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Example 1.2 (See note [1]): Let p be a positive inleger. Solving L}}e
following problem, we immediately know that we should put g = 45 in
Example 1.1.
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In a similar way, we can prove the following theorem.
Theorem 2: _
Let f(x) » 0 be a conliuous and increasing function in [0, e} If
F'{x) = f{x)and g is a constant with0 < g < I, then
1

s {f(#) +M’ _ j(: (F() — FO)) dx.
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Example 2: (See note [1]): Let pbe a positive integer. Then
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1. M. Nihei, Limits ol square roots, Marh. Gaz. 86 (July 2002) pp. 299-

302.
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93.55 Constructing a quadrilateral inside another one

L. The quadrilateral ratio problen -
In a convex quadrilateral ABCD Ji)_lll A to the midpolint u.[ BC,£t0 the
midpoint of €D, C to the midpoint of DA, and D to the midpoint of AB. The
intersections of these segments determine an inner quadrilateral EFGH as
shown in Figure 1.
Let r be the ratio of the quadrilateral areas, i.e.
~_ area (EFGH) (0
"~ area (ABCD)

The problem is to describe the value of r in terms of the geometry of ABCD.

o
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We [irst saw this problem in a projects book for Geometer's Sketchpad
[1]. We later learned that this problem is due to Michael de Villiers {2].
Simple numerical exploration has led some students to conjecture that
. In Theorem 1 we show that this is true in the case when the original
quadrilateral is a parallelogram. However, the conjecture is false in general.
In fact, the ratio can be any real number in the interval {}, £]. This is part of
our Corollary 3, which provides a complete solution to the problem.

L

Suppose now that instead of a quadrilateral we had a triangle. Of
course, joining each vertex to the opposite midpoint would not yield an
inner triangle, since the three lines are medians, which are concurrent in a
point. To look for an analogous resull for a triangle, we can look for points
which are not midpoints, but rather divide each side a ratio p of the distance
from one point to the next, 0 < p < 1. For definileness, we assume that
‘next point’ in this definition is based on movement in a counterclockwise
direction. We call these points p-peints. It turns oul, that for a given p, the
rativ of (he area of the inner triangle to the area of the outer triangle is a
constant independent of the initial triangle and is given by %‘1'791—,. Note that
when p = 4, this reduces to 0, which provides a convoluted prool that the
medians of a triangle are concurrent. When p = 1, the area ratio is 4, which
the Nobel Prize-winning physicist Richard Feynman once proved, though he
was probably not the first to do so [3]. The result [or general p is known,
and a proof is given in |4], along with the Feynman story.

Inspired by this result, we shall study the quadrilateral question for p-
points. Let ABCD be a convex quadrilateral and let N, N;, N1 and Ny be
chosen so that N is the p-peint of BC, N; is the p-point of €D, Ny is the p-
point of PA, and N, is the p-point of AB. For [ixed p (0 < p < [) connecl
each vertex of ABCD to the p-point of the next side (4 to N\, Bto N;, C to
Ny, and D 1o Ny). The intersections of the four line segments form the
vertices of a quadvilateral EFGH.
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D

FIGURE 2
Define the area ratio
area (EFGH)
rip, ABCD) = ————.
% ) = area (ABCD) @)

Theorem 2 below states that, as ABCD varies, the values of r(p, ABCD) fill
the interval

P Uy (e p)z}
p-p+1 pr+l

and that it is possible to give an explicit characterisation of the set of convex
quadrilaterals with maximal ratio M. The fact that M — m has a maximum
value of about (.034 and is usually much smaller explains the near
constancy of r (p, ABCD) as ABCD varies. Here are the graphs of M and m.

M (p) solid, m (p) dashed
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FIGURE 3
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Here now is the graph of M — m.
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Pl - py

A more delicale look at the graph of M — m =
(* + (p* - p+ 1)

shows that as ‘constant’ as r is in the original p = % case, il 1s eveu ‘more
constan’ when p is close to the endpoints 0 and 1. (Actually the maximum
value of M — m of about 0.034 is achieved at the unique real zero of
g — '+ 6p° — 607 + Tp — 3 which is about 0.55.)

The characterisation proved in Theorem 2 below shows thal not only do
parallelograms have maximal ratio M (p} for every p, but also they are the
only quadrilaterals that have maximal ratio M (p) for more than one p.

2. The midpoint case for parallelograms

Theorem 1: If each vertex of a parallelogram is joined to the midpoint of an
opposite side in clockwise order to form an inner quadrilateral, then the area
of the inner quadrilateral is one-fifth of the area of ke original
parallelogram.

Proof

In Figure S, ABCD is a parallelogram, and each M; is a midpoint of the
line segment it lies on. Cut apart the figure along all lines. Rolate AM;GD
clockwise 180° about the point M to get the quadrilaterat AHGG’, where G
is the image of G under the rotation. Quadrilateral AHGG' is a
parallelogram because the line CM; is paraliel to the base of AAHD so that
DG = GH. Parallelogram AHGG is congruent to EFGH, since similar
reasoning shows that AH = HE. Triangle AHD has been rearranged info a
parallelogram congruent to EFGH. Similarly, each of the triangles ABE,
BCF and CDG may be dissected and rearranged to form a parallelogram
congruent to EFGH. Thus, the pieces of ABCD can be rearranged into five
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congruent parallelogrﬁms, one of which 1s EFGH, which therel
one-fifth of the area of ABCD. o erefore has acea

D M, C

FIGURE 5

This result is a special case of Corollary 4 below, but is included
because of the elegant and eleinentary nature of its proof.

3. Thejilling of (m, M] and the characterisation

Theorem 2: !Jel A, B, C, D be (counterclockwise) successive vertices of a
?)onvelx quadnlat;eml. Let r be the ratio defined by (2). Construct the point
! so that ABCP is a par:lllflogram. Locale (as in Figure 6) Q on AB so that

Q = pAB, and R on BC so tthR is a distance pBC from C and C js
belween B and R and let § = QP U rP. Then the ratio r is maximal
exac_t]y when Dis on § = § mint (AABC) M ext(AABC). The set of
possible ratios is

(a-p (-pf
Pr-p+ 1 prel ]

Also the interior quadrilateral js a trapezi ] i

: : B apeziwin (with at least two il s

if and only if the ratio is (I — p)’/{(p* + 1). prallel sides

In l-?igure 6 below, 5" is indicated by the thickened portions of the rays
composing 5.

C R
FIGURE 6
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Proof: Fix p and apply an affine transformation that maps A, B, C, D to
(0, 1), (0, 0), (1, 0), (x, y) respectively. Since an affine transformation
preserves both linear length ratios and area ralios, it is enough to prove the
theorem after the transformation has been applied. Observe that P has
become (1, 1) and the image of § has become the union of two mutually
perpendicular linear sets that intersect at (1, 1), one a ray of slope p, and the
other a line segment of slope —1/ p. Here is the situation.

(1-px T+(1-pyy - 1) - ()
(0, 1) (13, )’3)
0,1-p} {4, 1)
(e, ) (1 +p(x—1hpy)
(x( yi)
0, O {p, B (L, 0
FIGURE 7

The line from (0, 0) to (x, y) divides the outer quadrilateral into two
triangles, one of area 4x and the other of area 3y, so that its area is  (x + ¥).
To find the area of the inner quadrilateral, we first determine
{x,,...,x4,y;,...,y4} in termms of x, y and p by equating slopes. For
example, the equations

nw-9 _ py - 0O
x -0 Il +px-1-0
y—-0 i-0

Xy - p 0-p
cant easily be solved for x, and y;. The area of the interior quadrilateral is
(i = x) (2 = y9) — O — ¥ (x2 =~ xa)
2
This is the n = 4 case of a weli-known formula for the area of an n-gon [5]
which can be established by first proving the formula for triangles and then
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using induction, or by using Green's Theorem. Some computer algebra
produces the following formidable and seemingly intractable formula for
¥ (x, v), the ratio of the interior and exterior quadrilateral areas:

Pl - Dy = p?(30° - 207 - p + 2xy +
plp® - p* — 67 + 4p? — p — Nx%y? +
p(2p* — 207 — 3p? + 20 - D)y + pPlo - Dx* +
p(2p' = 67 + pr + 20 - 1)y ~
(3° — 10p° = 3p* + 13p° — 507 — p + D)xy* -
(3p% + 50° — 15p* + p* + T2 — dp + 1)x%y -

—(p - 1 P30 + 200 — 5p + )X +
plp> = Tt + 6p> + T2 = Tp + 1y +
(505 — 3p° — 2lp* + 180° — p? — 3p + D)xy +
p(p® + 8p* — 6p° — S5p2 + 5p — 1)x? -
plp - )20 - 3 - Tp* + 5p - Dy ~
plp - D(2p* + Tp* = 502 —p + )x +
PPt + 20 - Dip - 1)

(y+ (P —p+Dx+p- 1y +x+plp-1)x
(P’y + px —p+ 1) x
((p* —p+ Dy + px — plp - 1))
An affine image of a convex figure is convex. Convexil)} means that

(x, v) is constrained o %, the open ‘north-east corner of the first quadrant

bounded by YUTUX,¥={(0y:y>1}, T={(x, -x):0<x<1},
= {(r, 0) : x » 1}. The image of 5" is 1he union of (wo mutually

perpendicular linear sels

=‘(x,y):y—l=p(x—]),x>pfl]

and
1
= l(x,y):yfl =4—(x*l).0<x<l+p}.
o

So we must show that r(x,y) = M when (x,y) € K w L, and
m < r(x,y) < M for all other (x,y) in ®i. We first study r on the
boundary of & and then use the boundary behaviour to help determine the
interior behaviour. Restricting r to ¥, we get a formula for r{y) = r(0, ¥
which allows us to compute that at the endpoints of ¥, r(1) = r(e=) = m.
(By r(ee) = m, we mean lim r(0, y) = m) Also, r(l + ﬁ) = M.

¥
Taking the derivative gives the unexpectedly simple, complelely factorised,
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formula:
d
'y = N (0, »)

_ U=’ Dy + L - p) ( L ]
(0 —p+ Dy +p(l - )Py + 1 - pf ’

Since every factor except for the last one is positive at y = l, and hence at

every point of ¥, the sign of " agrees with Lhe sign of the last factor. Thus r

is increasing on the interval (l, 1+ #) and decreasing on (1 + i, oo) In

other words, r 1s mound-shaped eon Y, taking on its maximum value M al

y = 1 + } and decreasing towards m as the endpoints of ¥ are approached.

We repeat this reasoning on T. Here we study r(x) = r{x, | — x),
0 € x £ |. We have already calculated that r(0) = m and a similar
calculation shows that r{1) = m also. We further compute thau(ﬁ’—p) M.
To get r to be mound-shaped on T, we must show r’ is positive on the
interval (0, l—f—p) and negative on (1—":—5 1). This is again clear since all

factors except the last are positive when 0 < x < | in the lormula

rx) = —xr(x 1 - x)

P = pP {1+ o)L+ ([ - px + p) ( P x)
(el = px + {2 —p+ 1L —px + pV’\1 +p '
Similarly on X we study r{x) = r(x, 0) getting r(l) = r{eo) = m
r(l + p) = M,and

rx) = —r {(x, 1 — x)

B P (1 — p(1 +p)(x— 1+ p)
- 2 2 2 2 (1 + p - 'x)
(P —p+Nx+p— 1) -p+x
where all factors except the last are positive at x = | and hence on all of X.

Once again, r is mound-shaped on X with edge values m and maximuin
value M.

Motivated by these results, we now sweep % with line segments L, with
y-intercepl # and stope —1. Differentiating r restricted to L, gives

rx) = %r(x ﬁx + '7)

ohlo- 1+ Uy~ 12 (r:p+l— )(rr—1+p o+ (o-p'hy ](—*, —1)
ot L)1+l - T )=+ 1)L phFlpn = 1+ )=l + 1)1 -
Ify = —p"f, then ¥ = 0; also L,7 conuects the pomt of Y where r = M to

the point of X where r = M. This shows that r has constant value M on the
linear set L. Also direct calculation shows that r = M ou K. Henceforth
we assume thaty # %‘9.
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One endpoint of L, is always in ¥. We subdivide our proof inlo cases
determined by the lucation of the vther endpoint.

(1) il > 1, then one endpoint of L, is at (np, 0) € X. Every factor of r’

except the last one in the numerator is posilive. (In particular, f{x), the
penultimalte factor in the numeraltor, satisfies for ) < x < #p,

Fx) > fapy = plyp*d — p)p + (e - 1) > 0)

. . 2y (g . 2 (-
So 1’ is positive when () < x < "%(T"JT”‘—’ and negative when 5’%(3;,33 <x <.

P . 2+ -1 .
Since L, intersects K when x = E—l(pr)E, r is mound-shaped on L, and the

values ol r are in (m, M) on L)\K.

(2) lfl)% >n > 1, then one endpoint ol L, is on T and corresponds to
H— - . - .

x= ‘J—(,-’,T The argument is very similar to that in case (I). Here r is mound-

shaped on_L,, il £ >3 > 14 but r is increasing on L,, if 1%, > > 1, because

L, teaves 9 belore intersecting K. The only delicale matter is the posiijvity

of f(x). Butlor0<x< l‘3(15’%1,f(x) >f(££,-'7__71)) =p'nlp + (1 = o)) > 0.

To prove that the inner quadrilateral is a trapezium exactly when the
ralio is maximal, il is enough to show that it being a trapezium is equivalent
1o {x, ¥) being on the uinage of §*. Actually, in this case, the parallel sides
are both parallel to the arm of §° containing D. In view of the argument
already presented, this is straightforward and will be left to the reader,

Recall that we have defined p-points in terms of counterclockwise
orientation. Although Theorem 2 is true for clockwise orientation, we stress
that the value of r depends, in general, on the orientation. In fact, clockwise
and counterclockwise orientations always give different values of r uitless D
lies on the diagonal BP.

Setting p = 4 in Theorem 2 yields the following corollary.

Corollary 3. Let A, B, C, D be (counterclockwise) successive verlices ol a
convex quadrilateral. Define EFGH as the inner quadrilateral formed by
joining vertices to midpoints as described in Section 1. Construct the point
I;so thal ABCP is a parallelogram. Let @ be the midpoint of AB, locate R on
BC so_llmt Rﬁ a dislance 4BC [rom € and C is between B and R, and et
S = QP « RP. Then the ratio r defined by (1) is inaximal exactly when D
isonS = 5 int{£ABC) M ext (AABC). The set of possible ratios is

L]

Also the interior quadrilateral EFGH is a trapeziuin (with at least two
parallel sides) if and only il the ratio is .
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In a personal communication, Michael de Villiers told us that this
Corollary was first proved by Coleman, Eberhart and Sathaye in the
unpublished paper [6]. The idea of characterising the extremal case in terns
ol the interior quadrilateral being a trapezium is due to e authors of [6].
We arrived at our other conclusions independently.

Another corollary of Theorem 2 is the following generalisation of
Theorem | from midpoints Lo p-potnts.

Corollary 2. 1f each vertex of a parallelogram is joined to the p-point of an
opposite side in counterclockwise order to form an inner guadrilateral, then

0 0 . - 2 - . .
the area ol the inner quadrilateral is (plT),% times the area of the original

parallelogram.

A nice geometry exercise is to prove this corollary by avoiding the
calculus part of the proof of Theorem 2. Hint: Performing the alfine
transformation we may assume that the original quadrilateral is the unit
square. Use slope considerations lo see that the interior quadrilaleral is
actually a rectangle. Use length considerations to see that it is a square of

fa =g
~+l

side length

4, The non-convex case

Nothing as lidy as Theorem 2 can happen here.  The derived
quadrilateral may not be inside the original quadrilateral; in fact Lhe area of
the derived quadrilateral may far exceed the original area. Also the derived
quadrilateral may be ‘twisted’, that is, sell-intersecting. In this case, it is
probably most natural to lake the area 1o be the signed area which is
automatically generated by the quadrilateral area formula we use; this
amounts (o the difference between the areas of the two triangles formed.
This area may even be zero, or a negative number.

We can illustrate all of these phenomena by restricting Lo the midpoint
case, p = 4. We further assume the same normalisation used in the proofl
of Theoren 2, so that A = (0, 1), B=(0, 0), C = (L, 0) and D = (x, ). If we
took at the non-convex cases generated by letting De {(nx):0<x< i,
then the formula for the ratio becomes

99x* + 54x’ — 3lxt + 4x - 1 1
, 0 <x < .
(Tx - 2)(6x - 1)(dx + D(3x + 2) 2
If x = 0.3261... is the zero of the numerator Tying between 0 and 1, then
(he area of the derived quadrilateral is zero. (Geometer's Sketchpad
confirms that the derived quadrilateral has the expecled ‘bow tie’ shape,
although the two triangles of equal area are not congruent.) Furthermore,
%raphing r(x, x) shows that the ratio may achieve every value in the sel
—oo, 4] L [1,
+ 5 ¥ .

rix,x) =
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There is room for further investigation here. For example,

(1) can the ratio r achieve values in (§, 1) whenp = 1,

{(2) what happens for otherp e (0, 1), and

(3) what happens if the original quadrilateral is itself twisted?
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Teaching Notes
Symmetric functions in the classroom
Introduction e
' ;:1 the Further Pure 1 module of the OCR A level _s..yllahtu'Jos;1 ;:u?:’?;iom
iven a gentle introduction (o the idea of symmetric rafi .
gi

i : - is left unchanged by any
R An SRF in the variables Xy, X2, -+ > n is ich Y any
(Sen:fl)tétio: of these variables (unchanged, that is, other than tn the or
p i

the terms and factors). To take an example, 2 2
) X

xtx xyx3 X% - X, 05, xX3

i BA2 e — T T

Xy X3 X2 X2 x| X

The elementary symmeiric polynomial (ESP) €pa 1S

p ‘,S 0[ A dlShnL[ elelﬂﬁllts fI()lll
ble [OdUL

is a SRF in x, xp and x3.

Jdefined as the sum of all possi

. . - x
x r.. Sothe ESPs in three variables are given by €13 )
Xy A2y ven s

= XKy + ks Hxppand eyy = ks o sables always be
2. M. de Villiers, Rethinking Proofs with the Geometer's Sketchpad, Key e A iwi]l—known result is that any SRF m n vanabl{:;; CE:; d:;:refore
Curriculum Press, Emeryville CA, 2003, iii-iv. pressed as a rational fuuction i €y €2m -+ > Con lealre zxpected o
. e : . :
3. R.J. Cook and G. V. Wood, Feynman's Triangle, Math. Gaz. 88 (July 1hi[r)1k of ESPs as basic building blocks fpr SRFs. SIUden ]
2004), pp. 269-302. use lhis result iu order to deal with questions such as: o
4. M. De Villiers, Feedback: Feynman's Triangle, Marh. Gaz. 89 (March If @ and p are the .roots 0f1> ‘llnﬁ ﬁ?ﬂjing N
2005), p. 107.  See ailso http:/mysite. mweb.co.za/residents/profmd/ 2 + 6x + 11 = 0 then, without explicitly
feynman.pdf. and f, evaluate
5. B. Braden, The Surveyor's Area Formula, College Math, Jouwnal 17 a’ ﬁ
(1986), pp. 326--337. YR
6. D. Coleman, C. Eberhait and A. Sathaye, An interesting quadrangl ¢ p = ~bandaf = Ll
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J. MARSHALL ASH Nxofegsi;n i:lmterms of these polynomials and hence evaluate |
DePaul University, Chicago, IL 60614 USA { (liaI:'ing first to find a and f themselves. - this result, and
MICHAEL A. ASH We have found that A level textbooks tend to flisst:::ﬁers " of Further
i -
Department of Economics, University of Massachusetis Amherst, ; the purpose of the present note 18 to.enzoz:dg While a proof of the
Amherst, MA 01003 USA | Mathematics to redress the balg:_ntct:le itgothr;fucrhgﬂf 1.nan)’ sixth-form classes,
! ipht be asking a httle : ssible 10
PETER F. ASH | general gals © m::gof SRFs in two variables would certainly be acces;lo o
Cambridge College, Cambridge, MA 02138 USA : the spectal case OF _ d. the first-named author, .
1 ay reasonably bright student. Indeed, ¢ piven here for this
' a'xylh form student, is essentially responsible for the prool 2
sixth- ’
. ‘ special case.
Student Problem Corner Editor P

9. Thecasen = 2

X . write
Tim Cross, who has edited the Student Problem Corner for 17 years, Let us consider some SRF in a and 8, r(a, p)say. We may

has hidicated that he thinks it is now time to give up the role. It involves

_ ‘ fla, B
setting the problems, ensuring that they are of an appropriate standard to i r{a, ) = ’m’
challenge school pupils, and then assessing the solutions which are received. { s ials (SPs). 1t therefore
Any reader of the Gazetfe who is interested in taking over is invited to nia ;

where f(a, B and g(a, By are symmetric polyno

. e who 1s ; eor . constant SP, f (a. f) 52y,
contact the Editor to receive further information about what is involved. suffices to prove the result for $Ps. For any non-con



