Computer Networks and Data Systems

Domain Name System (DNS)
One of two critical systems

Routing (BGP) and naming (DNS) are by far the two most critical subsystems of the Internet infrastructure. And in the case of DNS, practically all Internet hosts participate directly in the DNS as a client, server or both. As a result, DNS is one of the most unencumbered protocols in use throughout the Internet. This can be good, bad or interesting depending on your perspective.
First a DNS resolution primer...
I need an IPv4 address for www.cdm.depaul.edu.

Please get it (recursion desired) for me?
Check cache.
If empty, ask a parent.
Follow delegation if necessary.

Local Caching Server
(full resolver)

parent zones: cdm.dePaul.edu.
depaul.edu.
edu.
Let's assume cache is empty, and all it knows about is (.) root.*

A.root-servers.net

...

M.root-servers.net

*Do you see why a reliable and trustworthy root is so important?
I need an IPv4 address for www.cdm.depaul.edu.

Can you tell me or refer me to someone?

Local Caching Server (full resolver)

root (.) server
Don't know.

Try one of these .edu servers:

A.EDU-SERVERS.NET
C.EDU-SERVERS.NET
D.EDU-SERVERS.NET
F.EDU-SERVERS.NET
G.EDU-SERVERS.NET
L.EDU-SERVERS.NET
Does the caching server have something in its cache now?

Raise your hand for yes.
Ultimately we should get here...
You've come to the right place. The authoritative answer is:

140.192.32.137

and that answer is valid for 3600 seconds

Local Caching Server (full resolver) ns1.cti.depaul.edu.
or ns2.cti.depaul.edu.
or ns3.cti.depaul.edu.
Anatomy of a domain name
What's in a name?

- As a domain name, any 8-bit value is valid
- For a host name, see IETF RFC 1123
 - [0-9a-zA-Z-]
 - underscore not strictly allowed, but often used
- On-wire max domain name length is 255 octets
 - max label length is 63 octets
- Some second-level domains behave like TLDs
 - e.g. co.uk.
 - related: http://publicsuffix.org/
Name space hierarchy
Distribution and delegation

There is no single all-encompassing DNS database server. Zone administration is delegated and zone data is distributed. This implies the desire and need for a single, authoritative, trustworthy and reliable root.
Root zone

- ICANN
 - US DoC contractor for IANA services
 - responsible for root zone contents
- VeriSign
 - data “mechanic”
- root-servers.org
 - 12 independent root server operators
 - 13 instances total, VeriSign runs two
Top-level domains (TLDs)

- All the first-level child labels of the root
- Various types (“marketing” terms)
 - gTLD, ccTLD, sTLD, uTLD and special TLDs
- Started with:
 - .arpa .com .edu .gov .int .mil .net .org
- Now approximately 300 (mostly ccTLDs), also see:
 - http://www.iana.org/domains/root/db/
 - https://www.dns-oarc.net/oarc/data/zfr/root
DNS protocol message format

+---------------------+
| Header | (see next slide) |
+---------------------+
| Question | the question for the name server |
+---------------------+
| Answer | RRs answering the question |
+---------------------+
| Authority | RRs pointing toward an authority |
+---------------------+
| Additional | RRs holding additional information |
+---------------------+
DNS protocol header format

```
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
+---+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|    |             ID              |
+---+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| QR | Opcode | AA | TC | RD | RA | Z | RCODE |
+---+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|           QDCOUNT              |
+---+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|               ANCOUNT           |
+---+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                     NSCOUNT      |
+---+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                           ARCOUNT|
+---+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```
DNS protocol RR format

```
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
+--+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
/          
/          NAME          
/          
+--+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|          TYPE          |
+--+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|          CLASS         |
+--+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|          TTL           |
+--+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+--+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|          RDLENGTH      |
+--+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
/
/
RDATA  
/
/
+--+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```
DNS transport

- DNS uses both UDP and TCP
- Well known port 53 reserved for server listener
- In practice, most queries/answers use UDP
- TCP is NOT just for zone transfers
 - DDoS mitigation hack
 - large RRsets (e.g. DNSSEC, TXT RRss)
 - RFC 5966, 2010-08, DNS Transport over TCP
 - “[...] TCP is henceforth a REQUIRED part of a full DNS protocol implementation.”
DNSSEC

• DNSSEC adds “spoofing” protection
• No encryption of DNS data
• What does this do?
 • Optimist: resists poison / replay / MITM attacks
 • Cynic: awkward mechanism for a non-problem
• Two of the original 3-bit Z field bits now defined:
 • AD – authentic data
 • CD – checking disabled
EDNS0

• Extension mechanism for DNS
• One OPT pseudo-RR added to additional section
• Example extension capabilities include:
 • signaling support for DNSSEC (DO bit)
 • indicating sender's max UDP payload size
 • including client query origin detail (draft)
Domain name registration

- Registry
 - Keeper/maintainer of TLD zone data
- Registrar
 - Agent through which registrant obtains a name
- Registrant
 - Authorized user of name, customer of registrar
WHOIS

• Interface to assignees of Internet resources
 • e.g. domain names, IP addresses, ASNs
• Human readable text output
• Lacks modern design attributes
 • e.g. security, internationalization
Best Common Practices (BCPs)
How many NS RRs for your zone?
Authoritative name server RRset

- Two is the de facto minimum
- Depending on design, more may be better
- Anycast service may be worth your consideration
- Some people use hardware-based load balancing
- Miscreants invented fast flux
 - Then legitimate providers said, “Hmm...”
Where are your name servers?
DNS Server Diversity

• Consider physical and topological proximity
• All servers in the same building is suboptimal
 • As are all servers behind a shared upstream link
• Shorter prefixes mitigate route hijacks
• Diverse routing paths can improve resiliency
• Diverse origin AS for routes not strictly necessary
 • Just ask the DNS anycast service providers
Are parent and children consistent?

example. TLD

foo NS ns1.foo.example.
foo NS ns2.foo.example.
foo NS bob.bar.example.

ns1.foo.example.

foo NS ns1.foo.example.
foo NS ns2.foo.example.
foo NS ns3.bar.example.
Delegation Consistency

- Things may work if inconsistent, but sub-optimally
 - You're not getting full resiliency at best
 - Delays, timeouts and errors may be occurring
 - Domain name hijacks possible at worst
- Recent measurement showed:
 - 18% of domains in edu. have lame delegations
 - Only 0.1% were REN-ISAC institutions
 - Or less than 5% of all REN-ISAC institutions
Does your server answer anything from anyone?
Open Resolvers

• Rarely necessary
• May be used for DDoS reflection and amplification
• Can facilitate cache poisoning attacks
• Can facilitate cache leaks
• We'll tell you about open resolvers on your net:
 http://www.team-cymru.org/Services/Resolvers/
How easily can returning answers be spoofed?

What is the rdata/ttl for ... ?

HERE IT IS!! Mmwahahaha...
Answer Spoofing Protection

• Implementations need to consider IETF RFC 5452
• Limit recursion (see the open resolvers slide)
• Ideally anti-spoofing is widely deployed
 • See IETF BCP 38 and IETF BCP 84
Is your name registration secure?

Mmwuahaha...

Please transfer domain.example.org to...
Domain Name Registration

- Do not let your name(s) expire needlessly
- Safeguard registrar accounts and passwords
- Some registrars offer additional safeguards
 - Ask about them, know what is available
- Make this part of a disaster recovery plan
What is on your name server?

httpd
snmpd
ftpd
proxyd
dhcpd

=

⚠️
Co-mingling Services

• SSH and NTP are reasonable standard services
 • Most others are not
 • Even these should generally be inaccessible
• Consider isolating some zones from others
 • e.g. put DDoS risk zones on a separate platform
• Consider separating recursive/authoritative service
How are servers administered?

pictures from techrepublic, Bill Detwiler

OR
Administrative Processes

• We see a lot of successful SSH brute force attacks
• Limit physical access to facilities and hardware
• If it looks lousy, it probably is
• When in doubt, consult Occam's Razor
• Use revision control for configs and zone files
• As important as a backup plan is the restore plan
• Secure BIND Template
 http://www.team-cymru.org/ReadingRoom/Templates/
How much RAM, CPU, disk and network capacity is available?
Physical Resources

• Don't have enough, have *way* more than enough
• Resolvers can demand lots of RAM
• CPU may be important, especially for crypto
• Hard drives usually less important
 • Isolating partitions and directories may be useful
 • Try to offload data collection to another system
• Network capacity usually not an issue until DDoS
Are you filtering DNS over TCP?
TCP

- Don't assume you have no DNS over TCP
- TCP isn't just for zone transfers
 - Large DNS messages may use TCP
 - Some operators may force TCP during DDoS
- TCP tuning may be required for some DoS threats
- IETF RFC 5966 implementation requirement
What queries do you see/make?
Monitoring and Auditing

- Troubleshooting with query insight is very helpful
- Consider learning answers from the resolvers too
- AKA passive DNS
- Minimally, trend DNS query/answer statistics
- Monitor servers, answers and routes from outside
 - http://www.team-cymru.org/Monitoring/DNS/
 - http://www.team-cymru.org/Monitoring/BGP/
Are name server clocks accurate?
Time Synchronization

- This probably means running NTP properly
- Troubleshooting works best with good timestamps
- Collected data is practically useless if time is off
- Some protocols require coordinated time
 - e.g. TSIG
- Consider setting clocks to UTC
 - Helpful for correlation across timezones
Have you read IETF RFC 2870?

Network Working Group
Request for Comments: 2870
Obsoletes: 2010
BCP: 40
Category: Best Current Practice

R. Bush
Verio
D. Karrenberg
RIPE NCC
M. Kisters
Network Solutions
R. Plzak
SAIC
June 2000

Root Name Server Operational Requirements
IETF RFC 2870

- It's a BCP, you should be familiar with it
- It's a bit dated and written for a specific audience
 - But it contains sound advice for most everyone
- A newer, generalized version may soon appear
Advanced Topics
Fast Flux DNS
DNS terminology review

- resource record (RR)
 - database entry (row) about a domain name
- RRset
 - RRs with the same name, class, type (and TTL)
- A
 - DNS RR of type A, for IPv4 address record(s)
- NS
 - DNS RR of type NS, for name server records(s)
dig output of an “A” query

$ dig @ns1.2connectbahrain.com. www.menog.net. IN A

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 12345
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 2, ADDITIONAL: 2

;; QUESTION SECTION:
;www.menog.net . IN A

;; ANSWER SECTION:
www.menog.net. 7200 IN A 80.88.242.44

;; AUTHORITY SECTION:
menog.net. 172800 IN NS ns1.2connectbahrain.com.
menog.net. 172800 IN NS ns2.2connectbahrain.com.

;; ADDITIONAL SECTION:
ns1.2connectbahrain.com. 7200 IN A 46.2956.196
ns2.2connectbahrain.com. 172800 IN A 80.88.242.4
dig output of an “NS” query

$ dig @ns1.2connectbahrain.com. menog.net. IN NS

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 12345
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 0, ADDITIONAL: 2

;; QUESTION SECTION:
;menog.net. IN NS

;; ANSWER SECTION:
menog.net. 172800 IN NS ns1.2connectbahrain.com.
menog.net. 172800 IN NS ns2.2connectbahrain.com.

;; ADDITIONAL SECTION:
ns1.2connectbahrain.com. 7200 IN A 46.29.56.196
ns2.2connectbahrain.com. 172800 IN A 80.88.242.4
Affecting availability with DNS

• The RRs in an answer or NS RRset
• RRset TTL
• Unique answer based on origin (geoloc/views)
• Unique answer based on time
• Wildcards, answering authoritatively
Different origin, different answer

$ dig www.google.com

;; ANSWER SECTION:
www.1.google.com. 300 IN A 74.125.95.147
www.1.google.com. 300 IN A 74.125.95.99
www.1.google.com. 300 IN A 74.125.95.103
www.1.google.com. 300 IN A 74.125.95.104

$ dig www.google.com @4.2.2.2

;; ANSWER SECTION:
www.1.google.com. 300 IN A 209.85.171.103
www.1.google.com. 300 IN A 209.85.171.104
www.1.google.com. 300 IN A 209.85.171.147
www.1.google.com. 300 IN A 209.85.171.99
$ dig vqthe.cn

;; ANSWER SECTION:
vqthe.cn. 180 IN A 89.46.127.47
vqthe.cn. 180 IN A 123.237.100.126
vqthe.cn. 180 IN A 123.237.108.142
vqthe.cn. 180 IN A 190.191.142.122
vqthe.cn. 180 IN A 196.202.6.66
vqthe.cn. 180 IN A 71.239.64.226
vqthe.cn. 180 IN A 78.92.180.208
vqthe.cn. 180 IN A 85.254.64.153

;; AUTHORITY SECTION:
vqthe.cn. 180 IN NS ns2.krcrab.com.
vqthe.cn. 180 IN NS ns1.czwill.com.
vqthe.cn. 180 IN NS ns4.krcrab.com.
vqthe.cn. 180 IN NS ns2.czwill.com.

;; ADDITIONAL SECTION:
ns1.czwill.com. 172799 IN A 78.92.180.208
ns2.czwill.com. 172799 IN A 85.67.171.146
ns2.krcrab.com. 172799 IN A 61.61.61.61
ns4.krcrab.com. 172799 IN A 138.16.6.201
Re-query, notice changes

$ dig vqthe.cn

;; ANSWER SECTION:
 vqthe.cn. 180 IN A 85.67.171.146
 vqthe.cn. 180 IN A 89.44.56.76
 vqthe.cn. 180 IN A 89.102.112.60
 vqthe.cn. 180 IN A 116.72.241.170
 vqthe.cn. 180 IN A 124.125.245.32
 vqthe.cn. 180 IN A 190.245.216.89
 vqthe.cn. 180 IN A 79.140.228.27
 vqthe.cn. 180 IN A 85.29.210.207

;; AUTHORITY SECTION:
 vqthe.cn. 180 IN NS ns1.czwill.com.
 vqthe.cn. 180 IN NS ns2.krcrab.com.
 vqthe.cn. 180 IN NS ns2.czwill.com.
 vqthe.cn. 180 IN NS ns4.krcrab.com.

;; ADDITIONAL SECTION:
 ns1.czwill.com. 172585 IN A 78.92.180.208
 ns2.czwill.com. 172585 IN A 85.67.171.146
 ns2.krcrab.com. 172585 IN A 61.61.61.61
 ns4.krcrab.com. 172585 IN A 138.16.6.201
Single-flux vs double-flux

• If you know two more buzzwords than the other guy, you're an expert

• Single-flux: the A RRs in the answer flux

• Double-flux: the A RRs for name server names flux
 • Note, name usually stays the same, but the name server IP addresses for the authoritative name servers at parent (usually registry) or child may be changing. This could be automated through a registrar's API or via a script at the child name server(s).
Why is this cool? or... Why is this bad?

- It's a great way to ensure availability
- Taking away any single host has almost no impact
- How do you take down potentially dozens, if not hundreds of hosts in the ARRayset?
- Take down the name?
 - Not all registrars or registries are willing and/or are able to support this whack-a-mole process
Law enforcement problem

Fast-flux makes it literally impossible for them to bust bad guys. They are just not equipped to deal with these challenges and infrastructure. :-(
Malicious use mitigation

- ICANN registry/registrar agreements can help
- Registrar and registry response capability is key
- Some success in detection and monitoring projects
An aside: Domain name generation algorithms in malware

• 1) worm generates pseudo-random name
• 2) attempts to contact server at random name
• 3) if not authentic, try another
• 4) if authentic, follow instructions
• Pool of names can be large and widely dispersed
 • i.e. many TLDs, registries, registrars affected
 • example worm: Conficker
• Problem: how do you mitigate so many names?
Passive DNS
History

• 2004, meteoric rise in IRC botnets using DNS
 • widespread DNS insight/research efforts begin
 • “bad” names monitored and sinkholed
 • need way to uncover “bad” names
• Florian Weimer publishes Passive DNS Replication
 • basic idea: collect answers, learn namespace
 • immediately widely adopted and leveraged
• See: http://www.enyo.de/fw/software/dnslogger/
Before passive DNS

- Look for NetFlow involving “known bad” IP address
 - Look for related NetFlow records
- IP address changes, want to know DNS name
 - dnswatch Perl script
 - DNS recursive query correlation (query logging)
After passive DNS

• Quickly associate all addresses to names
 • and vice versa
• Find an IRC bot talking to 192.0.2.1?
 • check passive DNS...
 • botnet.example.org mapped to it YYYY-MM-DD
 • miscreant.example.net mapped there yesterday
 • miscreant.example.net now points to 192.0.2.2
 • 192.0.2.2 also maps to malware.example.org
 • and so on
Other passive DNS uses

• Cache poisoning detection
• Auditing and usage violation monitoring
• System and network profiling
• DNS hijacking analysis
• Other basic research
BIND Administration Options
Useful named.conf options

• To enable query logging:
 • logging { category queries { channel; }; };

• To isolate and delegate changes with include:
 • zone “a.example” { include “/etc/a.example”; };
 • acl “bogons” { include “/etc/bogons.named”; }
Named pipe for query logging

- Option for disk/log constrained environments
- Really only useful for real-time monitoring
 - mknod /log/named.pipe
 - logging channel "pipe" { file "/etc/named.pipe"; };
 - tail /etc/named.pipe
 - grep 192.0.2.1 /etc/named.pipe
Domain Name Hijacking

• Some names you may not want to resolve properly
 • e.g. malicious domain names
• You can set your resolvers to be authoritative for anything
• Response Policy Zones (RPZ) being put in BIND
1) Create mitigating zone file

```
$TTL 1D
@    IN  SOA  localhost.  Root (  
     1970010100
     3H
     30M
     1W
     1D
 )

 IN NS  localhost.
 IN A   127.0.0.1
 IN AAAA ::1
 IN TXT "Inquiries to security@localhost."
```
2) Add zone to named.conf

zone "malicious.example.org." {
 type master;
 file "./etc/badnames.conf";
};
3) Load the new zone

```
rndc reconfig
```
Anycast
Shared unicast addressing

ISP A
192.0.2.0/25 - peers
192.0.2.0/24 - global

ISP B
192.0.2.0/25 - peers
192.0.2.0/24 - global

ISP C
192.0.2.0/25 - peers
Deployment

- For both recursive and authoritative servers
- Widely implemented technique to spread the load
- Helps mitigate DDoS attacks
- Helps provide low latency service around the globe
- See IETF RFC 4786 for technical background
- See ISC-TN-2004-1 for implementation notes
dsc
http://dns.measurement-factory.com/tools/dsc/
dnstop
http://dns.measurement-factory.com/tools/dnstop/

Queries: 0 new, 47 total

<table>
<thead>
<tr>
<th>Query Name</th>
<th>Count</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>example.org</td>
<td>25</td>
<td>53.2</td>
</tr>
<tr>
<td>example.edu</td>
<td>15</td>
<td>31.9</td>
</tr>
<tr>
<td>192.in-addr.arpa</td>
<td>6</td>
<td>12.8</td>
</tr>
<tr>
<td>ns1</td>
<td>1</td>
<td>2.1</td>
</tr>
</tbody>
</table>
ZoneCheck
http://www.zonecheck.fr/

ZoneCheck: menog.net

Zone information

<table>
<thead>
<tr>
<th>menog.net</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ns1.2connectbahrain.com</td>
<td>46.29.56.196</td>
</tr>
<tr>
<td>2 ns2.2connectbahrain.com</td>
<td>80.88.242.4</td>
</tr>
</tbody>
</table>

Progress

- Testing: illegal symbols in domain name
- Testing: dash ('-') at start or beginning of domain name
- Testing: double dash in domain name
- Testing: one nameserver for the domain
- Testing: at least two nameservers for the domain
- Testing: identical addresses
- Testing: nameserver addresses are likely to be all on the same subnet
- Testing: nameservers belong all to the same AS
- Testing: delegation response fit in a 512 byte UDP packet
- Testing: delegation response with additional fit in a 512 byte UDP packet
- Testing: address in a private network (NS=ns1.2connectbahrain.com)
Parting thoughts: DNS operational observations

- Flexibility as a virtue and scourge
- Expert pool is deep, but concentrated
- Best and common practices often undocumented
- Understanding of the deployed system is nascent
- Interest and innovation is ramping up