Network Protocols

Domain Name System (DNS)
largely based on slides from D. Comer
Names

- Internet communication requires an IP address
- Humans prefer to use easy to remember names
- Need an automated system to translate IP to name
- This is the Domain Name System
- A static database (e.g. /etc/hosts) can also be used
 - Scaling issues with these static databases
Basic DNS functionality

- Given a name of a computer/host
- Return the IP address associated with the name
- Method used:
 - Distributed lookup of names in a hierarchy
 - Client contacts server(s) as necessary
Domain name syntax

• Alphanumeric segments separated by dots
 • www.dePaul.edu
 • www.cs.depaul.edu
• Top level hierarchy starts from the right
 • .edu – top level domain (TLD)
Obtaining a domain name

- An organization:
 - chooses a name
 - it must be unique and available
 - register name with a central authority
 - placed under a top level domain
- Names subject to international law
 - trademark
 - copyright
Top Level Domains

<table>
<thead>
<tr>
<th>Domain Name</th>
<th>Assigned To</th>
</tr>
</thead>
<tbody>
<tr>
<td>aero</td>
<td>Air transport industry</td>
</tr>
<tr>
<td>arpa</td>
<td>Infrastructure domain</td>
</tr>
<tr>
<td>biz</td>
<td>Businesses</td>
</tr>
<tr>
<td>com</td>
<td>Commercial organization</td>
</tr>
<tr>
<td>coop</td>
<td>Cooperative associations</td>
</tr>
<tr>
<td>edu</td>
<td>Educational institution</td>
</tr>
<tr>
<td>gov</td>
<td>United States Government</td>
</tr>
<tr>
<td>info</td>
<td>Information</td>
</tr>
<tr>
<td>int</td>
<td>International treaty organizations</td>
</tr>
<tr>
<td>mil</td>
<td>United States military</td>
</tr>
<tr>
<td>museum</td>
<td>Museums</td>
</tr>
<tr>
<td>name</td>
<td>Individuals</td>
</tr>
<tr>
<td>net</td>
<td>Major network support center</td>
</tr>
<tr>
<td>org</td>
<td>Non-commercial organizations</td>
</tr>
<tr>
<td>pro</td>
<td>Credentialed professionals</td>
</tr>
<tr>
<td>country code</td>
<td>A country</td>
</tr>
</tbody>
</table>
Hierarchy with a organization

- Subdivision possible
- Arbitrary levels allowed
- Not standardized
- Controlled locally by the organization
Example name structure

- First level is .com
- Second level is company name
- Third level is a division within a company
- Fourth level is either
 - company subdivision
 - host
A domain name example

- Company foobal with cany and soap divisions
- Candy has subdivisions, soap does not
- Names in soap division take the form:
 - host.soap.foobar.com
- Names in candy division take the form:
 - host.subdivision.candy.foobar.com
DNS example illustrated
DNS client-server interaction

- Client is known as a resolver
- Multiple DNS servers are typically used
- Arranged in a hierarchy
- Each server corresponds to its part in the hierarchy
Two possible DNS hierarchies
Inter-server links

- Servers know how to reach parent domain server
 - Each server knows how to reach the root (.)
- Servers know child domain servers
DNS deployment in practice

- Redundant servers are used
- Root servers A-M are:
 - geographically dispersed
 - often each root is redundant, dispersed
 - generally run by very clueful people
- ISPs/organizations offer DNS services to its users
- Small organizations can get DNS from an upstream
DNS lookup

- Application triggers request to local name server
- If local server knows the answers, it returns it
- Otherwise, the local server go finds it for the client
 - Starts at top level domain and follows links
- Iterative lookups force client to follow links
- Recursive lookups result in server following links
DNS caching

- Servers cache answers for some period of time
 - Usually controlled by the TTL in an answer
- Hosts can also cache previous answers
- Caching
 - Improves efficiency
 - Eliminates unnecessary searching
 - Works well because of high locality reference
- Cache poisoning attacks can be a problem
DNS types

• Each entry in a server consists of
 • domain name
 • DNS type for the name
 • value to with the name corresponds
• Client asks for the name and specifies the type
• Server matches name and type and returns answer
Example DNS types

- Type A (address)
 - value is an IP address assigned to a host
- Type MX (mail exchanger)
 - value is an IP address that handles mail for host
- Type CNAME (canonical name aka alias)
 - value is another domain name
- Type PTR (pointer)
 - value is a name, this is used for reverse lookups
Domain name abbreviations

- DNS uses fully qualified domain names (FQDN)
- Users/apps sometimes do not specify the full name
- Configure resolver with a list of common suffixes
 - e.g. depaul.edu, cs.depaul.edu
- User enters www, resolver tries until match:
 - www
 - www.depaul.edu
 - www.cs.depaul.edu