Interconnection Technologies

Bridging I
Data link addressing

- IEEE standard LAN address is 48–bits long
- Written as sequence of 12 hex digits
 - 6 bytes/octets
 - Often separated by colons or dashes
- Sometimes referred to as:
 - Hardware, MAC or layer 2 addresses
Data link addressing illustrated

Destination Address

<table>
<thead>
<tr>
<th>first byte</th>
<th>second byte</th>
<th>third byte</th>
<th>fourth byte</th>
<th>fifth byte</th>
<th>sixth byte</th>
</tr>
</thead>
</table>

- **Organizationaly Unique Identifier (OUI)**
- **Organization Assigned Portion**

Source Address

<table>
<thead>
<tr>
<th>first byte</th>
<th>second byte</th>
<th>third byte</th>
<th>fourth byte</th>
<th>fifth byte</th>
<th>sixth byte</th>
</tr>
</thead>
</table>

- **Second bit transmitted**
 - 0 = globally administered
 - 1 = locally administered

- **First bit transmitted**
 - Routing information indicator (RII) - token ring and FDDI only - must be zero if not token ring or FDDI
 - 0 = Routing information not present (not source routed)
 - 1 = multicast destination

- 0 = unicast destination
- 1 = multicast destination
Data link unicast addressing

- Identifies a single device or interface
- Source addresses are always unicast
- May be locally or globally assigned
 - Universally administered address (UAA)
 - IEEE assigns organizationally unique identifier (OUI)
 - Locally administered address (LAA)
Data link multicast addressing

- Identifies a group of devices or interfaces
- Broadcast address is the set of all hosts
- Also called group addresses
Why bridges?

- Connect dispersed LANs together
- Support any Layer 3 protocol
- Accommodate hosts with no Layer 3 protocol
- Contain local traffic to local segments
- Allocate more LAN capacity per station
- Limitations on the number of hosts per LAN
- LANs may have physical distance limitations
Bridging illustrated
Transparent bridging overview

- Listen to each interface promiscuously
- Inspect layer 2 information
- Output to other interface(s) if necessary
Bridge forwarding and filtering

- Receive frame on an ingress interface
- Inspect destination address
- If multicast/broadcast
 - Output to all except incoming interface
- Query address table (cache) for destination
 - If found, send to appropriate egress interface...
 - Except when ingress = egress, then filter it
 - If not found, flood to all except ingress interface
Source address learning

- Bridge listens promiscuously on all ports
- Store source address and associated ingress bridge port in address table (cache)
Bridge table (cache) entry aging

- Low priority or non-time critical operation
- Allows station mobility and small table size
- Aging process periodically clears H bit
- If H bit is clear, clear V bit
- If H and V bit is clear, remove table entry

<table>
<thead>
<tr>
<th>MAC Addresses</th>
<th>Port #</th>
</tr>
</thead>
<tbody>
<tr>
<td>address entry 1</td>
<td></td>
</tr>
<tr>
<td>address entry 2</td>
<td></td>
</tr>
<tr>
<td>address entry n</td>
<td></td>
</tr>
</tbody>
</table>

- valid bit
- aging (hit) bit
- static bit
A transparent bridge...

- Must participate in MAC on each interface
- May introduce *transit delay* in forwarding
- Must not alter the frame
 - *interesting* token ring AR/FC bits aside
- Is *transparent* to end stations
- May drop frames in periods of congestion
- Requires globally unique LAN addresses throughout the entire bridged *catenet*
IEEE 802.1D standard

- Comprises a number of bridging standards
- Describes bridges, address tables, forwarding, filtering, etc.
- Describes various operating parameters
- Requires bridges to validate FCS field
- Specifies limited multicast addresses
LAN switches

- LAN switches = LAN bridges
- Switches imply newer, faster, better, bigger
- Switching is a successful marketing term
- Being used to further segment shared LANs
- Switch port per device becoming the norm
- LAN switches are relatively cheap
Why switch?

- Reduce/remove shared medium contention
- Maximize aggregate capacity
- Extended distance limitations
- Data rate flexibility
Switching illustrated

![Diagram of an Ethernet LAN switch with connections at 10 Mb/s and 100 Mb/s.]
Store and forward switching

- Completely receive frame on input port
- Check frame check sequence for validity
- Perform address learning and lookup
- Forward or filter frame as appropriate
Cut-through switching

- Begin address lookup as soon as destination address of an incoming frame is received
- Begin forwarding/filtering immediately
 - Before the end of the frame even
- Goal is to improve switch transit latency
Cut–through switching fallacies

- Latency only improves if output port is free
 - Latency improvements when you don’t need it
- Switch latency is the least of your problems
- Multicast/broadcast cut–through is rare
- Input/output ports must be the same rate
- Propogates errors
 - But who cares, error rates are pretty insignificant
- Marketing mumbo jumbo that means nada
LAN switch configurations

- Bounded
- Stackable
- Chassis