Applied Networks & Security

TCP/IP Protocol Suite

http://condor.depaul.edu/~jkrystof/it263/

John Kristoff
jtk@depaul.edu
ARP overview

- datalink to network layer address mapping
 - e.g. 0000.1234.abcd <---> 192.0.2.1
- Hosts and routers build ARP table/cache
 - ARP entries associated with a local interface
 - Timers used to age old table entries
- Potential security problems with ARP
 - No authentication, can lead to impersonation
Typical ARP process...

Sender
- Send L2 broadcast
- Fill in known target IP

Receiver
- Fill in missing fields
- Learn sender's IP/MAC
- Reply directly to sender
IP review

- IP provides just enough *connected-ness*
 - Global addressing
 - Hop-by-hop routing
- IP over everything
 - Ethernet, ATM, X.25, fiber, etc.
- Minimizes network state
- Unreliable datagram forwarding
TCP key features

• Sequencing
• Byte-stream delivery
• Connection-oriented
• Reliability
• Flow-control
• Congestion avoidance
TCP feature summary

Provides a completely reliable (no data duplication or loss), connection-oriented, full-duplex byte stream transport service that allows two application programs to form a connection, send data in either direction simultaneously and then terminate the connection.
Apparent contradiction

- IP offers best effort (unreliable) delivery
- TCP uses IP
- TCP provides completely reliable transfer
- How is this possible?
Achieving reliability

• Reliable connection start-up
• Reliable data transfer
 • Sender starts a timer
 • Receiver sends ACK when data arrives
 • Sender retransmits if timer expires before ACK is returned
• Reliable connection shutdown
Reliability illustrated

Events at Host 1
- send message 1
- receive ack 1
- send message 2
- receive ack 2
- send message 3
- retransmission timer expires
 - retransmit message 3

Events at Host 2
- receive message 1
- send ack 1
- receive message 2
- send ack 2
- receive message 3
- send ack 3

packet lost
When do you retransmit?

• The time for an ACK to return depends on:
 • Distance between endpoints (propagation delay)
 • Network traffic conditions (congestion)
 • End system conditions (CPU, buffers)
• Packets can be lost, damaged or fragmented
• Network traffic conditions can change rapidly
Solving retransmission problem

- Keep running average of round trip time (RTT)
- Current average determines retransmission timer
- This is known as adaptive retransmission
- This is key to TCP's success
- How does each RTT sample affect the average?
 - What weight to you give each sample?
 - Higher weight means timer changes quickly
 - Lower weight means timer changes slowly
Adaptive retransmission illustrated
Flow control

- Match the sending rate with allowable receiver rate
- TCP uses a sliding window
 - Receiver advertises available buffer space
 - Also known as the window
 - Sender can transmit a full window without receiving an ACK for that transmitted data
- Ideally the window size allows pipe to remain full
Window size advertisement

• Each ACK carries receiver's current window size
 • Called the window advertisement
 • If zero, window is closed, no data can be sent
• Interpretation of window advertisement:
 • Receiver: I can accept X octets or less unless I tell you otherwise
Window size illustrated
Window size: another picture

window

1 2 3 4 5 6 7 8 9 10 11 12

(a)

Sent and ACKed

window

1 2 3 4 5 6 7 8 9 10 11 12

(b)

Not Yet Sent

window

1 2 3 4 5 6 7 8 9 10 11 12

(c)
Byte stream sequencing

• Each segment carries a sequence number
• Sequencing helps ensure in order delivery
• TCP sequence numbers are fixed at 32 bits
 • Byte stream is not limited to 2^{32} bytes
 • Sequence number space can wrap
• Each side has an initial sequence number (ISN)
 • Exchanged during connection establishment
• Receiver ACKs cumulative octets (bytes)
TCP segment illustrated

| bit | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 |
|------|---|---|---|---|---|---|---|---|---|---|----|
| | Source Port | Destination Port |
| | Sequence Number |
| | Acknowledgement Number |
| HLEN | Reserved | U | R | G | A | C | K | P | S | H | T | R | S | T | Y | N | F | I | N |
| | Window |
| | Checksum |
| | Urgent Pointer |
| | Options (if any) |
| | Padding |
| | Data |

...
Application multiplexing

- OS independent identifier for a network process
- Each application assigned a unique 16-bit integer
 - Called a port number
- Server applications
 - Use standard, well-known port numbers
 - Usually low numbered port numbers
- Clients
 - Obtain unused number from protocol software
 - Usually uses high numbered port numbers
TCP connection start-up

- The three-way handshake used
- Servers use a passive open
 - Application sits waiting on an open port
- Clients use an active open
 - Application requests a connection to server
- Initial sequence number (ISN) exchange is the primary goal
- Other parameters/options can also be exchanged
 - e.g. Window scale, maximum segment size, etc.
3-way handshake illustrated

Time

Host A

Send SYN seq=x
Receive SYN + ACK
Send ACK y+1

In the Network

Host B

Receive SYN
Send SYN seq=y, ACK x+1
Receive ACK
Connection shutdown illustrated

Time

Host A

Send FIN

Receive ACK

Receive FIN

Send ACK

In the Network

Host B

Receive FIN

Send ACK

Send FIN

Receive ACK
Congestion principles

• Flow control
 • Matching the sending and receiving rates

• Congestion control
 • Active response to network overload conditions
 • End hosts cannot control congestion per se
 • Network devices (routers) do this

• Congestion avoidance
 • Cautionary response to presumed conditions
 • TCP does this
TCP congestion control

• Recall sliding window (advertised window)
 • Receiver based control of sending rate
• Congestion window is sender based control
• Sender transmits min(cwnd, advertised window)
 • This value is the transmission window
• TCP sender infers network conditions and adjusts
TCP retransmission

• TCP starts timer after sending a segment
• If ACK returns, reset timer
• If time-out occurs, retransmit and increase timer
 • This is a *back-off* process
• Can't retransmit forever, need some upper bound
• Eventually TCP would give up
 • Maximum time-out must be at least 60 seconds
UDP message format

| bit | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 |
|------|---|---|---|---|---|---|---|---|---|---|----|
| | Source Port | Destination Port |
| | Length | Checksum |
| | Data | |

...