Fall 2002

MAT 335 Homework

1.  Prove that 2n by 2n squares can be tiled by a 1 by 1 square and trominoes; Section 1 #1,3,5,7

2.  Section 3 #3

3.  Section 3 #4

4.  Section 3 #5,8

5.  Section 2 #2-4

6.  Section 4 #1-4 (a)-(l)

7.  Section 4 #7

8.  Section 7 #1,2,3 (a)-(f)

9.  Section 8 #1,2

10. Section 8 #3,4,5,7

11. Section 8 #8

12. Section 9 #1,2,8

13. Section 10 #1

14, Section 11 #2-4

15. Section 11 #5,7,9,10

16. Section 12 #3,4,14

17. Section 14 #1-4

18. Section 14 #6-8

19. Section 15 #1-4

20. Section 17 #1,4

21. Prove that classical continuity at a point implies continuity at that point.

22.  Prove that the failure of classical continuity at a point implies the failure of continuity at that point.