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Abstract. In 1870, Georg Cantor proved that if a trigonometric series con-
verges to 0 everywhere, then all its coe¢ cients must be 0. In the twentieth cen-
tury this result was extended to higher dimensional trigonometric series when
the mode of convergence is taken to be spherical convergence and also when
it is taken to be unrestricted rectangular convergence. We will describe the
path to each result. An important part of the �rst path was Victor Shapiro�s
seminal 1957 paper, Uniqueness of multiple trigonometric series. This paper
also was an unexpected part of the second path.

1. Dedication

My thesis advisor, Antoni Zygmund, and his student, Albert Calderón, created
a wonderful school of mathematical analysis that radiated outward from the Univer-
sity of Chicago in the 1950s and 1960s. Their intellectual curiosity, complemented
by their generosity and friendliness, induced similar good feelings among their math-
ematical descendents. This is a large community. For example, there were 66 direct
descendents, since Zygmund had 40 Ph.D. students, Calderón had 27, and there is
one student, Cora Sadosky, who had both listed for thesis advisors.[MG]

News of the loss of the cheerful, enthusiastic mathematician Cora Sadosky in
2010 was sad news indeed. Victor Shapiro was a student of Zygmund, and therefore
a fellow �mathematical sibling�of Cora and mine. His death in 2013 was followed
later in that year by a conference to honor him held in Riverside, California. I gave
a talk at that conference. The paper that I present here is based on that talk. I
suspect that Cora, whose �rst question upon meeting me after the passage of some
time was usually about my mathematics, would have enjoyed seeing this.

1991 Mathematics Subject Classi�cation. Primary 42-02; Secondary 42A63, 42B99, 42A20 .
Key words and phrases. Cantor�s uniqueness theorem, Uniqueness.
This research was partially supported by a grant from the Faculty and Development Program

of the College of Liberal Arts and Sciences, DePaul University.

1



2 J. MARSHALL ASH

2. Two theorems and a conjecture

Let fdng�1<n<1 be a sequence of complex numbers and let x 2 T1 = [0; 2�).
Suppose a function has a representation of the formX

dne
inx = lim

N!1
d0 +

NX
n=1

�
d�ne

�inx + dne
inx
�
:

It is natural to combine the nth and �nth terms, for if an and bn are real, dn =
(an + ibn) =2 and d�n is the complex conjugate of dn, then. dneinx + d�ne�inx=
an cosnx+ bn sinnx, the �natural�nth term of a real valued trigonometric series.
Is this representation unique? In other words, if

P
dne

inx =
P
d0ne

inx for every x,
does it necessarily follow that dn = d0n for every n? Subtract and set cn = dn � d0n
to get a cleaner formulation: Does

P
cne

inx = 0 imply that cn = 0 for every n?
Here is Georg Cantor�s answer.

Theorem 1. Let
P
cne

inx = 0 for every x 2 T1. Then cn = 0 for every n.

He proved this in 1870. Notice that in the statement of his theorem, Cantor
made a choice of what it means for a trigonometric series to represent the function
z (x) where z has domain T1 and range f0g, namely that it converge to that point
at every point of T1. Many other notions of �represent�have been considered since
then; many are discussed in chapter IX of Antoni Zygmund�s book Trigonometric
Series.[Z1] We will mostly focus on this pointwise everywhere notion of represen-
tation.

The entire subject of this broad survey concerns attempts to extend this result
to higher dimensions. In all dimensions we will always combine terms whose indices
di¤er only by signs. This reduction in dimension 1 converts a two-sided numerical
series

P1
n=�1 Cn to the series

P
n2Z+ Tn, where for each n 2 Z+ = f0; 1; 2; : : : g,

Tn =
P

f�: jvj=ng C� . Since the nonnegative integers have a natural ordering, Can-
tor�s theorem�s hypothesis is unambiguous. When d � 2, the corresponding reduc-
tion of

P
n2Zd Cn to

P
n2(Z+)d Tn where Tn =

P
f�: j�ij=ni for 1�i�dg C� does not

produce a �natural ordering�because (Z+)d does not have a natural ordering, so
many conjectures arise in each dimension.

Here are three important distinct ways of adding the elements of the numerical
series

P
n2(Z+)d Tn .

Spherical convergence: The Nth partial sum contains all terms with indices
in the intersection of the sphere of radius

p
N with the positive cone (Z+)d. The

spherical sum is de�ned to be

SPH
X

n2(Z+)d
Tn = lim

N!1

X
f�:all �i�0 and �21+���+�2d�Ng

T� :

Square convergence: The Nth partial sum contains all terms with indices
in the rectangular parallelepiped with opposite corners (0; : : : ; 0) and (N; : : : ; N).
The square sum is de�ned as

SQ
X

n2(Z+)d
Tn = lim

N!1

NX
�1=0

� � �
NX

�d=0

T� :
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Unrestricted rectangular convergence: This is no longer a one variable process.
Assign to each point n of (Z+)d the rectangular partial sum Sn, of all terms whose
indices are in the rectangular parallelepiped with corners (0; : : : ; 0) and (n1; : : : ; nd).
The unrestricted rectangular limit of

P
T� is a number L such that for each

� > 0, there is a number N (�) so that for every n with min fn1; : : : ; ndg > N (�),
jSn � Lj < �. When such an L exists, we call it the unrestricted rectangular sum
of
P
Tn and write

UR
X

n2(Z+)d
Tn = lim

min fN1; � � � ; Ndg ! 1

N1X
�1=0

� � �
NdX
�d=0

T� :

It is obvious that if a numerical series is unrestrictedly rectangularly convergent,
then it is square convergent to the same sum; i.e.,

(2.1) UR
X

n2(Z+)d
Tn = L implies SQ

X
n2(Z+)d

Tn = L:

It is easy to give examples of double series of numbers
P

n2(Z+)2 Tn which show
that each of the �ve other possible connections between these three methods of
convergence is, in general, false.

In dimension d � 2, with n = (n1; : : : ; nd) 2 Zd, x = (x1; : : : ; xd) 2 Td, and
nx = n1x1 + � � � + ndxd, and Tn (x) =

P
f�: jvj=ng c�e

i�x, there are three distinct
and natural hypotheses for direct generalizations of Cantor�s Theorem. Here is the
present state of knowledge.

Theorem 2. Let SPH
P

n2Zd cne
inx = SPH

P
n2(Zd )+

P
f�: jv j=ng c�e

i�x = 0

for every x 2 Td. Then cn = 0 for every n.

Theorem 3. Let UR
P

n2Zd cne
inx = UR

P
n2(Zd )+

P
f�: jvj=ng c�e

i�x = 0 for
every x 2 Td. Then cn = 0 for every n.

Conjecture 1. Let SQ
P

n2Zd cne
inx = SQ

P
n2(Zd )+

P
f�: jvj=ng c�e

i�x = 0

for every x 2 Td. Then cn = 0 for every n.

We will later need to mention one higher dimensional extension of Theorem 2
which involves replacing the condition of spherical convergence: SPH

P
cne

inx exists,
by the weaker condition of spherical Abel summability:

Theorem 4. If for every x 2 Td, SPH
P
cne

inxrknk exists for all positive
r < 1, where knk =

p
n21 + � � �+ n2d, and limr!1� SPH

P
cne

inxrknk = 0, and if

(2.2)
X

R�1<knk�R

jcnj = o (R) as R!1;

then cn = 0 for every n.

3. History of the two theorems

The steps of Cantor�s brilliant proof are well known. Our discussion here will
be informed by drawing comparisons with them. Here are the four major steps of
his proof.
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(1) Establish the Cantor-Lebesgue Theorem, which implies that everywhere
convergence ensures that

(3.1) � (R) =
X

knk=R

jcnj2 ! 0 as R!1:

In dimension 1,
P

knk=R jcnj
2
= jcRj2 + jc�Rj2.

(2) Show that the Riemann function, the formal second integral, F (x) =
c0
x2

2 +
P

n 6=0
cn
(in)2

einx; is continuous. (Formal means that d2

dx2
x2

2 = 1 and

for each n 6= 0; d2dx2
einx

(in)2
= einx.)

(3) Establish the consistency of Riemann summability, that the Schwarz sec-
ond derivative D2 de�ned by

(3.2) D2F (x) = lim
h!0

F (x+ h)� 2F (x) + F (x� h)
h2

satis�es at every x

D2F (x) = lim
h!0

c0 +
X
n 6=0

cne
inx

 
sinnh2
nh2

!2
= 0:

(4) Use Schwarz�s Theorem, that continuous functions with identically zero
Schwarz second derivative are of the form ax+ b.

Step (2), the proof that F is continuous, is immediate from Step (1) and the
Weierstrass M-Test.

3.1. The spherical uniqueness theorem, Theorem 2. The �rst big step
towards Theorem 2 was taken in 1957, when Victor Shapiro proved a powerful d
dimensional theorem. Shapiro worked in a more general context, also considering
questions of summability. He did not prove Theorem 2 because his proof required an
extra assumption on the coe¢ cient size.[S] A corollary of one of Shapiro�s results
was a weaker version of Theorem 2 which required the additional hypothesis of
condition (2.2). This condition is quite natural when d = 2: since there are O (r)
lattice points being summed over in condition (2.2), in dimension 2 this assumption
asserts that the cm tend to zero �on the average�as jmj ! 1. But the assumption
becomes much stronger as the dimension increases; speci�cally in dimension d there
are O

�
rd�1

�
terms in the sum, so that the coe¢ cients are required to be decaying

like o
�
r2�d

�
on the average.

Shapiro�s 1957 proof is a direct extension of Cantor�s in the sense that he follows
the same four steps.

(1) He controls the coe¢ cient size by simply adding a second hypothesis,
namely that condition (2.2) holds is true by assumption.

(2) His Riemann function is the formal anti-Laplacian

F (x) = c0
kxk2

2d
�
X
n 6=0

cn

knk2
einx = lim

r!1�
c0
kxk2

2d
�
X
n 6=0

cn

knk2
einx�knkt;

which he proves to be continuous. (Now formal means that �k2xk2
2d = 1

and for each n 6= 0, � einx

knk2 = e
inx.)
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(3) He establishes a kind of consistency of Riemann summability by showing
that at every x, the generalized Laplacian of F ,

lim
h!0+

8

h2

(
1

�h2

Z
k�k<h

F (x+ �) d� � F (x)
)

is zero.
(4) Use a well known theorem that continuous functions with identically zero

generalized Laplacian are harmonic.

By far the most delicate and di¢ cult part of his work is Step (2), the proof
that F is continuous.

Because the original series is only required to be Abel summable to 0 every-
where, it is not possible to weaken the hypothesis by replacing o (R) by 0 (R).
For the proposed stronger theorem would be contradicted by the fact that the one
dimensional series

�0 (x) =
X

ineinx = �2
X

n sinnx

has Abel limit 0 everywhere.

To my mind, the most beautiful thing about Theorem 2 is that there is no
hypothesis about coe¢ cient size. In 1971, 14 years after Shapiro�s theorem was
proved, Roger Cooke proved a two dimensional Cantor-Lebesgue theorem.[Coo] An
immediate consequence of his result is that everywhere two dimensional spherical
convergence ensures that condition (3.1) must hold. But in dimension 2 (and not in
higher dimensions), condition (3.1) implies condition (2.2). So the two dimensional
version of Theorem 2 was proved.

The �rst precursor to a higher dimensional spherical theory came in 1976, when
Bernard Connes extended the Cantor Lebesgue result of Cooke, whose proof was
exceedingly two dimensional, to all dimensions.[Con] At this point, we knew that
if we wanted to prove Theorem 2, we could use the fact that � (R) ! 0 without
having to add a second hypothesis involving coe¢ cient size.

But in dimension 3, there is a very large gap between condition (3.1) and the
much stronger condition (2.2), and this gap becomes ever larger as the dimension
increases. So it seemed likely that when dimension � 3, Step (2) of Shapiro�s proof,
the proof that his Riemann function is continuous, would be inaccessible. Shapiro
and I discussed this problem. We agreed that it was totally unclear if there was
a proof or a counterexample ahead for the cases of d � 3, and he speculated that
there might be a century of mathematical analysis development required to bring
this question within reach.

Victor Shapiro had one more major contribution to make toward the solution
of Theorem (2). Victor told me that one day in the middle 1990s, he and Jean
Bourgain happened to be strolling across the University of California, Riverside
campus and Victor mentioned this problem. Their conversation inspired Bourgain
to look at the problem and solve it!. He stayed entirely within the framework
established by Cantor and generalized by Shapiro. Assuming only the everywhere
spherical convergence to zero, and bringing together Connes result, hard analysis,
harmonic measure, and some probability theory (martingales), he was able to prove
that Shapiro�s Riemann function was continuous. In 1996, Bourgain published his
proof that the hypothesis of Theorem 2 implies the continuity of Shapiro�s Riemann
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function.[B] Together, these two excellent papers, the �rst by Shapiro and the latter
by Bourgain, published 39 years apart, provide the complete proof of Theorem 2.

Bourgain�s paper is only 15 pages long. Although it is absolutely correct and
says everything that should be said in just the right order, it is extremely terse.
In fact, Gang Wang and I took nine months to read it, but once we got it, we
were able to reproduce a lot of the substantial collection of one dimensional exten-
sions of Cantor�s Theorem that can be found in chapter IX of Antoni Zygmund�s
Trigonometric Series.[AWa1, AWa2,Z1] To see an expansion of Bourgain�s proof
of continuity, see the 22 page version in [AWa1]; and to see his proof expanded to
42 pages while being specialized down to two dimensions, see [As3].

3.2. The unrestricted rectangular uniqueness theorem, Theorem 3.
LetM (x) be a one dimensional trigonometric series that converges to zero a.e. and
let � (y) =

P
einy be the trigonometric series associated with the unit mass at the

origin. Because the partial sums of � (y) are bounded by csc y, the double trigono-
metric series M (x) � (y) is unrestrictedly rectangularly convergent to 0 a.e.[AWe]
But by Zygmund�s extension of Cooke�s theorem,M� cannot converge circularly on
a set of positive measure, since its coe¢ cients do not tend to 0 as knk ! 1.[Z2] So
the proof of Theorem 3 seems to have nothing to do with Shapiro�s 1957 theorem.
However, by a strange quirk of fate, it does.

Theorem 3 was announced in 1919. The announced proof also followed the
model of Cantor�s Theorem. It was a very simple induction that seemed to indicate
that there were no interesting things to do in this direction, so for many years noth-
ing involving uniqueness for unrestricted rectangular convergence appeared in the
literature. Grant Welland and I studied the proof around 1970 and could not follow
the step that generalized Schwarz�s Theorem. In fact, some years later Chris Freil-
ing and Dan Rinne showed me the counterexample function (x+ y) jx+ yj. This
function satis�es the hypotheses(being continuous and having a certain generalized
Fxxyy identically 0), but not the conclusion(having the expected form

a (y)x+ b (y) + c (x) y + d (x) ;

with a; b; c; d being twice di¤erentiable), of the generalized Schwarz�s Theorem nec-
essary for the 1919 paper�s proof to be valid.

So Grant Welland and I tried to prove Theorem 3. We were able to prove a
version of the Cantor-Lebesgue theorem stating that when a multiple trigonometric
series converges unrestrictedly rectangularly a.e., �most�coe¢ cients tend to zero,
while all coe¢ cients are bounded. From this control of the coe¢ cient size, it follows
that Shapiro�s coe¢ cient size condition 2.2 holds in dimension 2. In view of the
M� example just mentioned, one cannot expect the hypothesis of

(3.3) UR
X
n2Zd

cne
inx = 0 for all x 2 Td

to easily imply that SPH
P

n2Zd cne
inx = 0 for all x 2 Td. Nevertheless, it turns

out to be easy to prove that hypothesis (3.3) does imply spherical Abel summability
to zero everywhere. (This was quite an unexpected and happy surprise for Welland
and me.) Thus Shapiro�s more general Theorem 4 does apply here, so that in 1972
the two dimensional case of Theorem 3 was shown to be another consequence of
Shapiro�s 1957 results.[AWe]



VICTOR SHAPIRO AND THE THEORY OF UNIQUENESS FOR MULTIPLE TRIGONOMETRIC SERIES7

After a gap of about 20 years, during which there was no activity at all in
the area of uniqueness for multiple trigonometric series, two completely di¤erent
proofs of Theorem 3 for all dimensions appeared.[AFR, T] The Tetunashvili proof
involves a clever induction. Some ideas from [Coh] and [AWe] play a role. The
Ash-Freiling-Rinne proof extensively renovates the 1919 attempted proof, and uses
a complicated covering argument. (See [As1] to see this covering argument applied
in a much simpler situation.) It is ironical that our very complicated covering
proof probably would not have happened if Tetunashvili�s previously published and
more direct proof had come to our attention before our article had appeared. Only
time will tell if the covering techniques we developed will eventually have useful
applications elsewhere.

4. The conjecture

There is an obvious inclusion. If a multiple numerical series converges Unre-
stricted Rectangularly, then it converges Square. So

Hypothesis of UR Theorem =) Hypothesis of Square Conjecture.

This explains how it can be that UR uniqueness can be known while Square unique-
ness remains an open question. One hint of the problems here is that it is possible
for a double trigonometric series to square converge everywhere to a �nite valued
function while having coe¢ cients that are not O

�
nJ
�
no matter how large J may

be.[AWa2] I have discussed the square uniqueness conjecture in several places.[As2]

The �rst seven references below can be found using links from
http://condor.depaul.edu/mash/realvita.html.
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