Counterexample without cases

J. Marshall Ash

Abstract. The standard examples of functions without a one-sided limit are defined piecewise, with at least two pieces. We give an example of a function defined everywhere by a single formula. This example is an infinite sum of simple rational functions.

Does there exist a function which does not have a right hand limit at \(x = 0 \)? The standard example is

\[
 f(x) = \begin{cases}
 \sin \frac{1}{x} & \text{if } x \neq 0 \\
 0 & \text{if } x = 0
 \end{cases}
\]

This example is satisfactory from almost every modern point of view, but I distinctly remember that when I first took calculus, whenever a counterexample was called for, to my slight dissatisfaction the machinery of cases was always brought in. Let me try to make this vague complaint into a precise question. What I want is an everywhere defined function given by a single formula. It would be nice if the formula could be an analytic function. But at each point of discontinuity, such a function either has a pole or an essential singularity and hence is not defined. So I am forced to relax the rule. I will allow the formula to be an infinite sum of analytic functions. It follows that, sadly, any example must be inaccessible to beginning calculus students. Notice that such a function would have been an admissible example in, say, the year 1800, while \(f(x) \) would not have been considered a function at that time. So the goal is to create an everywhere convergent infinite series of elementary functions that does not have a right hand limit at \(x = 0 \).

If \(\{s_n(x)\} \) is any sequence of analytic functions tending pointwise to \(f(x) \), then \(-s_0(x) + \sum_{k=1}^{\infty} (s_k(x) - s_{k-1}(x)) = f(x) \). This provides a general solution, but fails to satisfy an additional criterion, which is harder to make precise: that the example be as simple as possible. I will give an example which is simple enough to be accessible to students who have completed a year of calculus. If the reader can think of a simpler example, I would certainly enjoy seeing it.

2000 Mathematics Subject Classification. Primary 26A15; Secondary 26A03, 26A06, 26A09.

Key words and phrases. One-sided limit, defined piecewise, no limit.

This research was partially supported by NSF grant DMS 9707011 and a grant from the Faculty and Development Program of the College of Liberal Arts and Sciences, DePaul University.
My example is an infinite sum of spikes

\[g(x) = \sum_{n=1}^{\infty} S_{a_n, M_n}(x), \]

where a spike, defined by

\[S_{a, M}(x) = \frac{1}{1 + M(x - a)^2}, \]

is a positive function whose maximal height 1 is attained at \(x = a \) and which is very sharply peaked if \(M > 0 \) is large. The \(\{a_n\} \) are decreasing monotonically to zero and the \(M_n \) are picked to be so large that the \(S_n(x) = S_{a_n, M_n}(x) \) satisfy

\[\sum_{n=1}^{\infty} \max\{S_n(b_n), S_n(b_{n-1})\} < \frac{1}{2}, \]

where

\[b_n = \frac{a_{n+1} + a_n}{2}, \quad n \geq 1, b_0 = a_1 + 1. \]

Then \(g(x) \) is large at the peaks \(\{a_k\} \),

\[\lim_{x \to 0^+} \sup g(x) \geq \lim_{k \to \infty} \sup g(a_k) \geq \lim_{k \to \infty} S_k(a_k) = 1, \]

while \(g(x) \) is small in the valleys \(\{b_k\} \),

\[\lim_{x \to 0^+} \inf g(x) \leq \lim_{k \to \infty} \inf \sum_{n=1}^{\infty} S_n(b_k) \]

\[\leq \lim_{k \to \infty} \inf \sum_{n=1}^{\infty} \max\{S_n(b_n), S_n(b_{n-1})\} < \frac{1}{2}. \]

To see that \(S_n(b_k) \leq \max\{S_n(b_n), S_n(b_{n-1})\} \), note that \(S_n(b_k) \leq S_n(b_n) \) if \(k \geq n \), while \(S_n(b_k) \leq S_n(b_{n-1}) \) if \(k < n \), since \(S_n \not\uparrow \) on \((-\infty, a_n)\) and \(S_n \not\downarrow \) on \((a_n, \infty)\).

Observe that the proof that \(g(x) \) converges finitely at every \(x \) is similar to the calculation that \(g \) is small in the valleys.

In particular, if we set

\[a_n = \frac{1}{n}, n = 1, 2, \ldots, \]

and

\[M_n = 64n^6; \]

then for \(n \geq 1, \)

\[S_n(b_n) = \frac{1}{1 + 64n^6 \left[\frac{1}{\pi} \left(\frac{1}{n+1} - \frac{1}{n} \right) \right]^2} \]

\[= \frac{1}{1 + \frac{16n^4}{(n+1)^2}} < \frac{(n+1)^2}{16n^4} \leq \frac{1}{2n(n+1)}. \]
and for \(n \geq 2 \),
\[
S_n (b_{n-1}) = \frac{1}{1 + 64n^6 \left[\frac{1}{2} \left(\frac{1}{n} - \frac{1}{n+1} \right) \right]^2} < \frac{1}{1 + \frac{16n^2}{(n-1)^2}} < \frac{1}{16n (n + 1)},
\]
while for \(n = 1 \),
\[
S_1 (b_0) = \frac{1}{1 + 64 (2 - 1)^2} \leq \frac{1}{(32) (1) (2)}.
\]
Thus
\[
\sum_{n=1}^{\infty} \max \{ S_n (b_n), S_n (b_{n-1}) \} < \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{n (n + 1)} = \frac{1}{2} \sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n + 1} \right) = \frac{1}{2},
\]
and
\[
g(x) = \sum_{n=1}^{\infty} \frac{1}{1 + 64n^6 (x - \frac{1}{n})^2} = \sum_{n=1}^{\infty} \frac{1}{1 + 64n^4 (nx - 1)^2}
\]
does not have a limit as \(x \to 0^+ \).

Remark 1. A faster example is the Fourier series of \(f(x) \) restricted to \([-\pi, \pi) \). However, the coefficients are not easily expressed in closed form and a little theory is needed to demonstrate convergence.

Department of Mathematics, DePaul University, Chicago, IL 60614
E-mail address: mash@math.depaul.edu
URL: http://condor.depaul.edu/~mash/