
8.5 PETRI NETS

Consider the computer program shown in Figure 8.5.1. Normally, the instruc-
tions would be processed sequentially—first, A = 1, then B = 2, and so on.
However, notice that there is no logical reason that prevents the first three
instructions—A = 1; B = 2; C = 3—from being processed in any order or
concurrently. With the continuing decline of the cost of computer hardware,
and processors in particular, there is increasing interest in concurrent process-
ing to achieve greater speed and efficiency. The use of Petri nets, graph models
of concurrent processing, is one method of modeling and studying concurrent
processing.

A � 1

B � 2

C � 3

A � A+1

C � B+C

B � A+C

Figure 8.5.1
A computer program.

DEFINITION 8.5.1

A Petri net is a directed graph G = (V , E), where V = P ∪T and P ∩T = ∅.
Any edge e in E is incident on one member of P and one member of T . The
set P is called the set of places and the set T is called the set of transitions.

Less formally, a Petri net is a directed, bipartite graph where the two
classes of vertices are called places and transitions. In general, parallel edges
are allowed in Petri nets; however, for simplicity, we will not permit parallel
edges.

EXAMPLE 8.5.2

An example of a Petri net is given in Figure 8.5.2. Places are typically drawn
as circles and transitions as bars or rectangular boxes.

Figure 8.5.2 A Petri net. Circles are places and bars are transitions.

DEFINITION 8.5.3

A marking of a Petri net assigns each place a nonnegative integer. A Petri net
with a marking is called a marked Petri net (or sometimes just a Petri net).

If a marking assigns the nonnegative integer n to place p, we say that
there are n tokens on p. The tokens are represented as black dots.

EXAMPLE 8.5.4

An example of a marked Petri net is given in Figure 8.5.3.



p1 p2

p3 p4

t1
t3

t2

Figure 8.5.3 A marked Petri net.

In modeling, the places represent conditions, the transitions represent
events, and the presence of at least one token in a place (condition) indicates
that that condition is met.

EXAMPLE 8.5.5 Petri Net Model of a Computer Program

In Figure 8.5.4 we have modeled the computer program of Figure 8.5.1. Here
the events (transitions) are the instructions, and the places represent the con-
ditions under which an instruction can be executed.

B = 2

C = 3

A = 1

C = B+ C

p3

p2

p1

p6

p5

p4

p8

p7
p9

A = A+1

B = A+ C

Figure 8.5.4 The program of Figure 8.5.1 as a Petri net. The tokens
indicate that the conditions for executing A = 1, B = 2, and C = 3 are met.

DEFINITION 8.5.6

In a Petri net, if an edge is directed from place p to transition t , we say that p

is an input place for transition t . An output place is defined similarly. If every
input place for a transition t has at least one token, we say that t is enabled. A
firing of an enabled transition removes one token from each input place and
adds one token to each output place.

EXAMPLE 8.5.7

In the Petri net of Figure 8.5.3, places p1 and p3 are input places for transition
t1. Transitions t1 and t2 are enabled, but transition t3 is not enabled. If we fire
transition t1, we obtain the marked Petri net of Figure 8.5.5. Transition t3 is



now enabled. If we then fire transition t3, we obtain the net shown. At this
point no transition is enabled and thus none may be fired.

p1

p2

p3 p4

t1
t3

t2

p1

p2

p3 p4

t1
t3

t2

Fire t3

Figure 8.5.5 Firing transition t3.

DEFINITION 8.5.8

If a sequence of firings transforms a marking M to a marking M ′, we say that
M ′ is reachable from M .

EXAMPLE 8.5.9

In Figure 8.5.6, M ′′ is reachable from M by first firing transition t1 and then
firing t2.

In modeling, the firing of a transition simulates the occurrence of that
event. Of course, an event can take place only if all of the conditions for its
execution have been met; that is, the transition can be fired only if it is enabled.
By putting tokens in places p1, p2, and p3 in Figure 8.5.4, we show that the
conditions for executing the instructions A = 1, B = 2, and C = 3 are met.
The program is ready to be executed. Since the transitions A = 1, B = 2, and
C = 3 are enabled, they can be fired in any order or concurrently. Transition
C = B + C is enabled only if places p5 and p6 have tokens. But these places
will have tokens only if transitions B = 2 and C = 3 have been fired. In other
words, the condition under which the event C = B +C can occur is that B = 2
and C = 3 must have been executed. In this way we model the legal execution
sequences of Figure 8.5.1 and the implicit concurrency within this program.

Among the most important properties studied in Petri net theory are
liveness and safeness. Liveness is related to the absence of deadlocks and
safeness is related to bounded memory capacity.

EXAMPLE 8.5.10 Petri Net Model of a Shared Computer System

Two persons are sharing a computer system that has a disk drive D and a
printer P . Each person needs both D and P . A possible Petri net model of
this situation is shown in Figure 8.5.7. The marking indicates that both D and
P are available.

Now suppose that person 1 requests D and then P (while person 2 re-
quests neither). The occurrences of these events are simulated by first firing
transition “request D” and then firing transition “request P ” for person 1. The



t1 t3

t2

M

Fire t1

Fire t3 Fire t2

t1 t3

t2

M ′

t1 t3

t2

M ′′

Figure 8.5.6 Marking M ′′ is reachable from M by firing t1 and then t2.

resulting Petri net is shown in Figure 8.5.8. When person 1 finishes the pro-
cessing and releases D and P , simulated by firing the transitions “process” and
then “release D and P ,” we return to the Petri net of Figure 8.5.7. If person 2
requests D and then P (while person 1 requests neither), we obtain a similar
firing sequence.

Again, assume that we have the situation of Figure 8.5.7. Now suppose
that person 1 requests D and then person 2 requests P . After the appropriate
transitions are fired to simulate the occurrences of these events, we obtain the
Petri net of Figure 8.5.9. Notice that at this point, no transition can fire. Person
1 is waiting for person 2 to release P and person 2 is waiting for person 1 to
release D. Activity within the system stops. We say that a deadlock occurs.
Formally, we say that a marked Petri net is deadlocked if no transition can fire.
Prevention of deadlocks within concurrent processing environments is a major
practical concern.

Example 8.5.10 motivates the following definition.

DEFINITION 8.5.11

A marking M for a Petri net is live if, beginning from M , no matter what
sequence of firings has occurred, it is possible to fire any given transition by
proceeding through some additional firing sequence.



Request D

P available
Request P

P ready

ProcessRelease
D and P

Finished
with D and P

D ready

D available

Request D

D ready

Finished
with D and P

P ready

Request P

Process Release
D and P

Person 1 Person 2

Figure 8.5.7 A Petri net model of a shared computer system.
Each person needs disk drive D and printer P . The marking indicates
that D and P are available.

Request D

P available
Request P

P ready

ProcessRelease
D and P

Finished
with D and P

D ready

D available

Request D

D ready

Finished
with D and P

P ready

Request P

Process Release
D and P

Person 1 Person 2

Figure 8.5.8 The Petri net of Figure 8.5.7 after firing “request D” and
then “request P ” for person 1. After person 1 finishes processing and releases D

and P , simulated by firing “process” and then “release D and P ,” we obtain the
Petri net of Figure 8.5.7 again.

If a marking M is live for a Petri net P , then no matter what sequence of



Request D

P available
Request P

P ready

ProcessRelease
D and P

Finished
with D and P

D ready

D available

Request D

D ready

Finished
with D and P

P ready

Request P

Process Release
D and P

Person 1 Person 2

Figure 8.5.9 The Petri net of Figure 8.5.7 after firing “request D”
for person 1 and “request P ” for person 2. At this point the Petri net is dead-
locked; that is, no transition can fire.

transitions is fired, P will never deadlock. Indeed, we can fire any transition
by proceeding through some additional firing sequence.

EXAMPLE 8.5.12

The marking M of the net of Figure 8.5.6 is live. To see this, notice that the
only transition for marking M that can be fired is t1, which produces marking
M ′. The only transition for marking M ′ that can be fired is t2, which produces
marking M ′′. The only transition for marking M ′′ that can be fired is t3, which
returns us to marking M . Thus any firing sequence, starting with marking M ,
produces one of the markings M, M ′, or M ′′ and from there we can fire any
transition t1, t2 or t3 by proceeding as in Figure 8.5.6. Therefore, the marking
M for the net of Figure 8.5.6 is live.

EXAMPLE 8.5.13

The marking shown in Figure 8.5.4 is not live since after transition A = 1 is
fired, it can never fire again.

If a place is regarded as having limited capacity, boundedness assures us
that no place will overflow.

DEFINITION 8.5.14

A marking M for a Petri net is bounded if there is some positive integer n

having the property that in any firing sequence, no place ever receives more



than n tokens. If a marking M is bounded and in any firing sequence no place
ever receives more than one token, we call M a safe marking.

If each place represents a register capable of holding one computer word
and if an initial marking is safe, we are guaranteed that the memory capacity
of the registers will not be exceeded.

EXAMPLE 8.5.15

The markings of Figure 8.5.6 are safe. The marking M of Figure 8.5.10 is not
safe, since as shown, if transition t1 is fired, place p2 then has two tokens. By
listing all the markings reachable from M , it can be verified that M is bounded
and live (see Exercise 7).

t1 t3

t2

M

Fire t1

t1 t3

t2

p2

p1

p4

p3

p6

p5

p2

p1

p4

p3

p6

p5

Figure 8.5.10 Marking M is not safe. After t1 is fired, p2 holds
two tokens.

� � �

Exercises

In Exercises 1–3, model each program by a Petri net. Provide a marking that repre-
sents the situation prior to execution of the program.

1. A = 1

B = 2

C = A + B

C = C + 1

2. A = 2

B = A + A

C = 3

D = A + A

C = A + B + C

3. A = 1

S = 0

10 S = S + A

A = A + 1

GOTO 10

4. Describe three situations involving concurrency that might be modeled as Petri nets.

5. Give an example of a marked Petri net in which two transitions are enabled, but
firing either one disables the other.

6. Consider the following algorithm for washing a lion.



1. Get lion.

2. Get soap.

3. Get tub.

4. Put water in tub.

5. Put lion in tub.

6. Wash lion with soap.

7. Rinse lion.

8. Remove lion from tub.

9. Dry lion.

Model this algorithm as a Petri net. Provide a marking that represents the situation
prior to execution.

7. Show that the marking M of Figure 8.5.10 is live and bounded.

Answer the following questions for each marked Petri net in Exercises 8–12.

(a) Which transitions are enabled?

(b) Show the marking that results from firing t1.

(c) Is M live?

(d) Is M safe?

(e) Is M bounded?

(f) Show or describe all markings reachable from M .

(g) Exhibit a marking (other than the marking that puts zero tokens in each place)
not reachable from M .

8.

M

t3

t2

t1
t4

9.

t1 t3

t2

M

10.

M

t1

t2

t3

11.

M

t3t2

t1



� 12.

M

t3t2

t1

t4

13. Give an example of a Petri net with a marking that is safe, but not live.

14. Give an example of a Petri net with a marking that is bounded, but not safe.

15. The Dining Philosophers’ Problem (see [Dijkstra, 1968]) concerns five philosophers
seated at a round table. Each philosopher either eats or meditates. The table is set
alternately with one plate and one chopstick. Eating requires two chopsticks so that
if each philosopher picks up the chopstick to the right of the plate, none can eat—the
system will deadlock. Model this situation as a Petri net. Your model should be live
so that the system will not deadlock and so that, at any point, any philosopher can
potentially either eat or meditate.

16. Develop an alternative Petri net model for the situation of Example 8.5.10 that
prevents deadlock.

If each place in a marked Petri net P has one incoming and one outgoing edge,
then P can be redrawn as a directed graph where vertices correspond to transi-
tions and edges to places. The tokens are placed on the edges. Such a graph is
called a marked graph. Here we show a marked Petri net and its representation
as a marked graph.

(b)(a)

17. Which Petri nets in Exercises 8–17 can be redrawn as marked graphs?

18. Redraw the marked Petri net as a marked graph.



19. Redraw the marked Petri net as a marked graph.

The token count of a simple directed cycle in a marked graph is the number of to-
kens on all the edges in the cycle.

20. Show that the token count of a simple directed cycle does not change during any
firing sequence.

� 21. Show that a marking M for a marked graph G is live if and only if M places at least
one token in each simple directed cycle in G.

� 22. Show that a live marking is safe for a marked graph G if and only if every edge in G

belongs to a simple directed cycle with token count one.

23. Give an example of a marked graph with a nonlive marking in which every edge
belongs to a simple directed cycle with token count one.

24. Let G be a marked graph. Show that each edge in G is contained in a simple directed
cycle if and only if every marking for G is bounded.

� 25. Let G be a directed graph where, if we ignore the direction of the edges in G, G is
connected as an undirected graph. Show that G has a live and safe marking if and
only if given any two vertices v and w in G there is a directed path from v to w.


