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This article focuses on issues connected with the use of existential quantification
in mathematics proofs. Examples of common incorrect proofs from tertiary-level
students are given, and issues raised by the proofs are analyzed: (1) the use of
bound variables as if they continue to exist beyond the statements in which they
are quantified, (2) the implicit use of existential instantiation, (3) the
“dependence rule” for existential instantiation, and (4) universal instantiation
and its use with existential instantiation. Suggestions for responding to student
errors are offered.

INTRODUCTION

Many university students start a “proof” that the sum of any even integer and
any odd integer is odd as follows:

Example 1. Proof: Suppose m is any even integer and n is any odd integer. By
definition of even, m = 2k for some integer k. Also, by definition of odd, n =2k + 1
for some integer k,andsom +n =2k + (2k + 1) =4k + 1...

To help students avoid this mistake, a reasonably effective countermeasure is to
lead them to see that the resulting “proof” would not apply to any even integer
and any odd integer but only to an (arbitrary) even integer and the next
consecutive odd integer.

From a technical point of view, the problem with the argument in Example 1 is
that it violates the logical principle known as existential instantiation:

Existential Instantiation: If we know that an object exists, then we may give it a
name, as long as we are not currently using the name for another object in our
discussion.

In Example 1, of course, once the letter k has been used to denote the integer
which, when doubled, equals m, existential instantiation prohibits giving the
letter k a different meaning in the representation for n.

BOUND VARIABLES THAT EXCEED THEIR BOUNDS

The description of the mistake in Example 1 does not, however, address the
issue of why students make it in the first place. One reason is that having learned
the definitions of even and odd as

An integer n is even if and only if there exists an integer k so that n = 2k
An integer n is odd if and only if there exists an integer k so that n = 2k + 1,

students come to believe that the k’s have an independent existence beyond the
defining sentences. In fact, the k’s are what logicians call “bound” by the
quantifier “there exists.” The scope of the quantifiers, and hence the binding of




the k’s, extends only to the end of the sentences. In other words, the k’s used in
the defining sentences do not have a meaning related to even or odd integers
once the definitions are finished.

Both the n and the k are, in fact, merely placeholders that make it convenient to
refer, for instance, to an even integer and the integer which, when doubled,
equals the even integer. Thus another countermeasure to help students avoid the
mistake in Example 1 is to write the definitions of even and odd in a variety of
ways — both with other letters in addition to, say, n and k and without any letters
at all. For example, one can phrase the definition of even by saying that an
integer is even if and only if it equals twice some integer. In general, exercises
that ask students to phrase mathematical statements both formally (using
variables and quantifiers) and informally (avoiding the use of variables as much
as possible) are very helpful in deepening their understanding of the use of
variables in mathematical discourse.

Sometimes we have to acknowledge that mathematicians’ own use of notation or
terminology has unforeseen consequences for student understanding. Indeed,
another reason students may make the mistake in Example 1 is that they have
seen instances in ordinary mathematical writing which appear to suggest that
variable names can, in fact, maintain their meaning beyond the statements in
which they are bound. For instance, when the statement of a theorem is
universal, the variables in the hypothesis are bound. From a technical point of
view, therefore, the proof should start by introducing the hypothesized objects as
generic elements, say by writing something like “Suppose that...” or “Assume
that...” or “Given ....”" Yet it is common practice to view this step as
unnecessary repetition. The following is a simple example:

Example 2. Theorem: If n is any odd integer, then n’ is odd.
Proof: Since n is odd, there is an integer k such that n = 2k + 1. Therefore,
n®=(2k + 1)% ...

IMPLICIT USE OF EXISTENTIAL INSTANTIATION

The second sentence in Example 2 illustrates another subtle but important
phenomenon related to existential instantiation. Consider the statement “There is
an integer k such that n = 2k + 1.” Even though the k in this statement is a bound
variable, the very fact of using the specific letter k encourages a reader to
Imagine a particular integer, called k, that satisfies the equation. In other words,
because the statement names the integer k, it is common to proceed as if
existential instantiation had already been used to bring a specific integer into the
discussion and call it k. This is what occurs in the second sentence of Example 2
where K is treated as an instantiated object.

! This follows from the logical principle known as Universal Generalization: If we can prove that a property is
true for a generic element of a set (i.e., a particular, but arbitrarily chosen, element of the set), then we can
conclude that the property is true for every element of the set. (As a proof technique, this property is also called
Generalizing from the Generic Particular.)



THE DEPENDENCE RULE

Following common usage, let us call an AE statement one in which a universal
quantifier precedes an existential quantifier. As the analysis of Example 2
suggests, the use of the same symbol in both the existential part of an AE
statement and in a subsequent existential instantiation of the existence part of the
statement is extremely common in mathematical writing. In many cases it causes
no problems, but in some it leads to error.

Arsac and Durand-Guerrier (2005) introduce the term dependence rule, to
describe the fact that in the AE statement “For all x in set D, there existsa y in
set E...” the value of y depends on the value of x. In other words, if x is changed,
y must ordinarily be changed also. Their main point is that as soon as an
argument contains two AE statements with elements of the same sets, the
dependence rule becomes critical. Thus a refinement of the explanation for the
mistake in Example 1 is that since the value of the k in the second sentence
depends on m, it is highly unlikely to be the same as the value of k in the third
sentence, which depends on n. This affords an additional way to help students
understand the mistake they make when they start a proof as in Example 1.

Making students aware of the dependence rule can also provide a means for
responding when they make another common mistake. We illustrate it with the
start of a “proof” that the square of any odd integer is odd:

Example 3. Proof: Suppose n is any odd integer. By definition of odd,
n = 2k+ 1 for any integer k...

An effective response to the student who starts the proof in this way is to point
out that, for example, k cannot be just any integer because, in fact, it actually
equals (n —1)/2.

Arsac and Durand-Guerrier give an example of a common “proof” of Cauchy’s
mean value theorem that is erroneous because it fails to observe the dependence
rule. They also point out that both Cauchy and Abel occasionally made similar
mistakes in their own work. Example 1 shows, however, that this type of error is
not limited to advanced proofs but can actually occur in very simple ones.

UNIVERSAL INSTANTIATION AND ITS USE WITH EXISTENTIAL
INSTANTIATION

In an elementary proofs course, the following is a typical student’s “proof” of
the statement: If f is any surjective function from X to Y and g is any surjective
function from Y to Z, then the composition gof is surjective.

Example 4. Proof: By definition of surjective, given any y in Y, there is an x in X
with f (x) =y. Also by definition of surjective, given any z in Z, there isa 'y in Y with
9(y) =z. S0 gof (x) = g(f (x)) = g(y) =z
Of course, the main problem with this proof is that it is backwards. The only
way to prove that gof is surjective — and the point to emphasize with students — is



to start with a generic element of Z and show that there is an element of X
whose image is that element of Z. But, as with the previous examples, we may
ask: What leads a student to develop this “proof”?

One possibility is the tendency, noted previously, to regard variables as having a
continuing existence beyond the bounds set by the quantification. Thus, the y in
the first sentence of Example 4 is simply regarded as the same as the y in the
second sentence.

To analyze Example 4 more deeply, we need to state another principle of logic.

Universal Instantiation: If a property is true for all elements of a set, then it is true
for any particular element of the set.

In the first sentence of Example 4 both universal instantiation and existential
instantiation are used implicitly in the sense that the naming of x and y is
obviously considered sufficient to allow one to discuss them as if they were
particular objects with the property that f(x) = y. Similarly, in the second
sentence, there is implicit instantiation of both z and y. The problem, of course,
is that the instantiated y in the first sentence is generic — it could be any element
of Y — whereas the instantiated value of y in the second sentence depends on the
instantiated value of z. In other words, the general property of surjectivity stated
in the first sentence has to be applied to the particular instantiated value of y that
Is obtained using the second sentence. Copi (1954) pointed out that in general
“whenever we use both EI (Existential Instantiation) and Ul (Universal
Instantiation) in a proof to instantiate with respect to the same individual
constant, we must use EI first.”

A CAUTIONARY EXAMPLE

Because we are aware of the tendency to invest letters with continuing existence
beyond the scope of the quantifier in the sentence where they are introduced, it
Is common to introduce differentiated symbols even when logic does not
actually require them. For example, Selden and Selden (to appear) analyze a
proof that the sum of continuous functions is continuous. The middle of the
proof contains the following sentences:

[1] Now because f is continuous at a, there is a &, > 0 such that for any xg, if
| Xx; —a| < & then |f(x;) — f(a)|< &/2.

[2] Also because g is continuous at a, there is a & > 0 such that for any x, if
| X2 —a| < & then|g(xz) - g(a)l< &/2.

Strictly speaking, the letter x could replace both x; and X, in [1] and [2] because
the scopes of the universal quantifiers for x; and x, only extend to the ends of
sentences [1] and [2] respectively. By writing the proof statements in the form
shown, the Seldens apparently wanted to avoid any possible misunderstanding
that use of a common symbol might induce.



Such well-meaning attempts to solve one problem can, however, occasionally
produce another. For example, on an examination, | gave the following problem:

Let A={n e Z|n=8r-3 for some integer r} and let
B={meZ|m= 4s+1 for some integer s}. Prove that A c B.

In class | had solved a similar problem, starting with a generic element of A and
going through the computations needed to show that the element was in B. In the
examination problem, | used the letters n and r in the definition for A and the
letters m and s in the definition for B to ensure that students would not confound
the meanings of the variables in their answers. As things turned out, this effort
appears simply to have increased the likelihood of their making a different
mistake. Example 5 shows a type of answer made by a large number of students.

Example 5. Proof: Let s = 2r — 1 for some integer r. Then

m=4(2r-1)+1 by substitution | Scratch work:
=8r-4+1 |4s+1=8r-3

=8r-3 by algebra. |4s=8r-4

Thus m =8r-3=n, hencem=n. ls=2r-1

Therefore every element in A is also an element of B and hence A — B.

The proof in Example 5 suggests that although the students had conscientiously
learned the details of the computations, they did not fully appreciate the
underlying logic of the proof well enough to realize the need to start with a
particular but arbitrarily chosen element of A and to show that this element is in
B. Itis likely that by using different names for the variables in the definitions of
A and B, | actually encouraged students to think of them as having an
independent existence to which they were entitled to refer without reintroducing
instantiations of them in the broader context of the definition of subset.

CONCLUSION

The University of Washington professor Ramesh Gangolli (1991) once made a
statement that neatly summarizes an important insight into mathematics
instruction:

The mathematics profession as a whole has seriously underestimated the difficulty
of teaching mathematics.

The preceding examples illustrate the complexity of some of the logical issues
that arise even in simple mathematical proofs. Coming to understand them
provides ways for teachers to respond more effectively to students’ difficulties.
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