
GENERALIZATIONS OF THE 
RIEMANN DERIVATIVE(1) 

BY 

J. MARSHALL ASH 

Introduction. In ?1 of this paper a derivative generalizing the Riemann deriva- 
tive is considered. The existence of this derivative on a set is shown to imply the 
existence of the Peano derivative almost everywhere on the set. In ?2 the LI norm 
(1 ?p < oo) replaces the LX norm of ?1 and the same result is proved. A special 
case of this result is that the existence of the Riemann LI derivative implies the 
existence of the Peano LI derivative almost everywhere. In ?3 a generalization of 
smoothness is shown to imply smoothness almost everywhere. We consider only 
measurable sets of real numbers and real valued functions of a real variable. 

1. An LX generalization of the Riemann derivative. A function f is said to have 
a Peano derivative of order k at x, i.e., f E tk(X), if there are constants fo(x), 
fA(x),... , fk(x) such that 

f(x +t) = fo(x) +fi(x)t + ***+ k ! 
tk + (tk) as t O* . 

We say f is Peano bounded of order k at x, i.e., f E Tk(x), if there are constants 

fo(x),.. , fk_l(x) such that 

f(x +) =fo (x) +fi (x) t+ * * +k 1() 
tk-l1+0(tk) as t O*0 

Let A={ao,a,.. ., ak+l; AO,..., Ak+l} be a set of real numbers with ai,aj 
if ioj satisfying 

ZAjai=O, j=O,1,.. ,k-1, 
i =o 

=k!, j= k. 

We say that f has a kth generalized derivative with respect to A at the point x, 
i.e., f E gk(X, A), if there is a constant f(k)(x) =f(k)(x, A) such that 

k+1 

2 Aif(x+ait) = f(k)(x)tk+o(tk) as t -*O. 
j=O 
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A function f is generalized-bounded of order k with respect to A at x, i.e., 

fe Gk(x, A), if 

2 Af(x+ait) = O(tk) as t -0. 
i=O 

To demonstrate the reason for the conditions on Zi=+o A a', let fe tk(x). Then 

EAif(x + ait) =E Ai |> fE x) (ait)j +o(tk)1 
i=O i=O j=O 

- E fj, t'['E Aia + o(tk) 
j=o J! i=o 

=fk(X)tk+o(tk) as t ->0. 

In other words, the conditions assure that if the Peano derivative exists, the 
generalized derivative will exist and be equal to it. 

If 1=0 and if the ai's are given, since the k+ 1 Ai's must satisfy the k+ 1 con- 
ditions, and since the matrix ((a{)) is a Van der Monde matrix and hence invertible, 
it follows that the Ai's can be expressed in terms of the ai's. To be precise (see 
Denjoy [1]) 

Ai = []I(ai-a1)]j k! i = 0, 1,.. .,k. 
j*i 

If, on the other hand, 1>0, the ai's and the k + 1 conditions do not uniquely 
determine the Ai's. / will be called the excess. 

Probably the most important example of the generalized derivative is the 
Riemann derivative. The kth Riemann derivative is obtained by setting 

ai =-k+i, i = 0, l,...,k. 

Since 1=0, we find that 

Ai 
a [( 21 )+ ( 2+i)] k! = i)-)k-i. 

The relationships between the various derivatives which have been introduced 
may be displayed diagrammatically as at top of p. 183. 

The arrows denote inclusion. For example, if fe tk(x), then f E Tk(x), so that 
tk(x) s Tk(x). As may be shown by simple counterexample, none of the arrows 
may be reversed. 

However, there is a classical theorem of Zygmund and Marcinkiewicz which 
states that if a function is k Riemann-bounded on a set, then at almost every point 
of that set it has a kth Peano derivative [2]. This may be generalized to 
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tk(x) 

T ((x, A) 

Tk(x) 

(SPECIAL CASE) 

RIEMANN DERIVATIVE 

Ck(x,A) 

(SPECIAL CASE) 

RIEMANN BOUNDEDNESS 

FIGURE 1 (Relationships between derivatives). 

THEOREM 1. Let f e Gk(x, A) for all x e E, then f e tk(x) for almost every x e E. 

(The case k = 1, 1= 0 is classical. The case k = 2, 1= 0 was done by Marcinkiewicz 
and Zygmund [3].) 

LEMMA 1. Let 0 be a point of density of . Let {aj, /j, i= 1,..., m be any set of 
real numbers such that /i : 0 for all i. Then for all u > 0 sufficiently small, there is a 
v E [u, 2u] such that 

aiu + flv c- i1.,m. 

Proof. Let p be the characteristic function of e. Let 

Ai = {v e [u, 2u] I cqu+/3iv e 4'}. 
For each i, 

?2u 1 (ai + 20i)u 

A l= r (qau + ?iv) dv = - R (s) ds 

[(ai+2Ii)u - (ai + P)u] = u as u-- +?0 
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since 0 is a point of density of C. Hence by choosing u sufficiently small we can 
make 

ts (1- 
1 

U* a = 11 29 .. I m. 

For any sets A and B, let A - B denote all the points of A that do not belong to B. 
Then 

m M 

[u, 2u) n A, u (fu, 2u] -AO 
i =1 J=1 

=< 2 IN, 2u]-Ail < u u 

so that 

[u, 2u1] n (1i As) ? 0 

and any v of this set will satisfy the conclusion of the lemma. 

LEMMA 2. The sliding lemma: Suppose that a ! 0, n t 1 and 

n 

2 Ajf(x + at) =Ot () for all x E, 
1=0 

then for any real a, 

Z Aif(x+(a1-a)t) = 0(t a) for almost every x c E. 
f=0 

If 0" is replaced by "o" in the hypothesis then the conclusion also holds with "o 
in placef of O "0" 

Proof. We may assume ao0 0 by reordering the terms if necessary. We may 
assume that O E| <j o Let Ej={x e E 1 2f o Af(x+ait)I <jItf I if ItI < llj}. 
Since IE- Ej - 0, it suffices to prove the lemma at every point of EJ which is a 
point of density of E5. To simplify notation, let x=0 be such a point. Let t be 
greater than 0 (the case t <0 is proved similarly). By Lemma 1, if t is sufficiently 
small, there is a u e [t, 2t] such that all of 

(a-a)t-aou, i = 0, 1 . , n 

and 

-at+(ak-ao)u, k = 1, ...n * 

belong to E. Since (a -a)t-aou e E,, we have 

Akf[{(a-a)t-aOu}+auI = O(u) = O(t), 10, 1,., n. 
k0o 
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Multiplying the ith equation by Ai and summing over i, we have 

n -n 

:2 Ai : Akf[{(ai-a)t-aou} + akU] = O(t ). 
i=O k=O 

Rearranging the order of summation, we obtain 

n n 

:O Ak 4 Aif[{-at+(ak-aO)u}+?at] = O(t). 
k=O J=0 

Since the term in curly brackets is in Ej for k > 0, each term of the outer sum except 
the k=0 term is O(ta). Hence that term is also O(ta), i.e., 

n 

Ao >2 Atf[{-at+(ao-ao)u}+ait] = O(ta). 
i=O 

Dividing by Ao and simplifying, we have 

n 

>2 Ajf[(ai-a)t] = O(ta) as t +?0, 
i=0 

which is the desired result. The "o" case is proved in a very similar manner. 

LEMMA 3. If 1,'ni=oAif(x+ait)I=O(l) for all xeE, then f is bounded in a 
neighborhood of almost every point x E E. 

We omit the proof which is similar to that of Lemma 5 on page 13 of [2]. 
Because of Lemma 3, without loss of generality we may add the assumption that 

f is bounded to the hypotheses of Theorem 1. Since f is bounded it is locally 
integrable; so we may define D -f by 

D?f(x) =f(x), D-lf(x)= 7 f(t)dt .... D,-Af(x) -7 D- l-'f(t)dt. 

We come now to the cornerstone of the proof of Theorem 1. 

LEMMA 4. Suppose that f is bounded and 

k+l 

:2 Aif(x+ait) = O(tk) as t- Ofor all x E E. 
J=o 

Then there is an integer s >0 such that D -Sf is (k + s) Riemann-bounded at almost 
every x E E. 

Proof. First let us suppose that all the aj's are integers and that 1=0. We may 
suppose that aO<aj< ... <ak. From the sliding lemma it follows that we may 
assume ao= 1. If there are no gaps in the sequence {ao, .. ., ak}, i.e., if ao= 1, 

al=2, a2=3,..., ak=k+l, after sliding the sequence to the left by k/2+1, we 
deduce from the remarks preceding Figure 1 that f is k Riemann-bounded almost 
everywhere on E. If there are gaps, we fill them by integration. For example, if 
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a, > 2, we adjoin 2 to the set of ai's as follows. Sliding the original derivative to the 
left by 2, we obtain 

k 

2 Aif(x+(a -2)t) = O(t k) for almost every x c E. 
J=o 

Now integrating from 0 to h where h is small, we obtain 

a D-2 D f(xx+ (ai-[2)h) - 2 D -lf(x) = (hk+ 

for almost every x in E. 
Finally sliding this to the right by 2, we obtain 

A 
A,-2 --lf(x+a oh)- a:'2] D'lf(x+2h) = O(hkC ) 

for almost every x E E. This result shows that almost everywhere on E, D-lf is 
k + 1 generalized-bounded with respect to a set whose ai's have one fewer gap than 
had the original set of ai's(2). Note that the excess is still 0. If ak=k+ 1 +s, there 
were s gaps initially, so after repeating this filling process s -1 more times, we 
obtain the conclusion of the lemma. 

Next we suppose that the ai's are integers, but that 1>0. Fix 1. It suffices to show 
that for some positive integer sl, D- sif is k + s1 generalized-bounded with respect 
to a (k + sl)th generalized derivative of excess _ 1-1. For if we can do this, an at 
most i-fold iteration of the process will reduce this case to the I=0 case above. 

By employing the process of filling in the gaps, we may suppose that ao= 1, 

al =2,. . ., ak+1 =k + I 1. It is important to note that the process of filling never 
increases the excess since at each step the order of the derivative is increased by 
one, while the number of ai's is increased by at most one. (The process of filling 
may actually decrease the excess. For example, if a, > 2 and '7C += Ail(ai -2) = 0, 
then after sliding to the left by 2, we have a (k + l)st derivative based on the original 
k+ + 1 ai's so that the excess is immediately I- 1.) 

Set r = k + l+ 1. Recalling that we may suppose ai1=i, 1 i < r, we may 
now write our assumption 

(1.1) 2 Ai-lf(x+ it) = O(tk) as t -0, 
i =1 

for all x E E. 

(2) If ~2,J (Ata) is equal to 0 when j< k, is equal to k! when j= k, then :Ek+O At(at - a)' 
- Ck+! (Aial) so that any slide of a kth generalized derivative is still a kth generalized deriv- 
ative. Also if no a =0, 2d (Aj/a_)a is equal to + (Ai/a,) when j=0, is equal to 0 when 
j= 1, 2,. . ., k and equals k! when j= k + 1 so that integration from 0 to h yields a (k + I)st 
generalized derivative. To obtain proper normalization, each integration should be coupled 
with a multiplication by the constant k + 1. We shall always assume that this has been done. 
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Sliding this to the left by r+ 1, we have 

(1.2) Ai-lf(x+[i-(r+l)]t) = O(tk) for almost every x E E. 

Integrating (1.1) and (1.2), we obtain 

(1.3) 2 A 1D-lf(x+t) [ i.JDlf(x) = O(tkl) 

for almost every x e E; and 
r rI 

(1.4) DEfx-(r+l) D(+ [j-(r+ lJ D f(x) - QQk+l) 

for almost every x E E. Sliding equation (1.4) to the right by r and changing indices 
by setting i=j-1, we have 

r-1 A r 
_1 _ 

(1.5) i '-- D'f(x+it)- __ 

L 
D-lf(x+rt) = 0(tk+l) 

= i- r ___Oi 

for almost every x E E. 
We now show that the coefficients of (1.3) and (1.5) are not proportional. If the 

derivatives in (1.3) and (1.5) have been suitably normalized (see footnote (3)), 

then when they are tested on the function g(x) = Xk + 1/(k + 1)!, both are identically 
equal to tk+ . Hence if the coefficients of the derivatives in (1.3) and (1.5) are 
proportional, they must be equal. Suppose this is the case. Equating the coefficients 
off(x+it), i=1,2,..., r-1, we have 

which yields recursively, 

A1 =- AO = (l)( AO 1 A0 

A2 = 2-r. 1 -r A 1)2(rl) A0, -2 -1 A0 = 2 

(r-1)-r (r-2)-r 1-rr- 
A - (r-1) r-2 1 AO = (-l)lr-1)AO 

But r-1=k+l>k, so 

2 A_lik = A0 
i 

(_ l)l( )ik = 0 

contrary to the assumption that (1.1) is a kth generalized derivative. 
Hence the derivatives in (1.3) and (1.5) do not have all coefficients equal. There- 

fore there is an io (0, 1, .. ., r} such that the coefficients of f(x + iot), call them 
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a and b, are unequal. Set a = b(b - a) - 1 and P -a(b - a)1 and consider the 
derivative formed by adding the derivative in (1.3) multiplied by a to the derivative 
in (1.5) multiplied by P. Since a+ P =1, this is a (k + 1)th generalized derivative 
which is properly normalized, as can be seen by testing it on g. Since aa +? b = 0, 
the coefficient of f(x + iot) is equal to zero, so that this derivative is based on the 
set B={l,2,...,io-l,io+l,...,k+l+l} and hence has excess ?1-1. Then 
from (1.3) and (1.5) we note that D-lf E Gk+l(x, B) for almost every x E E. 

Finally, let the ai's be arbitrary. Lemma 4 will be proved if we can show that there 
is a C={C0,.. ., Ck+I+S2; C0,.., CkI+ S2} such that all the ci's are integers and 
D-S2f E Gk +S2(x, C) for almost every x E E. Our hypothesis is that 

k+l 

(1.6) AJf(x+ait) = O(tk) for all x E E. 
i =o 

Let Mc{ao,..., ak+l} be a commensurable set, i.e., there is a real number q 
such that mq is an integer for every m E M. Let M be of maximal cardinality, i.e., 
if Nc{ao,.. ., ak +} is a commensurable set, then N has no more elements than 
does M. Replacing t by qt, we may assume without loss of generality, that all the 
elements of M are integers. By the sliding lemma we may assume that no ai=0. 
Let n be any integer 0 {0, ao, .. ., ak + J}. Integrating equation (1.6) we have 

(1.7) D f(x+aat) [ + D'f(x) = O(tk+1) 
1-=0 a1 Li4 aJ 

for all x E E. From equation (1.6) and the sliding lemma, we have 

k+ 1 

2 Aif(x+[ai-n]t) = O(tk) 
i=0 

for almost every x E E. Integrating this and then sliding the result back to the right 
by n, we have 

k+ 1 A1 -k A1 
(1.8) D'- f(x +a1t) - 

' 
J D'-f(x +nt) = O(tk+l) 

(=0 a1-n _-0 ai-n 

for almost every x E E. 
If M= {ao, ..., ak + }, the conclusion is immediate with s2 = 0, ci = ai. If not, we 

pick aj e {aO..., ak++} such that aj 0 M. Since n =0, we may set y = a,/n and 
8 = (n - aj)/n. We find that y + 8 = 1 and (Aj/aj)y + (Aj/(aj - n))8 = 0. Therefore if we 
add the derivative in (1.7) multiplied by y to the derivative in (1.8) multiplied by 8, 

by the argument preceding (1.6), the resultant (k + l)th derivative is normalized, and 
has zero for the coefficient of D - lf(x + ajt). Furthermore D - lf is (k + 1) generalized- 
bounded with respect to this derivative at almost every x E E. If 

{aog ail . Iaj-1l aj+l- .. Iak+1,0, n} 

is a commensurable set, the conclusion has been reached with s2 = 1. If not, we 

pick aj E {ao ... ., ak+j1 such that a' 0 M U {aj} and repeat the argument. At least 
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one element of the set of ai's that are not members of M is removed at each step, 
so we obtain the desired result with S2 < the cardinality of this set. 

Proof of Theorem 1. From Lemma 4 we have that for some integer s, D-Sf is 
k + s Riemann-bounded for almost every x E E. From Theorem 1 of [2] it follows 
that D-sf E tk +(x) for almost every x E E. 

Since D -sfe tk +S(x) for almost every x e E, there is a perfect set H c E of 
measure arbitrarily close to E and there are functions F1 and F2 such that 

(1) D-sf=F1+F2, 
(2) F1 has k+s ordinary continuous derivatives on E, 
(3) F2=O on H. 

See [4] for this decomposition. Define DI to be the ordinary ith derivative. From 
(2) it follows that if we set fi = DsF1, then fi has k continuous derivatives on E. 
Almost everywhere on E, DSD-sf exists and is equal to f. Hence 

DSF2= Ds[D-sf-F1] 

exists and is equal to f-ft almost everywhere on E. Set f2= DsF2. Since HI is 
perfect, 

DlF2(x) = lim F=X t)-F2(X) lim F2(x+ tn)-F2(X) = O 
t_O t x +teII;tn -O tn 

D2F2(x) = D1[DlF2(x)] = 0, 
and 

DsF2(x) = D[Ds-lF2(x)] = 0 

almost everywhere on Il. Since f and fi E Gk(x, A) for almost every x E E, f2 

E Gk(x, A) for almost every x E E. It suffices to prove that f2 E tk(x) for almost 
every x Ec H. Lemma 7 of [2] states that if a function belongs to Tk(x) on a set, 
then almost everywhere on that set the function belongs to tk(x). Hence Theorem 
1 is proved if we can show that f2(x+ t) = Q(tk) when x is a point of density of fl. 
We may assume that 

k+l 

Atf2(x+ajt) ? Mltk if ItI < 8forallxeHI. 

Let 0 be a point of density of H. By Lemma 1, if t> 0 is sufficiently small, there is a 
u E [t, 2t] such that all of the points 

t-aou, 

t+(ai-ao)u, i = 1,... k+ l, 
belong to R (if ao = 0, reorder the first two terms). Then 

f2(t+(ai-ao)u) = 0, i = 1,2,..., k+l, 
so that 

k+a 

IAof2(t)1 = Aif2([t-aou]?aiu) < Muk < 2kMtk 
i=0 
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if t is sufficiently small. This shows that f2 E Tk(O) and completes the proof of 
Theorem 1. 

REMARK. We may strengthen Theorem 1 by weakening the hypothesis to 

k+l 

2 Aif(x+ait) = O(tk) as t- +0 for all x E E 
i =o 

while still obtaining the same conclusion that fe tk(x) for almost every x E E. 
The proof of Theorem 1 may be followed line for line with the following ex- 

ceptions. We must invoke Theorem 7 of [2] instead of Theorem 1 of that paper. 
Theorem 7 states that if f is k Riemann-bounded as t -? + 0 at each x of E, then 
f e tk(x) for almost every x E E. Also the reference to Lemma 7 of [2] must be 
replaced by one to Theorem 8 of that paper which states that iff is Peano-bounded 
of order k as t -?+ 0 for all x E E, then f E tk(x) for almost every x E E. 

2. An LI generalization of the Riemann derivative. Now let 1 ?p < oo and let 
f E LI[x - E, x + e] for some e > 0. We may extend all of the definitions of derivatives 
given in ?1 to definitions of derivatives in LI. 

A function f is said to have at x a kth Peano derivative in LI, i.e., fe tll(x) if 
there are constants fo(x),.. . ,fk(x) such that 

()h f f(x+t) {fo(x)+ +fk'X) tk} d) =do(hk) ash -+0. 

Let A={Ao,.. ., Ak + ; ao,..., ak+ l} be such that 

Aial = , j= O, I,..,k- 1, 
0=o 

=k!, j= k. 

We say thatf is k-generalized-bounded in LI with respect to A at x, i.e.,f E Gk(x, A), 
if 

rh k+lhk) \1/P (1fhj JoAJf(x + ait) dt = O(hk) as h -0. 

The classes T"(x) and gj'(x, A) are also defined by replacing the Lr norm of 
?1 by the LI norm. As in ?1, iffe G"(x, A) in the special case when 

A = (lk0) 0 (1 0 ' 2 

f is said to be k-Riemann-bounded in LI at x. All the relations depicted in Figure 
1 are still valid if the superscript p is attached to the name of each class. Parallel 
to Theorem 1 we have 

THEOREM 2. Iff E GII(x, A) for all x E E, then f E t "(x) for almost every x E E. 

Mary Weiss has proved that if f has a kth symmetric LI derivative for all x E E, 
then fE tl'(x) for almost every x E E [5]. Since the existence of the kth symmetric 
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LI derivative at x implies the existence of the kth Riemann LP derivative at x, her 
result is contained in Theorem 2. 

Proof. If g e L-, by H6Ider's inequality we have 

1 h <1h 1 h llv 

h g(t) di < 
h 0t) dt < I 

J g(t)IP dt 

Hence from the hypothesis of Theorem 2 we may deduce that 

1 'hk+l 
(2.1) Ajf(x+ at)dt = O(hk) ath-+O 

for every x e E. If some ai = 0, say ao = 0, then 
1 k+l 

2k_ 1Z A{f(x+2ait)-f(x+ajt)I t=o 

still is a kth generalized derivative, since 

1k+l 
2k-1 Aai(2- 1) = 0, 1< k, 

= k!, j=k. 
Further, 

1 rkl+l 1 r2h k+Z 

h J>2 Aif(x+2ait) dt = A J i A1f(x +ajs) ds 

= 0((2h)k) = O(hk) as h 0 

for every x e E. Hence we may assume that (2.1) holds with no at=0. 
Multiplying (2.1) by h and performing the integration, we have 

k+,I A.k?14 k+a1A ? - D - lf(x + aih) _ :2i D - lf(x) = O(hk+l) 
J=O at J=? a 

as h 0 for every x e E. Since 
k + A k+1 At 
i=O at t=O at 

and 

k (At)at = 0, 
= k! j=k+l, 

after multiplication by k + I we have that D - lf is (k + 1) generalized-bounded with 
respect to 

= at ao 5 ak; ?a. . . ak+z} 

at every x e E. By Theorem 1, D -fe tk+ 1(x) for almost every x e E. 
As in the proof of Theorem 1, set D - If= G +L where G is k + 1 times continuously 

differentiable throughout the domain of D - lf and where L= 0 on an arbitrarily 
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large perfect subset H of E. Then on E (assuming we have removed the points 
where D1D - 1f#f), D - lf and G are both differentiable and hence so is 
L=D- 1f-G. In particular, L is differentiable on II and since rI is perfect, 
D1L=l=0 on rl. Also fe G(x, A) and D1G e tk(x) sGP(x, A) if xe HcE, so 
that 1 e GP(x, A) for every point of LI. 

It suffices to prove that 1, and hence f, belongs to t (x) for almost every x E EL. 
To do this, it suffices to prove that I e TP(x) and that li(x) =0, i=0, 1,... k-i, 
at each point of density of 11. For from this result, by Theorem 10 of [6], it follows 
that 1 e tP(x) at almost every x in R. We collect what remains to be proved of 
Theorem 2 into a lemma. 

LEMMA 5. Let l(x) = 0 on E, I E I > 0, I E LP, and 

rh n P 

f Z Ail(x+ajt) dt = O(h) as h O 

for all x c E, where a > 1, p ! 1 (we actually only need the case of a=kp + 1). Then 

1(x+ t)IP dt = O(hx) as h -0 
-h 

for almost every x E E. 

(The proof follows that of a similar lemma in [5].) 
Proof. As in the proof of Lemma 2, without loss of generality we may assume 

that 

(2.2) J Ajl(x+a1t) dt < Mlhlh' if lhl < 8 

for all x E E. It suffices to prove this lemma for each point of density of E. Let 
x=0 be such a point. We must show 

rh 

(2.3) f ll(t)Pdt = O(ha) ash -0. 
-h 

Assume that ao 0 0 in (2.2) (if it does, reorder). If ao 0 1, we set s = aOt, and divide 
by JAol: 

lJ(x+s)+ A'AiA I lX+s a-i ds <i M aohI c 
__ ao Aoc/1 

if IhI < 8, i.e., if Iaohl < IaoIS. Hence we may assume that ao=AO= 1 in (2.2). 
Either 

h h 

(2.4) 1401t)P dt >- 11|(t)IP dt 

or h h 

11(lt)IP dt < lZ{t IP dt. 
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Suppose that the former holds (the argument is essentially the same if the latter 
holds). For definiteness, assume h > 0. 

Let F be the complement of E. Pick x e [-h2, 0] rn E (this can be done if h is 
sufficiently small since 0 is a point of density). 

11l(t)IP dt< |(x+t)IP dt 

(2.5) h-x n P 
< 0 I+t)+ 2,Ajl(x+ajt) dt+ I I(x+t)IP dt 

J0 i =A1 (x,h) 

where A(x, h)=ft e [0, h-x] I (x+ait) e F for some i e N={l,..., n}}. 

(2.6Q 1 (x + t) I p dt :5 E (t) I P dt~ 
A(x,h) j=1 Aj(x,h) 

since 
n 

A(x, U A(x, h) 
i=1 

where Ai(x, h)={s e [0, h -x] I x+as e F}={t e [x, h] x x( a-a))+ait e F} (the last 
equality coming from the substitution s=x + t). 

Suppose that we can prove: 
(2.7) There is an x e [ -h/2, 0] n E such that 

h X.h 11(t)lv dt < . I ,f I P dt, i = 1, 2,. n. 

Then from (2.2), (2.5), (2.6), and (2.7) we will have 

fI l(t)IP dt < M(h-x) < M(2h) 2aMha 

which when combined with (2.4), yields 

{ j1(t)IP dt < 2j J1(t)lPdt ? 2a+2Mhx 
-hO 

which in turn implies (2.3), as required. 
Only (2.7) remains to be proved. Set M=maxE {112+(312)ja l*. Define e=e(h) by 

I bMh 
?0 = xp(v) dv 

h-Mh 

where XF is the characteristic function of F. Note that 0 is a point of rarefaction of 
F, so e can be made arbitrarily small by choosing h sufficiently small. Set 

I~(x) = .L~(X.h, Q)~~I+~dh 

ii(X) 1 |(t)IP dt l(t) IP XFX[1-il + at) dt. 
As(x,h)x 
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Then 

Ii(x) dx < { J Il(t)IPXF(X[l-ai]+ait) dt] dx 
-h/2 -h/2 -h 

1 fMh fh 

< Il-au JI-Mh J-h l(u)I XF(v) du dv, 

setting u=t, v=ait+(I-aj)x and noting l(O(t, x)/O(u, v))l=(I/l1-ail). Hence 

I (x) dx < Mh XF(v) dv] [ (t)I dt] 

using Fubini's theorem and its converse freely since all functions are positive and 
integrable. By (2.4) and the definition of E, 

*0 < 1 {h 

Jh/2 Ii (x) dx - I a,l gh-2 I {l(t) IP dt. 

By Tchebycheff's inequality, if 

Bi = {x e [-2 o] n E1It(x) > + f1 l(t)IP dt} 

then 

iBil. h11 (t)IP dt < 28_h hI i(t) IP dt, 

i.e., 

1B11 < 4neh 
il1-aul 

Picking h so small that 

min|l-ail 
< eN 

16n2 

we have 

4nh sminn 11 -ail h 
1B11 < 

1IIail 16n2 4n 

so that 
n n ~~~h 

Bi-u <l -iB2il < 
1=1 j=i 4 

If we further choose h so small that I[-h/2, 0] n El h/4, we can find an x 
such that 

xe [ , o n E and x U Bi. 

This is the x required for (2.7). This completes the proof of Theorem 2. 
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REMARK. As in ?1, we may weaken the hypothesis of Theorem 2 to 

/1h k+l P 
11P= hk (1ff 

2 Aif(x+ait) dt O(hk) +0 

for all x E E, while still obtaining the conclusion fe tP(x) for almost every x E E. 
The proof of this remark follows the proof of Theorem 2 except that Theorem 

1 is replaced by the remark at the end of ?1, Theorem 10 of [6] is coupled with 
Lemma 6 below, and Lemma 5 is replaced by Lemma 7 below. 

LEMMA 6. Let a > 0. If 

h 

J I(x+t)I dt = O(h") as h +O for all x E EE, 

then 
rh 

Il(x+ t)IP dt = O(ha) as h- +0 for almost every x E. 
-h 

The same conclusion holds if our hypothesis is 

0 
f Il(x+t)P dt = O(h7) ash-* +0 forallx E. 

-h 

Proof. We prove only the former statement, since the proof of the latter is 
similar. As in Lemma 5, without loss of generality we may assume 

h 

Il(x+t)IPdt?Mha if0<h<8forallxeE. 

To simplify notation, let 0 be a point of density of E. It suffices to show 

rh 

J 11I (t) [P dt _ (4aM)ha 
-h 

if h is sufficiently small. Pick h < 8/4 so small that [-2h, - h] C E# . Pick 
-k E [-2h, -h] C' E. Then 0< k < 3/2, 2k< 4h < 8, and 

rh k r2k 

J 1(t)IP dt < 11(t)ItPdt= ll(-k+t)IPdt 
-h -kO 

? M(2k)a < M(4h)a = (4aM)ha. 

LEMMA 7. If l(x)=0 on F, IEI> I>0eLIfor all xcE 

rh nf P 
j' A1l(x+ast) dt O(hx) ash-* +0 

where a> 1, p >1 then 

(h 

1 1(x+ t)IP dt = 0(ha) as h 
+O 
for almost every x E- E. 

-h 
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Proof. Because of Lemma 6, it suffices to show 

h 

T Il(x+t)IPdt = O(ha) ash-* +0 

for almost every x E E. Assume that ao > 0. As in the proof of Lemma 5, we may 
then assume A0=ao= 1. 

(If ao < 0, the hypothesis can be reduced to 
f n(+t? p 

h |x+ t) + 2 4Al(x+ait) dt = O(ha) as h- +O for all x E E. 

The proof then proceeds to the conclusion that 

f II(x+ t)jP dt = O(hx) as h -* +0 for almost every x E E. 

Now apply the second part of Lemma 6 to produce the desired conclusion.) 
As in Lemma 5, without loss of generality we may assume 

l(x+ t)+ ZAil(x+att) dt Mha, 0 < h < 8 for all x E E. 

By discarding a subset of measure zero we may further assume that every point of 

E is a point of differentiability for f' 11(t)1" dt, so that for all x E E, 

D(J| I(t)I dt) = 1(x)IP 0. 

Let 0 be a point of density of E. It suffices to show 

h j jl(t) IPdt = O(ha) as h +0. 

Denote fb 11(t)jP dt by I(a, b). We divide the proof into three cases. 
Case I. I(h/2, h) > I(O, h)/2. 
In this case the proof is very much like that of Lemma 5. Pick x E [0, h/2] rl E. 

As in Lemma 5, 

I( , h)= 1l(t)lP dt < f l(t)IP dt 

(2.8) 

< 4 lx+ t)+ 2 Aj1(x+ajt)| dt+Z 11 l(t)I dt 

where Aj(x, h)={t E [x, h] I [I -aj]x+ait 0 E}. As in Lemma 5, if h is sufficiently 
small, an x E [0, h/2] rl E may be found such that for all i= 1, 2,..., n 

r~~~~ ~ 1tA\ h) < I 
, 1.h tX 
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For this x, (2.8) implies 

I(O, h) < 2I (,h) =< 4 I(x + t) + Ail(x +ait)l dt _- 4M(h -x)" < 4Mh" 

if h is sufficiently small. 
Case II. 

h2+1 ht 
< 

I(O 2t) i O 1, . .., k-13, 

but 

(2.9) I h+'2k 
h 

2I %2^ 

In this case we have 

I(? 2) = I(O, 2+ ) +I(s 2+ ) for all i, 

so 

I 03h <I 05 
h 

+ + I( 02h) 0315,... ,k- 1. 

Hence 

I 0,2 
h 

< 2I(02+) i h= 0,1 l...,5k- 1, 

so that 

(2.10) I(0, h) _ 2I(0, 2)-221(0, <=) _ * < 2I(0 2 

If h is sufficiently small, applying Case I to (2.9), we have 

I(0, 2)< 4M (k 

Combining this with (2.10), we have 

I(0, h) <2 [4M (h)] < 4Mha since a > 1. 

Case III. I(h/2t + 1, h/2t) < (1/2)I(0, h/21) for all i= 0, 1, 2, . 
Reasoning as in Case II, we arrive at (2.10) for every k. Dividing through by h, 

we obtain 

!I(O h) - (h/2k)I(O 2k)% k = 1, 2,.- 
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Since by assumption, 0 E E is a point of differentiability of the integral, the right- 
hand side tends to 0 as k tends to infinity. Hence 

1I(O h)-O, I(O, h) = O, 

which is surely 0(h"). Q.E.D. 

3. A generalization of smoothness. 

THEOREM 3. Let a, b, c be any distinct real numbers, and let A, B, C be real 
numbers such that A +B+ C=O, and not all of A, B, C=0. Suppose that for all 
x e E, 

Af(x+at)+Bf(x+bt)+Cf(x+ct) = O(t) as t -0. 

Then: 
(a) ifAa+Bb+Cc=0,fe t1(x) for almost every xe E. 
(b) if Aa + Bb + Cc = 0, f E Al(x), i.e., 

f(x + t) +f(x-t) - 2f(x) = O(t) as t -0 

for almost every x E E. 
(c) if the "0,, in the hypothesis of (b) is replaced by " o", it may also be replaced 

by "o" in the conclusion, i.e., f is then smooth almost everywhere in E. 

Proof. Part (a) was first proved by J. P. Kahane. It can be rephrased: if 
fe Gl(x, {A, B, C; a, b, c}) for all x e E, then fe tl(x) for almost every x e E. 
Thus stated, it is seen to be a special case of Theorem 1. 

To prove (b), assume, for example, that A # 0. By the sliding lemma, 
Af(x+[a-c]t)+BBf(x+[b-c]t)+Cf(x)=O(t) for almost every x E. Set h 

-(b-c)t, a=(a-c)/(b-c): 

(3.1) Af(x+ ah) + Bf(x+h) + Cf(x) = O(h) 

for almost every x E E. 

1 1 
Aa+B = - [A(a-c)+B(b-c)] = [aA + bB-c(A + B)] 

b-cbc 

- [aA + bB+ cC] (since A + B+ C = 0) 
b-c 

0 (since Aa + Bb + Cc = 0). 

Hence B= -aA, C= -(A +B)= (a- 1)A so that (3.1) becomes after division by A 

(3.2) f(x + ah)-af (x + h) + (a- 1)f(x) = O(h) 

for almost every x E E. Slide this result by - a: 

f(x)-af(x + [1-a]h) + (a-l )f(x-ah) = O(h) 
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for almost every x E E. Replace h by - h: 

f(x)-af(x+ [a-1]h)+(a-1)f(x+ah) = 0(h) 

for almost every x E E. Add the product of equation (3.2) by (1- a) to this result: 

-af (x + [a-1 ]h) + (1-a)(-a)f(x + h)-a(a-2)f(x) = 0(h) 

for almost every x E E. Divide(3) by -a and slide this by 1: 

f(x + ah) + (1 -a)f(x + 2h) + (a--2)f(x + h) = 0(h) 

for almost every x E E. Subtract (3.2) from this: 

(1 -a)f(x + 2h)-2(1 -a)f(x + h) + (1 -a)f(x) = 0(h) 

for almost every x E E. Slide this by -1 and divide by (1-a): 

f(x+h)-2f(x)+f(x-h) = 0(h) 

for almost every x E E. 
To prove part (c), simply replace " 0" by " o" throughout the proof of (b). 

REFERENCES 
1. A. Denjoy, Sur l'integration des coefficients diffdrentiels d'ordre superieur, Fund. Math. 25 

(1935), 273-326. 
2. J. Marcinkiewicz and A. Zygmund, On the differentiability of functions and summability 

of trigonometric series, Fund. Math. 26 (1936), 1-43. 
3. , Sur la derive'e seconde ge'ne'ralise'e, Joseph Marcinkiewicz Collected Papers, 

pp. 582-587, Panstwowe Wydawnictwo Naukowe, Warsaw, 1964. 
4. A. Zygmund, Trigonometric series, Vol. II, Cambridge Univ. Press, Cambridge, 1959; 

p. 73. 
5. Mary Weiss, On symmetric derivatives in LP, Studia Math. 24 (1964), 89-100. 
6. A. P. Calderon and A. Zygmund, Local properties of solutions of elliptic partial differen- 

tial equations, Studia Math. 20 (1961), 171-225. 

UNIVERSITY OF CHICAGO, 

CHICAGO, ILLINOIS 

(3) Since a, b, c are distinct, a = (a - c)(b- c) # 0 or 1, so that a and 1 - a are both not 0. 
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