Fall 2002
MAT 335 Homework
1. Prove that 2n by 2n squares can be tiled by a 1 by 1 square and trominoes; Section 1 #1,3,5,7
2. Section 3 #3
3. Section 3 #4
4. Section 3 #5,8
5. Section 2 #2-4
6. Section 4 #1-4 (a)-(l)
7. Section 4 #7
8. Section 7 #1,2,3 (a)-(f)
9. Section 8 #1,2
10. Section 8 #3,4,5,7
11. Section 8 #8
12. Section 9 #1,2,8
13. Section 10 #1
14, Section 11 #2-4
15. Section 11 #5,7,9,10
16. Section 12 #3,4,14
17. Section 14 #1-4
18. Section 14 #6-8
19. Section 15 #1-4
20. Section 17 #1,4
21. Prove that classical continuity at a point implies continuity at that point.
22. Prove that the failure of classical continuity at a point implies the failure of continuity at that point.