian psychologist L. S.
line Vygotsky pointed out that
g what students are able to do
ition ‘ when they work entirely on

their own is very different from

what they can accomplish with

the guidance of a teacher; the

work they do with our help

today enables them to achieve
T success tomorrow on their own
(Vygotsky 1935).
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