The Limit Comparison Test Needs Positivity

J. MARSHALL ASH
DePaul University
Chicago, IL 60614-3504
mash@math.depaul.edu

The limit comparison test for infinite series appears in almost every modern calculus textbook. One statement is this.

THEOREM 1. Assume

(1) \(\lim_{n \to \infty} \frac{a_n}{b_n} = 1 \) and
(2) \(a_n > 0 \) and \(b_n > 0 \) for all \(n \).

Then \(\sum a_n \) and \(\sum b_n \) both converge or both diverge.

This would be a much more beautiful theorem if we could just drop hypothesis (2). Unfortunately, this is not possible, as the following example illustrates. Let \(a_n = \frac{(-1)^n}{\sqrt{n}} + \frac{1}{n^2} \) and \(b_n = \frac{(-1)^n}{\sqrt{n}} \); then \(\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} 1 + \frac{(-1)^n}{\sqrt{n}} = 1 \), so hypothesis (1) is true. However, \(\sum b_n \) converges and \(\sum a_n \) diverges.

In a certain sense, this is the only possible example.

THEOREM 2. If

(3) \(\lim_{n \to \infty} \frac{a_n}{b_n} = 1 \) and
(4) \(\sum b_n \) converges and \(\sum a_n \) diverges,

then \(\sum b_n \) converges conditionally; and if we write \(a_n = b_n + c_n \) for all \(n \), then \(\sum c_n \) diverges and the \(\{c_n\} \) are "infinitely smaller" than the \(\{b_n\} \).

Proof: Assume \(\sum b_n \) converges absolutely. From (3), \(\lim_{n \to \infty} \frac{a_n}{b_n} = 1 \). By the usual limit comparison test for positive series, \(\sum a_n \) is absolutely convergent. Consequently, \(\sum c_n \) is convergent, a contradiction. So \(\sum b_n \) is conditionally convergent. For each \(n \), define \(c_n := a_n - b_n \). If \(\sum a_n \) converges, then \(\sum a_n \) must also, so \(\sum c_n \) diverges. Finally, the \(\{c_n\} \) are infinitely smaller than the \(\{b_n\} \) in the sense that

\[
\lim_{n \to \infty} \frac{c_n}{b_n} = \lim_{n \to \infty} \frac{a_n - b_n}{b_n} = \lim_{n \to \infty} \frac{a_n}{b_n} - 1 = 0. \tag*{\blacksquare}
\]

So the most general possible counterexample involves two series, the "big" but convergent \(\sum b_n \), and the "little" but divergent \(\sum c_n \). Two natural questions are whether for every convergent \(\sum b_n \) we can find a corresponding \(\sum c_n \) to create a counterexample as above, and whether for every divergent \(\sum c_n \) we can find a corresponding \(\sum b_n \) to create a counterexample as above. To be more specific, we ask the following two questions.

(i) Given any convergent series \(\sum b_n \), does there exists a "poisoning" series \(\sum c_n \) that is small, \(c_n = o(b_n) \), and such that \(\sum (b_n + c_n) \) is divergent?
(ii) Given any divergent series \(\sum c_n \), does there exist a "healing" series \(\sum b_n \) that is big, \(c_n = o(b_n) \), and such that \(\sum b_n \) is convergent?

As we pointed out above, because of the limit comparison test, in question (i) \(\sum b_n \) must be conditionally convergent. In question (ii), the terms of \(\sum c_n \) must tend to 0, since otherwise \(c_n = o(b_n) \) would be impossible. We will show that these fairly obvious necessary conditions are also sufficient.

For question (i), let \(\sum b_n \) be any conditionally convergent series. Define \(p_n \) by

\[
p_n = \begin{cases}
 b_n & \text{if } b_n > 0, \\
 0 & \text{otherwise}.
\end{cases}
\]

It is well known that \(\sum p_n = \infty [2, \text{p. 375}] \). Next let \(c_n \) be nonnegative, equal to zero when \(p_n \) is, and satisfy both \(c_n = o(p_n) \) and \(\sum c_n = \infty \). This can be done since there is no slowest positive divergent series \([1]\). Then \(\frac{c_n}{b_n} = 0 \) when \(p_n = 0 \), and \(\frac{c_n}{b_n} = o(\frac{c_n}{p_n}) \) when \(p_n > 0 \), so \(c_n = o(b_n) \).

For question (ii), let \(\sum c_n \) be any divergent series with terms tending to 0. Let \(c_n^* = \sup_{\nu \geq n} |c_\nu| \). We will construct \(\sum b_n \). Define \(p_0 \) to be the first index so that \(c_n^* p_0 \leq 4^{-1} \), \(p_1 \) to be the first index so that \(c_n^* p_1 \leq 4^{-2} \), \(p_2 \) to be the first index so that \(c_n^* p_2 \leq 4^{-3} \), \ldots. By increasing the \(p_i \) as necessary, we may assume that \(p_0 - 1 \) is a multiple of 2, \(p_1 - p_0 \) is a multiple of \(2^2 \), \(p_2 - p_1 \) is a multiple of \(2^3 \), \ldots. Break the set of indices \(n \) such that \(1 \leq n < p_0 \) into blocks of length 2 and set the values of \(b_n \) to be 1, -1 on each block. Next, break the set of indices \(n \) such that \(p_0 \leq n < p_1 \) into blocks of length \(2^2 \) and set the values of \(b_n \) to be \(-1, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2 \) on each block. Proceed inductively. For each interval \([p_{i-1}, p_i)\), we have \(k_i \) blocks, each of length \(2^{i+1} \), and

\[
\{|b_n|\}_{n=p_{i-1}}^{p_i-1} = \left\{ \frac{1}{2^i}, -\frac{1}{2^i}, \frac{1}{2^i}, -\frac{1}{2^i}, \ldots, \frac{1}{2^i}, -\frac{1}{2^i} \right\}.
\]

The sum of the \(b_n \) over each of the \(k_i \) blocks is 0, while the corresponding sum of the \(|b_n| \) is 2. Then \(\sum b_n \) converges to 0 and \(\sum |b_n| = 2k_1 + 2k_2 + \cdots + 2k_i + \cdots \), so that \(\sum b_n \) converges conditionally. For each \(i \geq 1 \) and each index \(n \) such that \(p_{i-1} < n < p_i \), we have \(|c_n| \leq 4^{-i} \) and \(|b_n| = 2^{-i} \) so that

\[
\frac{|c_n|}{|b_n|} \leq \frac{4^{-i}}{2^{-i}} = \frac{1}{2}
\]

and \(c_n = o(b_n) \) as required.

The author was able to find an instance of this family of examples in the literature. However, this has definitely been in the mathematical folklore for a long time. For example, on page 376 of [2], G. H. Hardy, remarks explicitly “…there are no comparison tests for convergence of conditionally convergent series.” It seems likely that he had one of these examples in mind to make such a categorical statement.

REFERENCES

Summary The limit comparison test for positive series does not extend to general series. An example is given. In a certain sense, this is the only possible example. Given a conditionally convergent series, there exists a termwise much smaller series so that the sum of the two series diverges. Given a divergent series with terms tending to zero, there exists a convergent but termwise much bigger series.